hERE/\ A/ FEEEERTE

AREGUERKILEEZL

*

Multiplication-Free Linear Congruential Random Number
Generators

S3g ik

BipisaEs2ifeninsasd
3 8.880.5 A 55 £ 83003%

Email: pcwu@npit.edu.tw

#H '

EHBBCELZEANAZA IR R ELERAEZRS

B -SREOABEALAS - SAGUFAHKARELESRE
BEGRAMNBNELS L ~AXRBEAIE2HE

KHBRHRUVGHFAHIRELDRILFLROY

BAREREHES BRI RSHTHEEARTE R X

RETIZERZELEBNASGRARENRNLE R AN

GRBFERFBRUABILHUELSTEHSRAEA

AL Sl BE s SN ELTIRA A4 RHE
FrEibe RXERM—SERAGAHELSOEBRS

B © At T KE > FiES RRR
i

Abstract

Computer simulation has been widely used in scientific and
engineering applications. These applications demand
efficient, high-quality random number generators. Linear
congruential random number generators in various forms are
one of the most widely used and extensively studied. This

paper presents linear congruential gencrators with
multipliers having a few of % 2% terms. These generators can
be implemented with no multiplication. They are poriable

and very fast. The statistical and timing results of five

example generators are presented. Our result shows that
multiplication-free linear congruential generators can
‘achieve high speed with no degradation on quality.
Vectorization of these generators using parallel instructions
is briefly addressed. The hardware design of a generator is
also presented.

Keywords: statistical tests, portability, efficiency, parailel
instruction, hardware design.

1. INTRODUCTION

Computer simulation has been widelyused in
scientific and engineering applications. These applications
demand efficient, high-quality random number generators.
Linear congruential random nu mber generators in various
forms are one of the most widely used and extensively
studied. Their characteristics are well known, and their

* This research was supported in part by National Science Council,
Taiwan, R.O.C., under Contract No. NSC 88-2218-E-346-002.

execution speeds are acceptable. They have also been
included in most mathematical packages.

The basic form of linear congruential generators is as
follows
X;=a -X; 1 +0mod M s e (1)

Eq. (1) includes 1 multiplication, 1 addition, and 1 division.
The parameters a, ¢, and m determine the quality, the
efficiency, and the cycle length of the generator. There are
three well-known forms { 1]:

Xj=a-X;.1+cmod2", cis odd, a = 1 (mod 4),

cycle 1ength 2V ..o s (2)
X;=a-X;mod2", Xois odd, a = 3, 5 (mod 8),
cyele length 2% oo e 3)

X;=a-X; y mod p, Xo>0, pis aprime, 2 is a

primitive root of GF(p), cyclelengthp -1 ... 4
N is usually the length of computer words, e.g, 32, 48, 64.
Egs. (3) and (4) remove the addition in Eq. (1). Egs. (2) and
(3) use powers of 2 as moduli and remove the divisions. Eq.
(4) typically uses a Mersenne piime p = 2°- 1 and reduces
the division to a shift and an add with carry [12]. Eq. (4) can
also be extended to n-dimension (8, p.28)

Xi=(ar-Xpy+...+a-Xjpmodp. . ..coeeen. (5)
The cycle length is p° - 1. The initial condition is as follows
Kpy oo Xy 2O, o, Oy and i) =x" -0y X' - .. -a,is2

primitive .polynomial of GF(p”). Using a trinomial f(x), Eq.
(5) contains only two terms [6, 9]:

Xi=(as- X g+an-X;.
Egs. (5) and (6) have very long cycle lengths.

One way to further speeding up linear congruential
generators is by selecting multipliers that can be efficiend
implémented. Knuth (8, p. 22-24] discusses Eq. (2) with a =

25 + 1 and c=1, and finds that this kind of generators are bad.

Knuth 8, p.102, Table 1) applies the spectral test to Eq. (3)
with muliipliers such as a = 2% +2"% + 5, and finds that
these generators perform very bad in 4-dimension. Knuth (8,
p.170] finally suggests that multipliers without special forms
would be used. Some research [9, 10, 14] proposes portable
implementations for the double word product (a - X, ;) in Eq.

(4), which is wusually coded in assembly languages.

A-421

Unfortunately, all these implementations slow down the
speed.

Wu [15] proposes generators of Eq. (4) with
multipliers + 2% + 2K These generators can be
implemented with no muliiplication. They are portable and
very fast. This paper extends the technique to other forms of
linear congruential generators. The statistical and timing
results of five example generators are presented. Our result
shows that multiplication-free linear congruential generators
can achieve high speed with no degradation on quality.
Vectorization of these generators using parallel instructions
{13] is addressed in brief. The hardware design ofa
generator is also presented.

2. THE DESIGN OF MULTIPLICATION-FREE
GENERATORS

We choose multipliers that contain a few o + 2 terms,
e.g., multipliers £ 2 £ 2 45 4 2F 428 4 3 4 ok 4 9B
1 for Eqgs. (2) and (3), and + 2 + 2% for Egs. (4), (5), and
(6). All these multipliers contain the terms + 2 + 2%, The
advantages of these multipliers are as follows:

1. High speed. A few adds and shifts are usually faster
than a multiplication in most machines. Since shifts
can be hard-wired by swapping data lines, hardware
implementations of these generators need only adders.

2. Numerous multipliers. For example, m =22 or m =2

.-+, there are about three thousands of such multipliers.

It is hopefully to find adequate ones from these
multipliers.

3. High portability. The resulting generators mainly use
shifts and adds/subtracts. All these operations can be
programmed using a high-level language such as the C
programming language [7].

4. High parallelism degree. Using multimedia extension
instructions 13] such as parallel shifts, adds, and
subtracts, we can generate two(or more) random
numbers at one time. Let the parallelism degree be L.
The Eq. (6) can be vectorized if d > L. The condition
for Egs. (2:(4) is as follows A = a” (mod m); A is of
the form + 2% +2%; and a passes the spectral test. The
generators of Egs. (2)-(4) can be vectorized using
Anderson {1, p. 239, Method I}:

Let X(L; 1) be a vector xo, a xo (mod m), a° xp (mod
n, ..., a x (mod m)].
X(LiD=A-X(L; 1) (MOd 11) ceoeeerirerereereeenn @)

The point 3 is related to the handling of double word
product (a X, 1) inEq. (4).
Leta=+2" +28 m=27-1.
X=a-x.,=x, (2" +2) =+ 2M ‘X E2

k.
M

=+(2" x ;mod m)+ (2% . x, ; mod m) (mod

m).

When m = 2° - 1, multiplication by % (mod m) canbe
obtainedby swapping the high-order and lo -order bits
Let x be a p-bit integer, k < p.
2k. xmod (2” - 1) = x (high-order % bits) + x
(low-order p - k bits) - 2K,

- This action can even be implemented in hardware with n

logic gates but wires.
The point 4 needs further discussion. Consider L
= 2. When prime p = 3 (mod 4), A?V* = 1 (mod p), A
has two squareroots + A®*"* (mod p). When m = 2,
N23,A=1 (mod 8), and a is a square root of A, the
other three roots are - a, a + 2%, and - g + 2. One of
these roots can be obtained from the ay of the
following recursive equation [2, p.1411]:
s=1, ani=a+(ad - A2 (mod m)ooveeeen., (8)

3. EXAMPLE MULTIPLICATION-FREE GENERATORS

Table I lists some of linear congruential generators
using this technique. All of generators use m =2 or p = 27!
- 1. The technique is also applicable to moduli such as
and 2 - 1. Such large moduli will be in common use when
64-bit processors are available in most desktops and 64-bit
codes are as fast as 32-bit codes.

Generators G1 and G2 are for Eq. (3); G3 and G4 are
for Eq. (4); G5 is for Eq. (6). G2 and G4 are parallel
versions with L = 2 for Eqs.(3) and (4), respectively. The
right columns show spectral test results of these generators.
The notation here follows that of Anderson [1]. The Vv, is the

“wave numbers” in #-dimensional space. The /v, provides a
measure of the granularity of a generator in z-dimensional
space. In theory, v, <7, - mi”, 9=V, (Y, m!ty represents a
relative quality measure. The constant v, can be found in [8,
p.105]. The B, = loga(v,) represents the number of random
bits when #-tuples are considered. Generators G1 to G4 are
selected based on ¢, 2 <t < 6, by an exhaustive search. All
these generators have ¢,> 0.7, 2 < ¢ < 4. They are acceptable

in comparison with the best multipliers from 3, 4], which
have ¢,>0.8,2 <1<6.

We exhaustively search generators of Eq. (6) withn =
8, a, =2" + 2% and a, = 2" The high-order spectral test [8,
Ex. 3.3.4-24] is used torate these generators. Because q, is
not dire tly applicable to the high-order spectral 'test, G5 is
selected in according t v,. The v, of G5, t < 8, is constant m.

The degree of polynomial n = 8, because it is the largest n
we are able to obtain the factorizationo r=(p"-1)/(p- 1)
[8, p.29]. Table I lists some factorizations of 7 for p =2 - |
andp=2%-1. Complete factorizations for p=2>' -1 and n =
2..6 can be foundin 9]. Some factorizations of r are difficult
to obtain even if n < 8. The following equation (also
indicated in [9]) can gready simplify the factorization of r
when n is even:

@-D/p-1)=0p"+1) (p"”-l),/(pf 1.

A-422

If n is a power of 2, this equation can be applied several
times as shown in Tablell.

Table I. The parameters and the spectral test results of five
example linear congruential generators.

Parameters Spectral test resulis

qe ﬁt Vi
Gl: X;=a- X;amod 2" 0.9161 1598 64517
N=32 0.9295 10.73 1696
a=64517 0.7621 7.86 232

=2'%.2%4.5(mod2") 5 07502 6.29 78

¢
2
3
4
5
6 0.7304 5.25 38
2
3
4
5
6

0.9137 1597 64347
0.7865 1049 1435
0.7489 17.83 228
0.7118 6.21 74
5.09 34

G2 X;=a- Xiamod 2V
N=32
& = A (mod 2V)
a =2655201001 (mod 2")
A=4292870161=-2" +
2* 4 1 (mod 2™

G3: X;=a-Xiamodp
p= 93t |
a=2146942975

E-219-214(m0dp)

0.6535

2 0.7178 15.13
3 0.7078 10.00 1025
4 07227 1753 185
5 0.6077 5.78 55
6 0.6256 4.86 29
G4: Xi=a- Xiamod p 2 0.8634 1539
3
4
5
6

42995
p=2"-1 0.8694 1030 1259
a* = A (mod p) 0.7383 17.56 189
a = 2049892995 0.7844 6.15 71
A=2162688 =2 +2'6 0.7119 5.04 33
(mod p)

G5 X,=(ag- Xia+an-Xiw) 9O na. 2000 1048584
mod p : 10 na. 20.00 1048584
p=2"-1,n=8,d=3 11 na. 20.00 1048584
Sy =x5+2048 % + 12 na 1806 272451
2138832895

ag=-2048 = - 2! (mod p)
an=-2138832895

=8650752=2% + 2!
(mod p)

Table II. Some factorizationso r=(p"-1)/(p-1) forp=
2.1 andp=261 - 1.

- p n r
2.1] 2 2"
2T 1] 4 [2%x5 %733 x 1709 x 368140581013
2T 1 | 8 [2P x5 x 17 x 41 x733 x 1709 x 21529 x
368140581013
| % 708651694622727115232673724657
21| 2 2

2211 | 4 2% 2113 x 3389 x 91961 ¥
4036962584010807014809213

2901 | 8 |25 %337 x 2113 x 3389 x 91961 x
4036962584010807014809213 x
41942957027380043359485018848929158483
196007982252211267973360119703473

35746

n.a. =not available

4, THE IMPLEMENTATION

This section presents the source codes for generators G1, G3,
and G5. These programs mainly use adds, subtracis, and
shifts, and use no conditional statements. The hardware
design of G3 is also presented. Figure 1 is the C program for
G1. The multiplication is replaced with 3 shifts and 3
adds/subtracts.

Figure 2 is the C program for G3. LOG_W is the
number of bits ofinteger type (int). LOG_M = flog, m]l.
Variable x0 is declared as “unsigned int”, thus all the right
shifts of xO will fill O from the left. When x1 <0, the sign bit
of x1is 1, ie., xI =-2" + (x1 & M). Thus, x1 =M - 2" +
(x1 & M) = (x1 & M) - 1 (mod M). Since x1 is a 32-bit
unsigned integer, (x1 >> 31) obtains its sign bit. Directl
using x1’s sign bit in computation can avoid the conditional
statement on the sign bit. This makes the program easy to
vectorize. This is a slight improvement to the code in [15].

Figure 3 is the C program for G5. N denotes n, and D
denotes d in Eq. (6). The seed is an integer array of size N.
Assume that N is a power of 2. Index wrapping on the arra
seed is by an bitwise-and (&) with N - 1. The sign bit of x1
is used as a carry bit for the statement “x1 = wl + w2” and
as a borrow bit for the statement “x1 = x1 - w3”.

Figure 4 shows the logic design of G3. X is one’s
complement of X. The numbers in the brackets of X
represent the bits of X . We obtain

-2¥.x = X[11.0;31.12]; and

24X = X[16.0;31.17].
This is equivalent to replacing part of the C code in Figure 2
by the following statements:

x1 = (~wl & M) + (~w2 & M);

seed = (x1 & M) + (x1 >>LOG_M),
The operator ‘~' is one’s complement. The adder has two
31-bit inputs. The carry-out bit feeds back to the carr -in bit
of the adder. The result of the adder is the next random
number X',

A-423

This design is very simple in comparison with those in
[5, 11]. Note that the method takin a-x (mod p) using no
division was covered in the claim 2 of U.S. patent No.
5,317,528 [5]. As addressed in Introduction, the division-free
technique is a prior art [12].

/* m= 2732, a = 64517 = 216 - 2710 + 5 */
#define K1 16
#define K2 10
static unsigned int seed = 1;
void set_seed(unsigned int s)
{
if (s>0) seed = s;
' .
unsigned int get_rand()
{
unsigned int x0 = seed;
seed = (x0<<Kl) ~ (x0<<K2) + (x0<<2) + x0;
return seed;

Figure 1. The C code for generator G1.

/* m=2"31-1, a=2146942975=- 2219 - 2~14 */
#define LOG_W 32
#define LOG_M 31

#define M Ox7EfEELEE
#define K1 19
#define K2 14

static int seed = 1;
void set_seed(unsigned int s)
{
if (s>0)
}
unsigned int get_rand()
{
unsigned int x0 = seed;
unsigned int x1;
int wl, w2;

seed = s;

wl = (x0>>(LOG_M-K1)) /*low-order bits */
+ ((x0<<(K1+LOG_W-LOG_M)) >>
(LOG_W-LOG_M)); /* high-order*/

w2 = (x0>>(LOG_M-K2)) /* loworder bits */

+ ((x0<<(K2+LOG_W-LOG_M)) >>
(LOG_W-LOG_M)); /* high-order*/

xl = M- wl - w2;

seed = (x1 & M) - (x1 >> LOG_M);

return seed;

X{i) = a_d * X(i-3) + a_n * X(i-8)

an = 2723 + 2718; a_d =- 2711 */

#define N 8

#define D 3

#define LOG_W 32

#define LOG_M 31

#define M OxT7fffEeeff

#define K1 23

#define K2 18

#define K3 11

static int seed[N];
static int count=0;
void set_seed(unsigned int s)
{
int 1i;
if (s > 0) seed{0] = s;
for(i=1; 1i<N; i++)
seed[i] = 0;
}
unsigned int get_rand()
{
unsigned int x0 = seed[count];
unsigned int xd = seed|[(count-D) & (N-1)];
unsigned int x1;°
int wl, w2, w3;

wl = (x0 >>(LOG_M-K1)) /*low-order bits */

+ ((x0<<(K1+LOG_W~LOG_M)) >>
(LOG_W-LOG_M)); /* high-order bits */

w2 = (x0>>(LOG_M-K2)) /* loworder bits */

+ ((x0<<(K2+LOG_W-LOG_M)) >>
(LOG_W~LOG_M)); /* high-order bits */

w3 = (xd >>(LOG_M-K3)) /*low-order bits */

+ { (XA<<(K3+LOG_W-LOG_M)) >>
(LOG_W-LOG_M)); /* high-order bits */

X1l = wl + w2;

x1l = (x1&M) + (x1>>LOG_M); /*add carry */

xl = x1 - w3;

x1=(x1&M)~(x1>>LOG_M); /*subtract borrow
*/

seed([count] = x1;

count = (count+l) & (N-1);

return x1;

Figure 2. The C code for generator G3.

/* m = 2731 -1

Figure 3. The C code for generator G5.

i

—

carry out
31
—rf— X [11.0:31..12]
3
x 7 ADDER .
k—f— ¥ [16.0;31 .17]
carTy in

A-424

Figure 4. The logic design for G3.

5, STATISTICAL AND TIMING RESULTS

We apply three empirical tests to generators G1 to GS5.
The tests follow Wu [15]. The frequency test takes x mod 12.
We take (x >> 6) mod 12 for G1 and G2, because their
low-order bits are not very random. The run test examines
the length of “run up” sequences, categorized into [1, 6] and
>6. The maximum-of-t test takes the maximum of 5
consecutive numbers x; and examines whether max(x;) < 7/8
m. The degrees of freedom of these tests are 11, 6, and 1,
respectively. We use the chi-square test in 6 rounids. Each
test consumes 2,000,000 random numbers. The 36,000,000
consecutive random numbers are generated by seed 1. The
chi-square result V is rejected if Vis outside [1%, 99%]. The
result is “suspect” i V is in {1%, 5%] or [95%, 99%]. The
result is “almost suspect” if V is in [5%, 10%] or [90%,.
95%]. The results are shown in Table IIL All these
generators are satisfactory.

Table IV shows the timing results of G1 to G5. We
compared the performance of multiplication-free (mul-free)
development with the typical multiplication (mul) method.
For the mul versions of G3 to G5, we use 64-bit integers
(“long long int”) to handle the double word product and use
shifts and adds for the division. All these programs generate
an array of random numbers in one procedure call. A test
was conducted that generated 50,000,000 random integers in
1,000 calls. The code on SparcStation was compiled by GNU
CC (gec -0O); the code on PC was compiled by djgpp, D.J.
Delorie’s port of GNU CC. The codes in Alpha and RS6K
were compiled by the vendor's C compiler (¢ -O). The
execution times were measured in seconds by the clock
function. All programs were executed five times and the
minimum ones were taken.

The speedups on G1 and G2 would be very small,
because about 3 shifts and 3 adds are needed to replace one
multiplication. It is surprising that we get a speedup of 1.30
in Alpha. The speedups on G2 are mainly due to the longer
time in multiplyingb a= 2655201001. The speedups on G3
to G5 are as expected except the dramatic speedups 7.57 and
10.24 obtained on SparcStation. The actual speedups on G3
to G5 will be less if the mul versions are coded in assembly.

6. CONCLUSION AND FUTURE WORK

This paper has presented the design and implementation of
multiplication-free linear congruential generators. The

statistical and timing results of five example generators G1
to G5 have been presented. Our result shows that
multiplication-free linear congruential ~generators can

achieve high speed with no degradation on quality.
Vectorization of these generators using multimedia extension
instructions has been addressed in brief. The hardware
design of generator G3 has also been presented. The future
work on these generators includes: (1) further theoretical and
experimental analyses;2) hardware implementations for

applications such as test patterns generation of sel -testing

integrated circuits; and 3) applying to very large moduli such
as 2% and 2'7 - 1, which can be represented as a double
word in 64-bit machines.

Table . Statistical results for generators G1 to G5.

Frequency test Run test Maximum-of-t
6.7158 7.0171 0.1427
Gl 11.6529 7.9178 0.4479
1.1787 R 5.7856 1.0412
15.8069 8.8324 1.0597
9.3125 113685 AS 3.3134 AS
6.0053 9.9845 0.8852
8.9051 4.5279 -0.0404
G2 17.5204 AS 2.5835 0.0498
12.6557 3.7965 0.5881
9.0263 113234 AS 1.4570
14.2090 4.9657 0.0950
7.8747 9.4397 0.1053
10.7834 8.0457 2.5578
G3 13.1993 1.6961 S 0.039
189748 AS 125857 AS 1.3155
11.3936 -8.2869 0.2946
19.1859 AS 4.8435 3.8271 AS
3.7377 S 6.6850 0.2485
6.1138 6.5518 2.1227
G4 6.3843 4.7412 0.7757
11.8161 4.9098 0.4305
. 9.0772 2.0365 AS 1.5109
11.0775 15.0830 S 0.1451
15.1131 3.3433 0.2360
11.3233 1.0765 S 05085
G5 12.1466 13.3719 S 0.0747
299432 R 6.7521 0.0379
12.0196 5.7374 0.2239
16.4973 2.4928 0.6427
11.9700 7.3736 0.0007 S

R=Reject; S=Suspect; AS=Almost Suspect.

A-425

Table IV. Timing results of generators G1 to G5 on four

platforms.
Generator PC Sparc RS6K/ Alpha
Pentium-9 Station-10 590 3K/500
0
mul-free 698 s. 1137 s. 1.84s. 1.28s.
Gl mul 6.98 s. 11.35 s. 1.07s. 1.67s.
speedup 1.00 1.00 0.58 1.30
mul-free 6.92s. 12.18 s. 1.78s. 1.30s.
G2 mul 6.92 s. 59.38 s. 1.10s. 4.05s.
speedup 1.00 4.88 0.62 3.12
mul-free 9.61s. 16.30s. 4.24s. 3.68s.
G3 mul 2082s. 2775s. « 7.53s. 5.70s.
speedup 2.17 1.70 1.78 1.55
mul-free 1022s. 1857s. 3.52s. 3.87s.
G4 mul 20.71s. 14058s. 7.52s. 7.73s.
speedup 2.03 7.57 2.14 2.00
mul-free 21.42s. 2640s. 553s. 6.88s.
G5 mul 60.48s. 270345 14.28s. 14.32s.
speedup 2.82 10.24 2.58 2.08
REFERENCES

[11 Andemson, S.L. (1990), "Random Number Generators
on Vector Supercomputers and Other Advanced
Architectures," SIAM Review, Vol. 32, No. 2, pp.
221-251.

2] Anglin, W. S. (1995), The Queen of Mathematics: An
Introduction to Number T heory, Kluwer Academic
Publishers. :

[3] Fishman, G. S., and Moore, L. R. (1986), "A
Exhaustive Analysis of Multiplicative Congruential
Random Number Generators with Modulus 23! - 1,
SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, pp. 24-45.

[4] Fishman, G. S. (1990), “Multiplicative Congruential
Random Number Generators with Modulus 28; An
Exhaustive Analysis for =32 and a Partial Analysis
for p=48,” Mathematics of Computatio , Vol. 54, No.
189, pp. 331-344.

[5] Gofman, E. (1994), “Random Number Generator”,
U.S. Patent No. 5,317,528,

{61 Kao, C., and Tang, H.-C. (1997), “Upper Bounds in
Spectral Test for Multiple Recursive Random Number
Generators with Missing Terms,” Computers Math.
Applic., Vol. 33, No. 4, pp. 119125.

[7} Kermighan, B.W., and Ritchie, D. M. (1988), The C
Programming Language 2nd Ed., Prentice-Hall.

(8] Knuth, D. E. (1981), The Art of Computer
Programming Vol2: Seminumerical Algorithms, 2nd
ed., Addiso -Wesley, MA.

[9] L’Ecuyer, P., Blouin, F., and Couture, R. (1993), “A
Search for Good Multdple Recursive random Number
Generators,” ACM Trans. on Modeling and Computer
Simulation, Vol. 3, No. 2, pp. 87-98.

[10] Park, S.K., and Miller, K. W. (1988), "Rando

Number Generators: Good Ones Are Hard to Find,"
Communications of the ACM, Vol. 31, No. 10, pp.
1192-1201.

()]

(12}

[13]

Paplin

*ski, A.P., and Bhattacharjee, N. (1996) “Hardware
Implementation of the Lehmer Random Number
Generator,“ IEE Proc.-Comput. Digit. Tech ., Vol. 143,
No. 1, pp. 93-95.

Payne, W. H., Rabung, J. R.,and Bogyo, T. P. (1969),
"Coding the Lehmer Pseudo-random Number
Generator,” Communications of the ACM, Vol. 12, No.
2,pp- 8 -86. :
Peleg, A., Wilkie, S., and Weiser, U. (1997), “Intel
MMX for Multimedia PCs,” Communications of the
ACM, Vol. 40, No. 1, pp. 24-38.

[14] Schrage, L. (1979), "A More Portable Fortran Random

[15)

A-426

Number Generator," ACM Trans. on Mathematical
Software, Vol. 5,No. 2, pp. 132-138.
Wu, P.-C. (1997), "Muliplicative, Congruenta
Random Number Generators with Multiplier + 2" &
22 and Modulus 27 - 1," ACM Trans. on Mathematical
Software, Vol. 23, No.2, pp.255-263.

