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Abstract 
 
In recent years, several search engines had been 

developed to help people find interesting information 
among the rapidly increasing number of web pages in the 
Internet. To obtain useful and reasonable searching results, 
users may submit queries with more than one query terms 
combined by a Boolean expression, which has been 
supported by all existing search engines. However, these 
search engines all put the same emphases on every query 
term combined by the Boolean expression. In other words, 
all search engines nowadays do not consider that users may 
want to put more emphases on one term rather than on the 
others. In this paper we propose a novel approach, called 
Extreme Score Analysis method (ESA method), to solve 
this problem. Our ESA method can efficiently find the top 
K (K > 0) interesting web pages when the user assigns 
different weights for query terms. 

 
 

1. Introduction 
 
As the fast process of computer and network 

technologies, computers connected in the Internet will soon 
become the indispensable electrical appliances of our daily 
life. Through the Internet, people can get their desired 
information much easier and quicker. But, meanwhile, the 
rapidly growing data carried on the Internet really make 
people very difficult to search and filter the appropriate 
information they want. In recent years, several search 
engines [3, 14, 15, 17, 22, 24] had been developed to 
reduce such overloads.  

In general, in order to support a full-text information 
retrieval, the search engines filter terms in the contents of 
web pages to establish a corresponding inverted index [23]. 
When users submit a query with some proper query terms 
as keywords (these query terms can be combined by a 
Boolean expression), the search engines will look the terms 
up in the inverted index to find out the corresponding web 
pages, and further rank these web pages by their own 
predetermined term weighting functions and vector 
similarity functions. Finally, users can view those ranked 
web pages and get more relevant information in the front 
of them.  

Usually, users may submit queries with more than one 
query terms combined by a Boolean expression to enlarge 
or narrow their searching interests. Although the search 
engines nowadays all support the Boolean expression, they 

put the same emphases on all the query terms combined by 
the Boolean expression. For example, when a user submits 
a Boolean expression with two query terms, �music and 
download�, a typical search engine will return the web 
pages which contain both terms �music� and �download�, 
and ranks these web pages according to their scores, which 
could be the sum of the individual contributed values for 
the two query terms in their own context. (Note that the 
contributed value for a term denotes the value returned 
from its term weight function.) However, users may put 
more emphases on one term rather than on the other. 
Continuing with the foregoing example, users may want to 
look for the web pages, which contain �music� for 
�download�, but put more emphases on �music� rather 
than on �download�. For quantify such a case, users can be 
allowed to assign different weights to each query term in 
the Boolean expression, e.g. �(0.8) music and (0.2) 
download�, which means the degrees of importance of the 
two query terms are in a ratio of 4:1.  

To fulfill such a requirement for different weights of 
query terms, it is necessary to re-calculate the final score 
for each web page according to the new given weights. 
After this re-calculation of web pages� scores, users can get 
the true ranking results. However, a typical search engine 
merely returns matched web pages with final scores, ranks, 
etc., but without the individual contributed value for each 
query term. Therefore, to re-calculate the final scores, there 
are two problems needed to be resolved. First, we need to 
know the scoring function of the search engine. Usually, 
due to commercial secret, we usually have no idea of the 
search engine�s scoring function. Basically, we can solve 
this problem by adopting another scoring function, which 
can be defined by ourselves. Even so, there still exists the 
second problem is that we have to scan every returned web 
page�s content to get each query term�s contributed value. 
Such a task will be extremely time-consuming. Moreover, 
in a real situation, for the sake of time or no patience, most 
of users usually only view the top K web pages from those 
HN returned web pages [4] (K << HN, where HN is the 
total number of returned web pages).  

To avoid the overhead of re-calculating the whole HN 
returned web pages, in this paper we will propose a novel 
approach, called Extreme Score Analysis Method (ESA 
method), which can find the top K interesting web pages 
without re-scanning the HN returned web pages to get the 
individual query terms� contributed values. Instead, our 
method will inform users that the top K interesting web 
pages they request will be among the top R returned web 



 

 

pages (K ≤ R << HN). From the performance study, we can 
find that the value of R will be close to that one of K. For 
example, if one user submits a query with two terms and 
wants to get the top K web pages according to his/her 
weights (0.6 and 0.4, respectively) of query terms, the 
value of R will be approximately equal to 1.5 × K.  

The rest of the paper is organized as following. In 
Section 2, we survey some basic components of a typical 
search engine and some related term weighting functions 
and vector similarity functions. Section 3 describes the 
basic idea of our Extreme Score Analysis Method. Section 
4 presents an experimental evaluation of our method. 
Finally, Section 5 is the conclusion.  

 
 
2. The Components of Search Engines 

 
In general, a typical search engine is composed of three 

components: 
 

(1) Indexer Robot  
The indexer robot [5] is an autonomous WWW browser, 

which communicates with WWW servers using HTTP 
(Hypertext Transfer Protocol). It visits a given WWW site, 
traverses hyperlinks in a breadth-first manner, retrieves 
WWW pages, extracts keywords and hyperlink data from 
the pages, and inserts the terms and hyperlink data into an 
index. A list of target sites is given to the indexer robot for 
creating the index initially. 

 
(2) Indexer database 

The Indexer robot reads web pages and sends these web 
pages to the indexer database to crate indexing records. 
This indexer database is also named an inverted index. 
Each web page in the inverted index is represented as a 
vector d = (d1,�,dm), where di is the weight of the ith term 
ti in representing the web page, 1 ≤ i ≤ m. If the original 
web page is changed, the inverted index should be updated. 
The update is not made in the inverted index until the 
indexer robot has revisited the changed web page again.  

 
(3) Ranking  

In order to rank all related web pages, the search engine 
assign relevance scores to them [18]. The scores indicate 
the similarities between some given query terms, which 
can be similarly represented as a vector q = (q1,�,qm) 
(where qi is the weight of the ith term ti , 1 ≤ i ≤ m), and the 
web pages. However, each search engine may employs a 
characteristic term weighting function, which assign weight 
to each term, and a characteristic vector similarity function, 
which assign relevance scores to web pages.  

A well-used term weighting function is called tf×idf [11], 
which assumes that term importance is proportional to the 
standard occurrence frequency of each term k in each web 
page Hi (that is, FREQik) and inversely proportional to the 
total number of web pages in the web page collection (that 
is, HOPFREQi) to which each term is assigned. Then, a 
general term weighting function of tf×idf can be  

 
WEIGHTik = FREQik × [log2 (n) � 
                     log2 (HOPFREQk) + 1],   

  where n is the total number of web 

pages in the collection. 
 
There were many others proposed term weighting 

functions, such as Signal-Noise Ratio [6] and Term 
Discrimination Value [21]. Although every term weighting 
function has its own properties, all of them propose the 
same hypothesis that term importance is proportional to the 
standard occurrence frequency of each term in each web 
page as the one in tf×idf. Nevertheless, tf×idf is superior to 
the others in the aspects of efficiency and cost [12, 18]. 
Furthermore, because the web pages are written in 
hypertext markup language (HTML), each search engine 
may take some related factors (e.g. hyperlink, number of 
times the keywords occur in the document title�etc.) into 
account to provide more suitable ranking results [1]. 
Consequently, the most term weighting function applied by 
the existing search engines are derived from tf×idf. 

Although, there were also many kinds of vector 
similarity functions, they all exhibited one common 
property, namely that the similarity value increases when 
the weight of the common properties in two vectors 
increases. Jaccard and cosine coefficient, which are two 
kinds of vector similarity functions, have been widely used 
for the evaluation of retrieval functions [19, 20]. Both 
values of the two similarity functions increase when the dot 
product of two vectors increases. 

 
 

3. Extreme Score Analysis method 
 
As discussed in Section 2, we can assume that when a 

user submits a query with n query terms, the score KSi 
(here, we call it original score) search engines assign to 
each web page Hi (i denotes the original rank of this web 
page among the returned matched web pages) will be 
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where Wj is the weight of term j given in the user�s query 
and (b((FREQij + a) / HOCFREQj) + c) is the contributed 
value of term j in KSi. Variables a, b and c are used by each 
search engine to improve the tf×idf under the consideration 
of some possible factors. Nevertheless, what our research 
concern is only about the ranking result of returned web 
pages. Whatever the values of Variables a, b and c will be, 
the ranking result will never change. Furthermore, as 
mentioned in Section 1, all current search engines put the 
same emphases on every query term (that is, Wj = 1 / n) 
Therefore, the original score can be simplified as  
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where ConVij = b((FREQij + a) / 
HOCFREQj) + c. 

 
However, users may assign each term weight unequally. 
Obviously, alterations in term weights will cause the 
changes of original scores. The score that is re-computed 
from the original score is called target scores KTi and can 
be defined as 
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For example, suppose a user submits a query with two 
query terms, term p and term q, combined by a Boolean 
expression and the user want to assign 0.7 and 0.3 to each 
term�s weight, respectively. Then, the original score of the 
ith matched web page will be  
 

KSi = 0.5ConVpi + 0.5ConVqi. 
 

And, the target score of the ith matched web page will be 
 

KTi = 0.7ConVpi + 0.3ConVqi. 
 
To be convenient to explain our method, we will first 

consider the case of two query terms, term p and term q. 
Without loss of generality, we divide ConVp and ConVq by 
their maximum respectively to limit their values between 0 
and 1, i.e., 0 ≤ ConVp, ConVq ≤ 1. Then, there are some 
theorems, which are applied in our method, need to be 
stated and proved in the following.  

 
Theorem 1. Let x-axis and y-axis denote ConVp and 
ConVq respectively in the coordinate plane. Then a linear 
equation, which passes through the origin and is 
orthogonal to the straight line SC = Wp × ConVp + Wq 
×ConVq, will be ConVq = (Wq / Wp) × ConVp, where 0 ≤ 
Wp, Wq ≤ 1.   

 
Proof. According to Slope Theorem, the product of slopes 
of two straight lines will be �1 if they are orthogonal to 
each other. Therefore, we can obtain the slope of the 
straight line, which is orthogonal to the straight line SC, is 
Wq / Wp. Moreover, because the straight line passes through 
the origin, we can obtain the linear equation will be ConVq 
= (Wq / Wp) × ConVp.  □ 

 
Theorem 2. Let SC1 = Wp × ConVp + Wq × ConVq and 
SC2 = Wp × ConVp + Wq × ConVq represent two parallel 
lines in the Coordinate Plane and intersect the straight line 
ConVq = (Wq / Wp) × ConVp in the point A and point B, 
respectively. If the length of line segment OA > the length 
of line segment OB , then SC1 > SC2. 

 
Proof. First, we can obtain the coordinates of A is (( SC1 × 
Wp) / (Wp

2 + Wq
2), (SC1 × Wq) / (Wp

2 + Wq
2)), and that of B 

is (( SC2 × Wp) / (Wp
2 + Wq

2), (SC2 × Wq) / (Wp
2 + Wq

2)). 
Then, we can obtain the length of line segment OA  = SC1 

/（Wp
2 + Wq

2）1/2 and OB = SC2 / (Wp
2 + Wq

2)1/2. Clearly, 
because of OBOA > , we can infer that SC1 > SC2. □ 

 
From Theorems 1 and 2, we can obtain Figure 1 and 

Figure 2 as shown in the following. In both figures, x-axis 
and y-axis represent the contributed values of query terms 
p and q, respectively. The point (ConVpi, ConVqi) in the 
coordinate plane denotes the web page Hi returned by the 
search engine, and every dashed straight line which 

intersects the point (ConVpi, ConVqi) denotes the score of 
each web page Hi when the term weights are Wp, Wq 
respectively. In particular, Figure 1 represents the 
distribution of original scores of returned web pages, and 
Figure 2 represents the distribution of target scores. From 
the comparison of Figure 1 and Figure 2, we can observe 
that the dashed line, which denotes the score of web page 
Hi, will alter when the weights of the two query terms vary. 
From Theorem 1 we can know the reason is that original 
score considers the weights of both term are equivalent 
(that is, Wq / Wp = 1), but target score does not (that is, Wq / 
Wp ≠ 1). As well, from Theorem 2 we can obtain that the 
further the distance between the dashed straight line and 
the origin is, the higher the score denoted by the dashed 
straight line will be.  
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Figure 1. The distribution of original scores in the 

coordinate plane. 

 
Figure 2. The distribution of target scores in the coordinate 

plane. 
 

Theorem 3. As shown in Figure 3, let KSi = 0.5ConVp + 
0.5ConVq denotes a straight line in the coordinate plane, 
where 0 ≤ ConVp, ConVq ≤ 1 and 0 < Wq < Wp < 1. Then, 
we can obtain an infinite number of straight lines KTi = Wp 
× ConVp + Wq × ConVq which intersect KSi and are 
orthogonal to the straight line ConVq =（Wq / Wp） × 
ConVp. Furthermore, we can obtain KTmaxi and KTmini, 
which satisfy KTmaxi ≤ KTi ≤ KTmini, for each KSi, 
respectively. 
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Proof. Solve simultaneously the set of Equations (1) and 
(2): 

KSi = 0.5ConVp + 0.5ConVq,         (1) 
KTi = Wp × ConVp + Wq × ConVq..           (2) 
 

By (1) × 2Wp - (2), we can obtain 
ConVq × (Wp � Wq) = 2Wp × KSi � KTi. 
ConVq = (2Wp × KSi � KTi) / (Wp � Wq)      (3) 
 

By (1) × 2Wq - (2), we can obtain 
ConVp × (Wq � Wp) = 2Wq × KSi � KTi. 
ConVp = (2Wq × KSi � KTi) / (Wq � Wp).      (4) 

 
0 ≤ ConVp, ConVq ≤ 1.                (5) 
1 < Wp < Wq < 0.                      (6) 

 
By solving simultaneously Equations (3), (5), and (6), we 
can obtain 
 

0 ≤ (2Wp × KSi � KTi) / (Wp - Wq) ≤ 1. 
0 ≤ (2Wp × KSi � KTi) ≤ Wp - Wq. 
Wq + Wp(2KSi �1) ≤ KTi ≤ 2Wp × KSi. 
Wq + Wp(2KSi � 1) ≤ KTi  

≤ Wp + Wp (2KSi �1). (7) 
 

Similarly, by solving simultaneously Equations (4), (5), 
(6),we can obtain 
 

Wq + Wq (2KSi � 1) ≤ KTi 

        ≤ Wp + Wq (2KSi �1).  (8) 
 

Finally, by solving simultaneously Equations (7) and (8), 
we can obtain the maximum of KTi (that is, KTmaxi = 
Min(Wp + Wq(2KSi � 1), Wp + Wp(2KSi � 1)) and the 
minimum of KTi (that is, KTmini = Max(Wq + Wq (2KSi � 1), 
Wq + Wp(2KSi � 1)), which satisfy KTmaxi ≤ KTi ≤ KTmini for 
each KSi.  □ 

 

Figure 3. The relation between original scores and target 
scores. 

 
Theorem 4. Continuing with Theorem 3, let KSi = 
0.5ConVp + 0.5ConVq and KSj = 0.5ConVp + 0.5ConVq 
represent two straight lines in the coordinate plane. If KSi 
> KSj, then KTmini > KTminj and KTmaxi > KTmaxj. 

 
Proof. From Equations (7) and (8) in Theorem 3, we can 
get that if the values of term weights Wp and Wq are fixed, 
then the larger KSi is, the larger KTmaxi and KTmini will be. 
Therefore if KSi > KSj, then KTmini > KTminj and KTmaxi > 
KTmaxj.  □ 

 
Theorem 5. For every i, suppose there are KTmaxi ≥ KTi ≥ 
KTmin (1 ≤ i ≤ HN), and satisfy KTmax1 ≥ KTmax2 ≥ � ≥ 
KTmaxi ≥�≥ KTmaxHN, KTmin1 ≥ KTmin2 ≥�≥ KTmini ≥�≥ 
KTminHN. If there is a KTmaxj that satisfies KTmaxj ≥ KTmink, 
then the KTj may be one of the top K of all KTi. 

 
Proof. Suppose there is a KTj (j > K) and satisfies KTmaxj ≥ 
KTminK, but, KTj should not be one of the top K of all KTi. 
However, as asserted above, Because of KTmin1 ≥ KTmin2 
≥�≥ KTminK-1 ≥ KTminK, the top K of all KTi will be KT1, 
KT2, KT3,�, KTK in turn when KTi = KTmini, 1 ≤ i ≤ K. 
Nevertheless, because of KTmaxj ≥ KTminK, KTj may be 
bigger than KTK and becomes the Kth rank of all KTi when 
KTj = KTmaxj. As a result, our previous assumption is not 
true. Consequently, for each i if KTmaxi ≥ KTmink, then the 
KTi may be one of the top K of all KTi.  □ 

 
As stated before, since the search engine do not return 

the individual contributed values ConVpi and ConVqi for 
each returned web page Hi, the coordinates of web page Hi, 
(ConVpi, ConVqi), may locate at anywhere on the straight 
line KSi = 0.5ConVpi + 0.5ConVqi. As a result, we can not 
obtain the actual target score KTi for Hi.  

From Theorem 3, we know that KTi will be between 
KTmini and KTmaxi, as shown in Figure 3. That is, for given 
term weight values Wp and Wq, which are assigned by users, 
we can derive a value interval of target score from each 
original score. Each value interval will have a pair of 
maximum target score KTmaxi and minimum target score 
KTmini. Furthermore, from Theorem 4 we can observe that 
the distribution of KTmaxi and KTmini decrease gradually 
with the decrease in original score. Figure 4 shows such a 
case. Finally, from Theorem 5, to support the correct top K 
interesting web pages from the returned web pages, all the 
web pages whose KTmaxi ≥ KTminK might one of the top K 
target ranks of web pages. That is, the user has only to 
view those web pages to get the real top K target ranks, 
instead of viewing the whole HN returned web pages. 
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Figure 4. The distribution of KTmaxi and KTmini. 

 
In general, suppose a user submit a query with n 

different query term weights through a search engine, 
which returned HN matched web pages, and the user wants 
the top K interesting ranks of web pages according to the 
submitted term weights. Without loss of generality, we let 
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W1 ≥ W2 ≥,�≥ Wn-1 ≥ Wn, and the analysis steps to evaluate 
the required top R web pages (R ≥ K) needed to be viewed 
by the user to get the real top R ranks in our proposed ESA 
method are shown in Figure 5. In Figure 5, to simply the 
expressions, we define two functions: 
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Figure 5. Extreme Score Analys
 
There is an example as shown in Table 1 to explain the 

teps in our ESA method. For simplicity, we consider the 
ase with n = 2 and the search engine returned 20 related 
eb pages. Suppose the user wants to assign 0.3 and 0.7 to 

ach term weight, respectively, and requests the top 3 
teresting web pages. That is, n = 2, HN = 20, W1 = 0.3, 
2 = 0.7 and K = 3. To understand and verify the result of 

ur ESA method, we used a generator to generate ConVq 
nd ConVp randomly for these 20 web pages and then 
ompute each web page�s original score KSi. Furthermore, 
e actual value of each KTi can be obtained as shown in 
able 1. (Note that in a real situation, ConVq, ConVp, and 
Ti are unavailable.) In Step 1, ESA method computes the 
Tmaxi and KTmini for every returned web page. Then, in 

Step1: 
/* In this step, ESA method will compute the KTmaxi and KTm

 
For i = 1 to HN 

 For j = 1 to n 
MinKT [j] = Wj × n × KSi � (n - j) Wj + S1(j, n);
MaxKT [j] = Wj × n × KSi � (j - 1) Wj + S2(1, j);

 End for 
KTmini = Max(MinKT[j]); 
KTmaxi = Min(MaxKT[j]); 

End for 
 

Step2 : 
/* The top K interesting web pages will exist in the front of 
 
For i = 1 to HN 

If KTmaxi < KTminK Then  
R = i � 1; 
Go to Step3; 

End if 
End for 

 
Step3: 

If the user would like to get the real top K target ranks then 
For i = 1 to R 

Retrieve Hi and compute the contributed value
Score the web page Hi according to the new co

End for 
Rank Hi according to the target scores and return the to

Else 
Return the top R original ranks of returned web pages 

End if 
 S2(1, j) =
is method (ESA method). 

Step 2, ESA method will derive the total number R of web 
pages that the user has to view. In other words, it tries to 
find the web pages whose KTmaxi ≥ KTminK (= 0.854). In this 
example, we can find that KTmax7 (= 0.866) > KTminK, but 
KTmax8 does not. Finally, in Step 3, the user has only to 
view the top R = 7 returned web pages (i.e., H1, H2, H3, H4, H5, 
H6, H7) to get the real top 3 interesting web pages with the 
new given term weights. However, the user also can wait 
the system to re-scan only the top R (= 7) original ranks of 
web pages to provide the real top 3 interesting web pages 
(i.e., H1, H3, H5), without re-scanning all the HN = 20 
returned web pages. 

 

ini for each returned web page i.*/ 

 
 

the top R ranks of returned HN web pages. */ 

 for each query term j; 
mputed contributed value; 

p K web pages to the user; 

to the user; 



 

 

 
Table 1. An example of ESA method (n = 2, HN = 20, W1 = 0.3, W2 = 0.7 and K = 3) 

Serial numbers Rank of KSi KSi KTmini KTmaxi ConVp ConVq  KTi 
H1 1 0.934 0.908 0.96 0.92 0.948 0.928 
H2 2 0.906 0.868 0.944 0.87 0.942 0.892 
H3 3 0.896 0.854 0.938 0.98 0.812 0.93 
H4 4 0.86 0.804 0.916 0.78 0.94 0.828 
H5 5 0.857 0.8 0.914 0.95 0.764 0.894 
H6 6 0.811 0.735 0.887 0.77 0.852 0.795 
H7 7 0.776 0.686 0.866 0.76 0.792 0.77 
H8 8 0.726 0.616 0.836 0.99 0.462 0.832 
H9 9 0.648 0.507 0.789 0.713 0.583 0.674 
H10 10 0.622 0.471 0.773 0.406 0.838 0.536 
H11 11 0.579 0.411 0.747 0.666 0.492 0.614 
H12 12 0.542 0.359 0.725 0.997 0.087 0.724 
H13 13 0.532 0.345 0.719 0.746 0.318 0.618 
H14 14 0.519 0.327 0.711 0.538 0.5 0.527 
H15 15 0.429 0.257 0.601 0.2 0.658 0.337 
H16 16 0.349 0.209 0.489 0.09 0.608 0.245 
H17 17 0.279 0.167 0.391 0.34 0.218 0.303 
H18 18 0.114 0.068 0.16 0.22 0.008 0.156 
H19 19 0.06 0.036 0.084 0.091 0.029 0.072 
H20 20 0.056 0.034 0.078 0.01 0.102 0.038 

 
 

4. Performance evaluation 
 

4.1 Experiment model 
 

In Section 3, we have stated the basic idea of ESA 
method. In this section, because of the distribution of 
original score is not fixed, we establish a simulation model, 
which uses a generator to randomly generate the original 
scores for returned web pages, to evaluate the efficiencies 
of ESA method. There are two performance measures in 
our evaluation. One is Per, and the other is Mul, where Per 
denotes the percentage of web pages that need to be 
viewed (that is, Per = 100 × (R / HN) %), and Mul denotes 
the proportion of users� top K interesting web pages to the 
number of returned web pages they have to view (that is, 
Mul = R / K). Each Per, R, and Mul is obtained by 
averaging the results of simulating 100 times.  

 
4.2 Result  
 

The results of experiment simulation are presented in 
Table 2. The average of all Mul is 4.41, which means that 
on average users have only to view about 4.41 times the 
number of K to get their real top K interesting web pages.  

When users allow the system to re-calculate the real top 
K target ranks, the small value of Per in most cases has 
shown the efficiency of our method again. The value of 
Per will become much larger only when the value of K is 
close to that of HN. However, search engines usually 
returned much more web pages than user�s interesting top 
K web pages. That is, HN is usually much larger than K. 

In the worst case (Wp = 0.9, Wp = 0.1, HN = 5000, and K 
=10), the number of web pages users have to view is about 
10.8 (=Mul) times that of their top K interesting web pages. 
However, in this case, the total number of returned web 
pages is 5000, and the system has only to re-calculate 108 
returned web pages to provide the real top K target ranks, 
which is still much more efficient than re-calculating all 
5000 returned web pages. 

Finally, we can find that in spite of what each term 
weight will be, the larger the HN is, the less the Per will be. 
And the less the difference between each query term is, the 
less the Per will be. Furthermore, the smaller the K is, the 
smaller the Per will be. 

 
Table 2. The result of experiment simulation 

W HN K Rr Perr Mulr 
10 17 0.33% 1.7 
20 33 0.66% 1.65 5000 
30 47 0.924% 1.57 
10 17 1.62% 1.7 
20 32 3.10% 1.6 1000 
30 46 4.57% 1.53 
10 16 3.01% 1.6 
20 31 6.07% 1.55 
30 46 9.01% 1.53 

Wp = 0.6 
 

Wq = 0.4 

500 

30 45 44.3% 1.5 
10 26 0.51% 2.6 
20 50 1.00% 2.5 5000 
30 74 1.47% 2.47 
10 25 2.45% 2.5 
20 47 4.68% 2.35 1000 
30 72 7.19% 2.4 
10 25 4.85% 2.5 
20 48 9.49% 2.4 

Wp = 0.7 
 

Wq = 0.3 

500 
30 71 14.14% 2.37 
10 48 0.95% 4.8 
20 93 1.86% 4.65 5000 
30 122 2.43% 4.01 
10 41 4.08% 4.1 
20 81 8.01% 4.05 1000 
30 125 12.50% 4.17 
10 42 8.37% 4.2 
20 78 15.54% 3.9 

Wp = 0.8 
 

Wq = 0.2 

500 
30 122 24.37% 4.01 
10 108 2.16% 10.8 
20 201 4.01% 10.1 5000 
30 280 5.59% 9.33 
10 93 9.21% 9.3 
20 179 17.88% 8.95 1000 
30 279 27.84% 9.3 
10 96 19.02% 9.6 
20 177 35.22% 8.85 

Wp = 0.9 
 

Wq = 0.1 

500 
30 245 48.91% 8.17 

Average    8.97% 4.41 



 

 

 
 

5. Conclusion 
 

The existing search engines all put the same emphases 
on submitted query terms combined by the Boolean 
expression. However, users may put different emphasis on 
each query term. That is, users should be allowed to assign 
different weight to each query term for their own search 
purpose. For such a case, the system must re-calculate the 
new score for each returned web page according to the new 
given weights. Because typical search engines did not 
return sufficient information for a system to re-calculate 
the new score, the re-calculating task will be 
time-consuming. Moreover, in a real situation, most of 
users usually only view the top K web pages from those 
HN returned web pages. Therefore, in this paper, we have 
proposed the ESA method to solve this problem. By our 
ESA method, the system does not need to re-scan the 
whole returned pages and can easily inform users that the 
top K interesting web pages they request will be among the 
top R web pages (K ≤ R ≤ HN). Moreover, if users want to 
get the actual ranking of the top K interesting web pages, 
the system has only to re-calculate the top R returned web 
pages, instead of the whole HN returned web pages. The 
evaluated results in Section 4 had proved the efficiency of 
our ESA method in the simulated environments. In the 
future research directions, we will extend our technique to 
metasearch [7, 8, 9, 10, 13, 16]. And, we will consider the 
personal factor [2] to improve the efficiency of our 
method. 
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