

A Novel Approach to Evaluate the Top K Interesting Ranks from Web Search
Engines

Chien-I Lee, Cheng-Jung Tsai, Yu-Chiang Li and Cheng-Tao Wu

Institute of Information Education
National Tainan Teachers College, Tainan, Taiwan, R.O.C.

Email:leeci@ipx.ntntc.edu.tw

Abstract

In recent years, several search engines had been

developed to help people find interesting information
among the rapidly increasing number of web pages in the
Internet. To obtain useful and reasonable searching results,
users may submit queries with more than one query terms
combined by a Boolean expression, which has been
supported by all existing search engines. However, these
search engines all put the same emphases on every query
term combined by the Boolean expression. In other words,
all search engines nowadays do not consider that users may
want to put more emphases on one term rather than on the
others. In this paper we propose a novel approach, called
Extreme Score Analysis method (ESA method), to solve
this problem. Our ESA method can efficiently find the top
K (K > 0) interesting web pages when the user assigns
different weights for query terms.

1. Introduction

As the fast process of computer and network

technologies, computers connected in the Internet will soon
become the indispensable electrical appliances of our daily
life. Through the Internet, people can get their desired
information much easier and quicker. But, meanwhile, the
rapidly growing data carried on the Internet really make
people very difficult to search and filter the appropriate
information they want. In recent years, several search
engines [3, 14, 15, 17, 22, 24] had been developed to
reduce such overloads.

In general, in order to support a full-text information
retrieval, the search engines filter terms in the contents of
web pages to establish a corresponding inverted index [23].
When users submit a query with some proper query terms
as keywords (these query terms can be combined by a
Boolean expression), the search engines will look the terms
up in the inverted index to find out the corresponding web
pages, and further rank these web pages by their own
predetermined term weighting functions and vector
similarity functions. Finally, users can view those ranked
web pages and get more relevant information in the front
of them.

Usually, users may submit queries with more than one
query terms combined by a Boolean expression to enlarge
or narrow their searching interests. Although the search
engines nowadays all support the Boolean expression, they

put the same emphases on all the query terms combined by
the Boolean expression. For example, when a user submits
a Boolean expression with two query terms, �music and
download�, a typical search engine will return the web
pages which contain both terms �music� and �download�,
and ranks these web pages according to their scores, which
could be the sum of the individual contributed values for
the two query terms in their own context. (Note that the
contributed value for a term denotes the value returned
from its term weight function.) However, users may put
more emphases on one term rather than on the other.
Continuing with the foregoing example, users may want to
look for the web pages, which contain �music� for
�download�, but put more emphases on �music� rather
than on �download�. For quantify such a case, users can be
allowed to assign different weights to each query term in
the Boolean expression, e.g. �(0.8) music and (0.2)
download�, which means the degrees of importance of the
two query terms are in a ratio of 4:1.

To fulfill such a requirement for different weights of
query terms, it is necessary to re-calculate the final score
for each web page according to the new given weights.
After this re-calculation of web pages� scores, users can get
the true ranking results. However, a typical search engine
merely returns matched web pages with final scores, ranks,
etc., but without the individual contributed value for each
query term. Therefore, to re-calculate the final scores, there
are two problems needed to be resolved. First, we need to
know the scoring function of the search engine. Usually,
due to commercial secret, we usually have no idea of the
search engine�s scoring function. Basically, we can solve
this problem by adopting another scoring function, which
can be defined by ourselves. Even so, there still exists the
second problem is that we have to scan every returned web
page�s content to get each query term�s contributed value.
Such a task will be extremely time-consuming. Moreover,
in a real situation, for the sake of time or no patience, most
of users usually only view the top K web pages from those
HN returned web pages [4] (K << HN, where HN is the
total number of returned web pages).

To avoid the overhead of re-calculating the whole HN
returned web pages, in this paper we will propose a novel
approach, called Extreme Score Analysis Method (ESA
method), which can find the top K interesting web pages
without re-scanning the HN returned web pages to get the
individual query terms� contributed values. Instead, our
method will inform users that the top K interesting web
pages they request will be among the top R returned web

pages (K ≤ R << HN). From the performance study, we can
find that the value of R will be close to that one of K. For
example, if one user submits a query with two terms and
wants to get the top K web pages according to his/her
weights (0.6 and 0.4, respectively) of query terms, the
value of R will be approximately equal to 1.5 × K.

The rest of the paper is organized as following. In
Section 2, we survey some basic components of a typical
search engine and some related term weighting functions
and vector similarity functions. Section 3 describes the
basic idea of our Extreme Score Analysis Method. Section
4 presents an experimental evaluation of our method.
Finally, Section 5 is the conclusion.

2. The Components of Search Engines

In general, a typical search engine is composed of three

components:

(1) Indexer Robot
The indexer robot [5] is an autonomous WWW browser,

which communicates with WWW servers using HTTP
(Hypertext Transfer Protocol). It visits a given WWW site,
traverses hyperlinks in a breadth-first manner, retrieves
WWW pages, extracts keywords and hyperlink data from
the pages, and inserts the terms and hyperlink data into an
index. A list of target sites is given to the indexer robot for
creating the index initially.

(2) Indexer database

The Indexer robot reads web pages and sends these web
pages to the indexer database to crate indexing records.
This indexer database is also named an inverted index.
Each web page in the inverted index is represented as a
vector d = (d1,�,dm), where di is the weight of the ith term
ti in representing the web page, 1 ≤ i ≤ m. If the original
web page is changed, the inverted index should be updated.
The update is not made in the inverted index until the
indexer robot has revisited the changed web page again.

(3) Ranking

In order to rank all related web pages, the search engine
assign relevance scores to them [18]. The scores indicate
the similarities between some given query terms, which
can be similarly represented as a vector q = (q1,�,qm)
(where qi is the weight of the ith term ti , 1 ≤ i ≤ m), and the
web pages. However, each search engine may employs a
characteristic term weighting function, which assign weight
to each term, and a characteristic vector similarity function,
which assign relevance scores to web pages.

A well-used term weighting function is called tf×idf [11],
which assumes that term importance is proportional to the
standard occurrence frequency of each term k in each web
page Hi (that is, FREQik) and inversely proportional to the
total number of web pages in the web page collection (that
is, HOPFREQi) to which each term is assigned. Then, a
general term weighting function of tf×idf can be

WEIGHTik = FREQik × [log2 (n) �
 log2 (HOPFREQk) + 1],

 where n is the total number of web

pages in the collection.

There were many others proposed term weighting

functions, such as Signal-Noise Ratio [6] and Term
Discrimination Value [21]. Although every term weighting
function has its own properties, all of them propose the
same hypothesis that term importance is proportional to the
standard occurrence frequency of each term in each web
page as the one in tf×idf. Nevertheless, tf×idf is superior to
the others in the aspects of efficiency and cost [12, 18].
Furthermore, because the web pages are written in
hypertext markup language (HTML), each search engine
may take some related factors (e.g. hyperlink, number of
times the keywords occur in the document title�etc.) into
account to provide more suitable ranking results [1].
Consequently, the most term weighting function applied by
the existing search engines are derived from tf×idf.

Although, there were also many kinds of vector
similarity functions, they all exhibited one common
property, namely that the similarity value increases when
the weight of the common properties in two vectors
increases. Jaccard and cosine coefficient, which are two
kinds of vector similarity functions, have been widely used
for the evaluation of retrieval functions [19, 20]. Both
values of the two similarity functions increase when the dot
product of two vectors increases.

3. Extreme Score Analysis method

As discussed in Section 2, we can assume that when a

user submits a query with n query terms, the score KSi
(here, we call it original score) search engines assign to
each web page Hi (i denotes the original rank of this web
page among the returned matched web pages) will be

,)/((
1

∑
=

++=
n

j
jijji cHOCFREQaFREQbWKS ））（

where Wj is the weight of term j given in the user�s query
and (b((FREQij + a) / HOCFREQj) + c) is the contributed
value of term j in KSi. Variables a, b and c are used by each
search engine to improve the tf×idf under the consideration
of some possible factors. Nevertheless, what our research
concern is only about the ranking result of returned web
pages. Whatever the values of Variables a, b and c will be,
the ranking result will never change. Furthermore, as
mentioned in Section 1, all current search engines put the
same emphases on every query term (that is, Wj = 1 / n)
Therefore, the original score can be simplified as

() ,/1
1
∑ ×=

n

iji ConVnKS

where ConVij = b((FREQij + a) /
HOCFREQj) + c.

However, users may assign each term weight unequally.
Obviously, alterations in term weights will cause the
changes of original scores. The score that is re-computed
from the original score is called target scores KTi and can
be defined as

,
1
∑ ×=

n

ijji ConVWKT

where ./1, nWj j ≠∋

For example, suppose a user submits a query with two
query terms, term p and term q, combined by a Boolean
expression and the user want to assign 0.7 and 0.3 to each
term�s weight, respectively. Then, the original score of the
ith matched web page will be

KSi = 0.5ConVpi + 0.5ConVqi.

And, the target score of the ith matched web page will be

KTi = 0.7ConVpi + 0.3ConVqi.

To be convenient to explain our method, we will first

consider the case of two query terms, term p and term q.
Without loss of generality, we divide ConVp and ConVq by
their maximum respectively to limit their values between 0
and 1, i.e., 0 ≤ ConVp, ConVq ≤ 1. Then, there are some
theorems, which are applied in our method, need to be
stated and proved in the following.

Theorem 1. Let x-axis and y-axis denote ConVp and
ConVq respectively in the coordinate plane. Then a linear
equation, which passes through the origin and is
orthogonal to the straight line SC = Wp × ConVp + Wq
×ConVq, will be ConVq = (Wq / Wp) × ConVp, where 0 ≤
Wp, Wq ≤ 1.

Proof. According to Slope Theorem, the product of slopes
of two straight lines will be �1 if they are orthogonal to
each other. Therefore, we can obtain the slope of the
straight line, which is orthogonal to the straight line SC, is
Wq / Wp. Moreover, because the straight line passes through
the origin, we can obtain the linear equation will be ConVq
= (Wq / Wp) × ConVp. □

Theorem 2. Let SC1 = Wp × ConVp + Wq × ConVq and
SC2 = Wp × ConVp + Wq × ConVq represent two parallel
lines in the Coordinate Plane and intersect the straight line
ConVq = (Wq / Wp) × ConVp in the point A and point B,
respectively. If the length of line segment OA > the length
of line segment OB , then SC1 > SC2.

Proof. First, we can obtain the coordinates of A is ((SC1 ×
Wp) / (Wp

2 + Wq
2), (SC1 × Wq) / (Wp

2 + Wq
2)), and that of B

is ((SC2 × Wp) / (Wp
2 + Wq

2), (SC2 × Wq) / (Wp
2 + Wq

2)).
Then, we can obtain the length of line segment OA = SC1

/（Wp
2 + Wq

2）1/2 and OB = SC2 / (Wp
2 + Wq

2)1/2. Clearly,
because of OBOA > , we can infer that SC1 > SC2. □

From Theorems 1 and 2, we can obtain Figure 1 and

Figure 2 as shown in the following. In both figures, x-axis
and y-axis represent the contributed values of query terms
p and q, respectively. The point (ConVpi, ConVqi) in the
coordinate plane denotes the web page Hi returned by the
search engine, and every dashed straight line which

intersects the point (ConVpi, ConVqi) denotes the score of
each web page Hi when the term weights are Wp, Wq
respectively. In particular, Figure 1 represents the
distribution of original scores of returned web pages, and
Figure 2 represents the distribution of target scores. From
the comparison of Figure 1 and Figure 2, we can observe
that the dashed line, which denotes the score of web page
Hi, will alter when the weights of the two query terms vary.
From Theorem 1 we can know the reason is that original
score considers the weights of both term are equivalent
(that is, Wq / Wp = 1), but target score does not (that is, Wq /
Wp ≠ 1). As well, from Theorem 2 we can obtain that the
further the distance between the dashed straight line and
the origin is, the higher the score denoted by the dashed
straight line will be.

ConVConVConVConVqqqq

ConVConVConVConV
PPPP

1

10

ConVq = ConVp

Source ScoreSource ScoreSource ScoreSource Score KSKSKSKSiiii

0.5ConVp ＋＋＋＋ 0.5ConVq = 0.5

HHHH1111

HHHH2222

HHHHiiii

HHHHnnnn

(ConVpi , ConVqi)

 KSi = 0.5 ConVp ＋＋＋＋ 0.5ConVq

 KS2 = 0.5 ConVp ＋＋＋＋ 0.5ConVq

 KS1 = 0.5 ConVp ＋＋＋＋ 0.5ConVq

(ConVp1 , ConVq1)

 KSn = 0.5 ConVp ＋＋＋＋ 0.5ConVq
Figure 1. The distribution of original scores in the

coordinate plane.

Figure 2. The distribution of target scores in the coordinate

plane.

Theorem 3. As shown in Figure 3, let KSi = 0.5ConVp +
0.5ConVq denotes a straight line in the coordinate plane,
where 0 ≤ ConVp, ConVq ≤ 1 and 0 < Wq < Wp < 1. Then,
we can obtain an infinite number of straight lines KTi = Wp
× ConVp + Wq × ConVq which intersect KSi and are
orthogonal to the straight line ConVq =（Wq / Wp） ×
ConVp. Furthermore, we can obtain KTmaxi and KTmini,
which satisfy KTmaxi ≤ KTi ≤ KTmini, for each KSi,
respectively.

ConVConVConVConV
qqqq

ConVConVConVConVPPPP

1

10

ConVq = (Wq / Wp) ×××× ConVp

Target ScoreTarget ScoreTarget ScoreTarget Score KTKTKTKTiiii

HHHH1111

HHHH2222

HHHHiiii
HHHHnnnn

(ConVpi , ConVqi)

 KT1 = W p ×××× ConVp ＋＋＋＋ Wq ×××× ConVq(ConVp1 , ConVq1)

 KTn = W p ×××× ConVp ＋＋＋＋ Wq ×××× ConVq KTi = W p ×××× ConVp ＋＋＋＋ Wq ×××× ConVq

 KT2 = W p ×××× ConVp ＋＋＋＋ Wq ×××× ConVq

Proof. Solve simultaneously the set of Equations (1) and
(2):

KSi = 0.5ConVp + 0.5ConVq, (1)
KTi = Wp × ConVp + Wq × ConVq.. (2)

By (1) × 2Wp - (2), we can obtain
ConVq × (Wp � Wq) = 2Wp × KSi � KTi.
ConVq = (2Wp × KSi � KTi) / (Wp � Wq) (3)

By (1) × 2Wq - (2), we can obtain
ConVp × (Wq � Wp) = 2Wq × KSi � KTi.
ConVp = (2Wq × KSi � KTi) / (Wq � Wp). (4)

0 ≤ ConVp, ConVq ≤ 1. (5)
1 < Wp < Wq < 0. (6)

By solving simultaneously Equations (3), (5), and (6), we
can obtain

0 ≤ (2Wp × KSi � KTi) / (Wp - Wq) ≤ 1.
0 ≤ (2Wp × KSi � KTi) ≤ Wp - Wq.
Wq + Wp(2KSi �1) ≤ KTi ≤ 2Wp × KSi.
Wq + Wp(2KSi � 1) ≤ KTi

≤ Wp + Wp (2KSi �1). (7)

Similarly, by solving simultaneously Equations (4), (5),
(6),we can obtain

Wq + Wq (2KSi � 1) ≤ KTi

 ≤ Wp + Wq (2KSi �1). (8)

Finally, by solving simultaneously Equations (7) and (8),
we can obtain the maximum of KTi (that is, KTmaxi =
Min(Wp + Wq(2KSi � 1), Wp + Wp(2KSi � 1)) and the
minimum of KTi (that is, KTmini = Max(Wq + Wq (2KSi � 1),
Wq + Wp(2KSi � 1)), which satisfy KTmaxi ≤ KTi ≤ KTmini for
each KSi. □

Figure 3. The relation between original scores and target
scores.

Theorem 4. Continuing with Theorem 3, let KSi =
0.5ConVp + 0.5ConVq and KSj = 0.5ConVp + 0.5ConVq
represent two straight lines in the coordinate plane. If KSi
> KSj, then KTmini > KTminj and KTmaxi > KTmaxj.

Proof. From Equations (7) and (8) in Theorem 3, we can
get that if the values of term weights Wp and Wq are fixed,
then the larger KSi is, the larger KTmaxi and KTmini will be.
Therefore if KSi > KSj, then KTmini > KTminj and KTmaxi >
KTmaxj. □

Theorem 5. For every i, suppose there are KTmaxi ≥ KTi ≥
KTmin (1 ≤ i ≤ HN), and satisfy KTmax1 ≥ KTmax2 ≥ � ≥
KTmaxi ≥�≥ KTmaxHN, KTmin1 ≥ KTmin2 ≥�≥ KTmini ≥�≥
KTminHN. If there is a KTmaxj that satisfies KTmaxj ≥ KTmink,
then the KTj may be one of the top K of all KTi.

Proof. Suppose there is a KTj (j > K) and satisfies KTmaxj ≥
KTminK, but, KTj should not be one of the top K of all KTi.
However, as asserted above, Because of KTmin1 ≥ KTmin2
≥�≥ KTminK-1 ≥ KTminK, the top K of all KTi will be KT1,
KT2, KT3,�, KTK in turn when KTi = KTmini, 1 ≤ i ≤ K.
Nevertheless, because of KTmaxj ≥ KTminK, KTj may be
bigger than KTK and becomes the Kth rank of all KTi when
KTj = KTmaxj. As a result, our previous assumption is not
true. Consequently, for each i if KTmaxi ≥ KTmink, then the
KTi may be one of the top K of all KTi. □

As stated before, since the search engine do not return

the individual contributed values ConVpi and ConVqi for
each returned web page Hi, the coordinates of web page Hi,
(ConVpi, ConVqi), may locate at anywhere on the straight
line KSi = 0.5ConVpi + 0.5ConVqi. As a result, we can not
obtain the actual target score KTi for Hi.

From Theorem 3, we know that KTi will be between
KTmini and KTmaxi, as shown in Figure 3. That is, for given
term weight values Wp and Wq, which are assigned by users,
we can derive a value interval of target score from each
original score. Each value interval will have a pair of
maximum target score KTmaxi and minimum target score
KTmini. Furthermore, from Theorem 4 we can observe that
the distribution of KTmaxi and KTmini decrease gradually
with the decrease in original score. Figure 4 shows such a
case. Finally, from Theorem 5, to support the correct top K
interesting web pages from the returned web pages, all the
web pages whose KTmaxi ≥ KTminK might one of the top K
target ranks of web pages. That is, the user has only to
view those web pages to get the real top K target ranks,
instead of viewing the whole HN returned web pages.

KTKTKTKTmax1max1max1max1

KTKTKTKTmax2max2max2max2

KTKTKTKTmax3max3max3max3

KTKTKTKTmaxK+1maxK+1maxK+1maxK+1

KTKTKTKTmin1min1min1min1

KTKTKTKTmaxKmaxKmaxKmaxK

KTKTKTKTmin3min3min3min3

KTKTKTKTmin2min2min2min2

KTKTKTKTminK+1minK+1minK+1minK+1

KTKTKTKTminKminKminKminK

KTKTKTKTmaxNmaxNmaxNmaxN

KTKTKTKTmaxN-1maxN-1maxN-1maxN-1KTKTKTKTminNminNminNminN

KTKTKTKTminN-1minN-1minN-1minN-1

Figure 4. The distribution of KTmaxi and KTmini.

In general, suppose a user submit a query with n

different query term weights through a search engine,
which returned HN matched web pages, and the user wants
the top K interesting ranks of web pages according to the
submitted term weights. Without loss of generality, we let

ConVConVConVConVqqqq

ConVConVConVConVpppp

1

10

ConVq = ConVp

Target ScoreTarget ScoreTarget ScoreTarget Score
MinmumMinmumMinmumMinmum

Original ScoreOriginal ScoreOriginal ScoreOriginal Score

Target ScoreTarget ScoreTarget ScoreTarget Score
MaximumMaximumMaximumMaximum

Wp ×××× ConVp + Wq ×××× ConVq = KTmini

0.5ConVp + 0.5 ConVq = KSi

ConVq = (Wq / Wp) ×××× ConVp

Wp ×××× ConVp + Wq ×××× ConVq = KTmaxi

HHHHiiii

W1 ≥ W2 ≥,�≥ Wn-1 ≥ Wn, and the analysis steps to evaluate
the required top R web pages (R ≥ K) needed to be viewed
by the user to get the real top R ranks in our proposed ESA
method are shown in Figure 5. In Figure 5, to simply the
expressions, we define two functions:

 0 if n < j + 1,

∑
+=

n

jm
mW

1

 if n ≥ j + 1;

0 if j < 2,

∑
−

=

1

1

j

m
mW if j ≥ 2.

s
c
w
e
in
W
o
a
c
th
T
K
K

 S1(j, n) =

Figure 5. Extreme Score Analys

There is an example as shown in Table 1 to explain the

teps in our ESA method. For simplicity, we consider the
ase with n = 2 and the search engine returned 20 related
eb pages. Suppose the user wants to assign 0.3 and 0.7 to

ach term weight, respectively, and requests the top 3
teresting web pages. That is, n = 2, HN = 20, W1 = 0.3,
2 = 0.7 and K = 3. To understand and verify the result of

ur ESA method, we used a generator to generate ConVq
nd ConVp randomly for these 20 web pages and then
ompute each web page�s original score KSi. Furthermore,
e actual value of each KTi can be obtained as shown in
able 1. (Note that in a real situation, ConVq, ConVp, and
Ti are unavailable.) In Step 1, ESA method computes the
Tmaxi and KTmini for every returned web page. Then, in

Step1:
/* In this step, ESA method will compute the KTmaxi and KTm

For i = 1 to HN

 For j = 1 to n
MinKT [j] = Wj × n × KSi � (n - j) Wj + S1(j, n);
MaxKT [j] = Wj × n × KSi � (j - 1) Wj + S2(1, j);

 End for
KTmini = Max(MinKT[j]);
KTmaxi = Min(MaxKT[j]);

End for

Step2 :
/* The top K interesting web pages will exist in the front of

For i = 1 to HN

If KTmaxi < KTminK Then
R = i � 1;
Go to Step3;

End if
End for

Step3:

If the user would like to get the real top K target ranks then
For i = 1 to R

Retrieve Hi and compute the contributed value
Score the web page Hi according to the new co

End for
Rank Hi according to the target scores and return the to

Else
Return the top R original ranks of returned web pages

End if
 S2(1, j) =
is method (ESA method).

Step 2, ESA method will derive the total number R of web
pages that the user has to view. In other words, it tries to
find the web pages whose KTmaxi ≥ KTminK (= 0.854). In this
example, we can find that KTmax7 (= 0.866) > KTminK, but
KTmax8 does not. Finally, in Step 3, the user has only to
view the top R = 7 returned web pages (i.e., H1, H2, H3, H4, H5,
H6, H7) to get the real top 3 interesting web pages with the
new given term weights. However, the user also can wait
the system to re-scan only the top R (= 7) original ranks of
web pages to provide the real top 3 interesting web pages
(i.e., H1, H3, H5), without re-scanning all the HN = 20
returned web pages.

ini for each returned web page i.*/

the top R ranks of returned HN web pages. */

 for each query term j;
mputed contributed value;

p K web pages to the user;

to the user;

Table 1. An example of ESA method (n = 2, HN = 20, W1 = 0.3, W2 = 0.7 and K = 3)

Serial numbers Rank of KSi KSi KTmini KTmaxi ConVp ConVq KTi
H1 1 0.934 0.908 0.96 0.92 0.948 0.928
H2 2 0.906 0.868 0.944 0.87 0.942 0.892
H3 3 0.896 0.854 0.938 0.98 0.812 0.93
H4 4 0.86 0.804 0.916 0.78 0.94 0.828
H5 5 0.857 0.8 0.914 0.95 0.764 0.894
H6 6 0.811 0.735 0.887 0.77 0.852 0.795
H7 7 0.776 0.686 0.866 0.76 0.792 0.77
H8 8 0.726 0.616 0.836 0.99 0.462 0.832
H9 9 0.648 0.507 0.789 0.713 0.583 0.674
H10 10 0.622 0.471 0.773 0.406 0.838 0.536
H11 11 0.579 0.411 0.747 0.666 0.492 0.614
H12 12 0.542 0.359 0.725 0.997 0.087 0.724
H13 13 0.532 0.345 0.719 0.746 0.318 0.618
H14 14 0.519 0.327 0.711 0.538 0.5 0.527
H15 15 0.429 0.257 0.601 0.2 0.658 0.337
H16 16 0.349 0.209 0.489 0.09 0.608 0.245
H17 17 0.279 0.167 0.391 0.34 0.218 0.303
H18 18 0.114 0.068 0.16 0.22 0.008 0.156
H19 19 0.06 0.036 0.084 0.091 0.029 0.072
H20 20 0.056 0.034 0.078 0.01 0.102 0.038

4. Performance evaluation

4.1 Experiment model

In Section 3, we have stated the basic idea of ESA
method. In this section, because of the distribution of
original score is not fixed, we establish a simulation model,
which uses a generator to randomly generate the original
scores for returned web pages, to evaluate the efficiencies
of ESA method. There are two performance measures in
our evaluation. One is Per, and the other is Mul, where Per
denotes the percentage of web pages that need to be
viewed (that is, Per = 100 × (R / HN) %), and Mul denotes
the proportion of users� top K interesting web pages to the
number of returned web pages they have to view (that is,
Mul = R / K). Each Per, R, and Mul is obtained by
averaging the results of simulating 100 times.

4.2 Result

The results of experiment simulation are presented in
Table 2. The average of all Mul is 4.41, which means that
on average users have only to view about 4.41 times the
number of K to get their real top K interesting web pages.

When users allow the system to re-calculate the real top
K target ranks, the small value of Per in most cases has
shown the efficiency of our method again. The value of
Per will become much larger only when the value of K is
close to that of HN. However, search engines usually
returned much more web pages than user�s interesting top
K web pages. That is, HN is usually much larger than K.

In the worst case (Wp = 0.9, Wp = 0.1, HN = 5000, and K
=10), the number of web pages users have to view is about
10.8 (=Mul) times that of their top K interesting web pages.
However, in this case, the total number of returned web
pages is 5000, and the system has only to re-calculate 108
returned web pages to provide the real top K target ranks,
which is still much more efficient than re-calculating all
5000 returned web pages.

Finally, we can find that in spite of what each term
weight will be, the larger the HN is, the less the Per will be.
And the less the difference between each query term is, the
less the Per will be. Furthermore, the smaller the K is, the
smaller the Per will be.

Table 2. The result of experiment simulation

W HN K Rr Perr Mulr
10 17 0.33% 1.7
20 33 0.66% 1.65 5000
30 47 0.924% 1.57
10 17 1.62% 1.7
20 32 3.10% 1.6 1000
30 46 4.57% 1.53
10 16 3.01% 1.6
20 31 6.07% 1.55
30 46 9.01% 1.53

Wp = 0.6

Wq = 0.4

500

30 45 44.3% 1.5
10 26 0.51% 2.6
20 50 1.00% 2.5 5000
30 74 1.47% 2.47
10 25 2.45% 2.5
20 47 4.68% 2.35 1000
30 72 7.19% 2.4
10 25 4.85% 2.5
20 48 9.49% 2.4

Wp = 0.7

Wq = 0.3

500
30 71 14.14% 2.37
10 48 0.95% 4.8
20 93 1.86% 4.65 5000
30 122 2.43% 4.01
10 41 4.08% 4.1
20 81 8.01% 4.05 1000
30 125 12.50% 4.17
10 42 8.37% 4.2
20 78 15.54% 3.9

Wp = 0.8

Wq = 0.2

500
30 122 24.37% 4.01
10 108 2.16% 10.8
20 201 4.01% 10.1 5000
30 280 5.59% 9.33
10 93 9.21% 9.3
20 179 17.88% 8.95 1000
30 279 27.84% 9.3
10 96 19.02% 9.6
20 177 35.22% 8.85

Wp = 0.9

Wq = 0.1

500
30 245 48.91% 8.17

Average 8.97% 4.41

5. Conclusion

The existing search engines all put the same emphases
on submitted query terms combined by the Boolean
expression. However, users may put different emphasis on
each query term. That is, users should be allowed to assign
different weight to each query term for their own search
purpose. For such a case, the system must re-calculate the
new score for each returned web page according to the new
given weights. Because typical search engines did not
return sufficient information for a system to re-calculate
the new score, the re-calculating task will be
time-consuming. Moreover, in a real situation, most of
users usually only view the top K web pages from those
HN returned web pages. Therefore, in this paper, we have
proposed the ESA method to solve this problem. By our
ESA method, the system does not need to re-scan the
whole returned pages and can easily inform users that the
top K interesting web pages they request will be among the
top R web pages (K ≤ R ≤ HN). Moreover, if users want to
get the actual ranking of the top K interesting web pages,
the system has only to re-calculate the top R returned web
pages, instead of the whole HN returned web pages. The
evaluated results in Section 4 had proved the efficiency of
our ESA method in the simulated environments. In the
future research directions, we will extend our technique to
metasearch [7, 8, 9, 10, 13, 16]. And, we will consider the
personal factor [2] to improve the efficiency of our
method.

6. References

[1] L. Allison, D.L. Dowe, G. Pringle, �What is a Tall Poppy
Among Web Pages?� The Seventh International WWW
Conference, Brisbane, Australia, April14-18, 1998.

[2] W.P. Birmingham, E.J. Glover, S. Lawrence, C.G. Lee,
�Architecture of a Metasearch Engine that Supports User
Information Needs,� Proceedings of the eighth international
conference on Information knowledge management, pp. 210
� 216, 1999.

[3] S. Brin, L. Page, �The Anatomy of a Large-Scale
Hypertextual Web Search Engine,� Seventh International
Web Conference (WWW 98). Brisbane, Australia, April
14-18, 1998.

[4] S. Chaudhuri, L. Gravano, �Evaluating Top-K Selection
Queries,� VLDB'99, pp. 397- 410, 1999.

[5] J. Cho, H.G. Molina, L. Page, �Efficient Crawling Through
URL Ordering,� Seventh International Web Conference
(WWW 98). Brisbane, Australia, April 14-18, 1998.

[6] S.F. Dennis, �The Design and Testing of a Fully Automatic
Indexing-Searching System for Documents Consisting of
Expository Text,� in Information Retrieval: A Critical
Review, G. Schecter, editor, Thompson Book Co.,
Washington, D.C., pp.67-94, 1967.

[7] D. Dreilinger, A.E. Howe, �Experiences with Selecting
Search Engines Using Metasearch,� ACM Transaction on
Information Systems, 15(3), pp. 195-222, 1997.

[8] O. Etzioni, E. Selberg, �MultiService Search and
Comparison Using the MetaCrawer,� The Fourth
International Web Conference (WWW 95). Boston, USA,
December 11-14, 1995.

[9] S. Gauch, M. Gomez, G. Wang, �Profusion: Intelligent
Fusion from Multiple, Distributed Search Engines,� Journal
of Universal Computing, SpringeVelag, 2 (9), pp. 637-649,
1997.

[10] L. Gravano, Y. Papakonstantinou, �Mediating and
Metasearching on the Internet,� IEEE Bulletin of Data
Engineering, 21 (2), pp. 28-36, 1998.

[11] K.S. Jones, �A statistical Interpretation of Term Specificity
and Its Application in Retrieval,� Journal of Documentation,
Vol. 28, No. 1, March, pp. 11-20, 1972.

[12] F.W. Lancaster, A.J. Warner, �Information Retrieval Today,
� Arlington: Information Resources Press, 1993.

[13] S. Lawrence, C.G. Lee, �Accessibility of Information on the
Web,� Nature, 4OO(July 8), pp. 107-109,1999.

[14] D.L. Lee, B. Yuwono, �A World Wide Web Resource
Database System,� IEEE Transaction on Knowledge and
Data Engineering, 8 (4) , pp. 548-554, 1996.

[15] D.L. Lee, B. Yuwono, �Search and Ranking Algorithm for
Locating Resources on the World Wide Web,� in: Proc.12th
int�l Conf. Data Engineering, pp. 164-171, 1996.

[16] K.L. Liu, W. Meng, N. Rishe, W. Wu, C. Yu, �Estimating
the Usefulness of Search Engines,� Proceedings of the 15th
International Conference on Data Engineering, pp. 146 �153,
1999.

[17] M. Marchiori, �The Quest for Correct Information on the
Web: Hyper Search Engines,� The Sixth International
WWW Conference (WWW 97). Santa Clara, USA, April
7-11, 1997.

[18] M.L. Mauldin, �Lycos: Design Choices in An Internet
Search Service,� IEEE Expert, (January-February):
8-11,1997.

[19] M. McGill, G. Salton, �Introduction to Modern Information
Retrieval,� New York: McGraw -Hill Book Company, 1983.

[20] W. Meng, C. Yu, �Principles of Database Query Processing
for Advanced Applications,� Morgan Kaufmann, San
Francisco, 1998.

[21] G. Salton and C.S. Yang, �On the Specification of Term
Values in Automatic Indexing,� Journal of documentation,
Vol. 29, No 4, December, pp.351-372, 1973.

[22] C. Schwartz, �Web search engines.� Journal of the American
Society for Information Science 49 (12), pp. 973-982.

[23] M.E. Senko, �File Organization and Management
Information Systems,� Chapter 4, Annual Review of
Information Science and Technology, C. Cuadra, editor, Vol.
4, Encyclopaedia Britannica, Chicago, Illinois, pp. 111-143,
1969.

[24] M.A. Sheldon, B. Vélez, R. Weiss, �HyPursuit: A
Hierarchical Network Search Engine that Exploits
Content-link Hypertext Clustering,� Proceedings of the
Seventh ACM Conference on Hypertext, pp. 180 � 193,
1996.

