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ABTRACT 

 
Data mining in the World Wide Web has many practical 
applications. Using efficient web mining algorithms to 
discover WWW browsing path patterns can benefit web 
users as well as administrators. For example, effective 
information retrieval and better understanding of the user 
behaviors can help attract more visitors and improve 
service of E-commerce. However, d ifferent definitions of a  
browsing path result in mining different knowledge. We 
define a user session as a complete browsing path from the 
entry page to the last page a user visited. An efficient 
mining algorithm was proposed to find patterns of frequent 
session path. We introduce a new measurement of 
browser’s interest in a path as an inclination value. In this 
paper, we show that our implementation takes less memory 
space since the algorithm produces fewer candidate 
transactions than that of others. Scanning the sorted 
database only once, we can quickly find all large session 
paths regardless of the support value. 
 
Key words: Web mining, session path, support, confidence, 
inclination. 

1. INTRODUCTION 

 

Due to the increasing number of databases and their 
growing sizes today, data mining technology becomes 
more important in acquiring knowledge for decision 
making. One mining application on the World Wide Web is 
referred to as web mining [9][11-12][14-15][18-19]. Web 
mining has two kinds: web content mining and web usage 
mining [10]. Web usage mining identifies the path patterns 
when users browse through pages on the web. The 
information of browsing path patterns helps put 
advertisements on the web, improve web traffic, analyze 
users’ behavior, and design better web sites [8][16]. 

Several researchers have studied web usage mining from 
user sessions [1][2][6]. A user session is a set of pages 
being referenced by a user during a single visit to the site. 
User sessions are extracted from web server logs [17]. Path 
patterns will be found from user sessions. The transactions 
are produced from user sessions as processing units  to 
mine path patterns. Different definitions of transactions 
have different meanings and results. [1] uses maximum 

forward reference, and [2] uses reference length of time to 
separate a user session into transactions. Other methods, 
such as [6], regard a user session as a transaction directly. 

These studies have two similar characteristic: 1) their 
purpose is to mine the frequent path patterns; 2) algorithms 
were improved from those mining association rules 
[3][4][7]. A lthough the purposes are alike, different 
methods and algorithms can produce different results from 
the same web server log. It is hard to point out which one 
is better. Association rules have two important vocabulary 
words: Support  and Confidence. Support is an argument 
that decides whether the candidate is frequent or not. The 
frequent path patterns are identified by their support values. 
Confidence is an argument that describes the believable 
degree of association rules. Those studies only use support 
arguments but lack confidence. We infer that the cause is 
because the traditional confidence definition is  not suitable 
for the web structure. The reason will be illustrated in 
Section 3. The more the confidence is concerned, the more 
information of browser behaviors is gained. 

Web structure will influence the result of path pattern. 
Because of this special structure, some pages are accessed 
more frequently. Generally speaking, the home page is 
accessed most frequently. The pages that are directly 
linked by the home page also are accessed more frequently. 
Intuitively, the frequent path patterns also are influenced 
by web structure. It may confuse us when we analyze 
browsers’ behaviors. We can’t recognize if the frequent 
path pattern is expressed as an interesting browser act or is 
just caused by web structure.  

To solve foregoing problems, we use a new method to 
mine path patterns. Our method provides both support and 
confidence arguments. In most algorithms of mining 
association rules, the support value is used first to find 
large itemsets. The large itemsets that exceed the 
confidence value become rules. We swap the order of 
using those two arguments. First, the confidence argument 
is used for filtering and then the support argument. We 
believe this can increase the rules about browsers’ 
behavior and reduce the influence of web structure. To be 
suitable for web structure, our confidence definition is 
different from traditional one. In order to be able to 
distinguish the difference, we use a new definition called 
inclination. Our method emphases the inclination in 
addition to the support. Since inclination is stressed, the 



path pattern influenced by web structure will be reduced. 
We will illustrate it in Section 3. We propose a new 
algorithm SP to mine path patterns based on the idea of 
inclination. 

The rest of the paper is organized as follows. Data 
preparation is  described in Section 2. The inclination 
definition is presented in Section 3. Our SP algorithm and 
its implementation are  shown in Section 4. Section 5 
discusses the characteristics of path patterns. Section 6 is 
the conclusion of the paper. 

 
2. DATA PREPARATION 

 

A web log records information when users access web 
pages. The recorded information includes the IP address, 
the access time, and the pages accessed. The data of web 
server logs are in rows. A user session expresses a path of 
how a user browses the web site. Each path may have a 
different beginning page. Although every web site has a 
homepage, some users may start browsing from 
bookmarks or hyperlinks. To mine path patterns, user 
sessions must be extracted from web server logs. [2] 
discusses the methods of extracting a user session from the 
web log. 

Data can tie in different algorithms, so some special 
methods are used in the data preparation phase. A user 
session may be separated into several transactions. For 
example, a user session of ABCDCEF (each letter of the 
alphabet represents a web page) can be decomposed into 
two transactions ABCD and ABCEF based on the 
“maximum forward reference” [1]. Another method of 
“reference length” [2] separates the session according to 
the length of time users spend on the pages. A user session 
can also be regarded as a transaction directly [21]. Each 
different method of producing a transaction has different 
algorithms to mine path patterns. Our method treats a user 
session as a transaction. Unlike other methods, user 
sessions are sorted to increase the efficiency of our 
algorithm. 

 
3. INCLINATION DEFINITION 

 
3.1 Web Hyperlink Structure 
 

In a web environment, the probability of each page 
accessed is not fairly distributed. Page access time relates 
to its distance from the starting pages (like homepages) of 
browsers. Browsing transactions are different from 
traditional transactions. In traditional business transactions, 
customers may choose any goods arbitrarily. Each choice 
may influence, but cannot limit, the kind of good to be 
chosen next. Web browsers start to view a web site from its 
homepage unless they input the page address directly. To  
give a simple examp le, we use a tree structure for the web 
pages. The pages closer to the top have better access time 
generally. This problem of imbalance needs to be 

improved in order to find more useful information. 

The confidence cannot be adopted on a web hyperlink 
structure. Using traditional methods to calculate 
confidence is not suitable for path patterns. For example, 
there is a frequent path pattern A?B. The page A that has 
less hyperlinks to other pages will have a higher 
confidence for A?B. If A is a homepage and has only one 
hyperlink to page B, the confidence for A?B should be 
higher. The reason is that after visiting page A, browsers 
have no choice to link to other pages except page B. This 
kind of confidence may throw off the user behavior 
analysis. 
 
3.2 Our Path Patterns 
 
To overcome  the problem of confidence value related to 
the number of hyperlinks for a path, we propose a different 
path pattern that Figure 1 illustrates. Figure 1 shows an 
aggregating tree [20]. It is not the hyperlink structure of a 
web site. The aggregating tree is constructed by using user 
sessions. The page of level one is the starting page for user 
sessions. The page M, for example, was accessed after 
page C 130 times in the last level. This indicates the 
number of user sessions containing A?C?D?C?M. 

 
Figure 1. A simple aggregating tree 

 
After browsing page A, one has pages B and C to choose 
from. Comparing the number of times pages B and C are 
accessed will show which page is more interesting to users 
after browsing page A. The example in Figure 1 shows that 
page C was accessed 675 times which is more than page 
B’s 225 times. This information is useful for analyzing 
user behaviors. We propose a new term called inclination 
to express the information by using a measurable value. 
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Link Rate 



 
 
 
 
 
 
 
 
 
 

We explain the formula with an example. In Figure 1 the 
inclination of A=>C is: 

675/((225+675)/2)=1.5 

If users have no special inclination between A=>B and 
A=>C, the frequencies of A=>B and A=>C should be the 
same: (225+675)/2=450. The inclination value of 1 means 
that there is no special inclination between A=>B and 
A=>C. Here the inclination value of A=>C is 1.5. A value 
larger than 1 shows that A=>C may be more interesting to 
users than A=>B. 

Our goal is to find the path patterns in which each 
hyperlink exceeds the specified inclination and support 
values. As a confidence value, the inclination value can be 
set arbitrarily. If both A=>C and AC=>D exceed the 
inclination and support values, they can merge to 
A=>C=>D. We are interested more in the inclination than 
the support. The support value confirms that the frequency 
of the path pattern is large enough. A long path pattern 
with a high inclination may express an interesting browser 
behavior. 
 

4. USE SP ALGORITHM TO MINE PATH 
PATTERNS 

 
4.1 Sorting User Sessions 
 
We use aggregating trees to calculate the inclination value 
and mine path patterns. Using the sorted user sessions in 
our algorithm we need to scan the database only once. The 
sorting is based on the ordering sequence of the k-th page 
in each user session, where k starts from 1. For example, 
assume we have three user sessions: ADE, BCF, and ABC. 
Alphabetically, the result of sorting is: (1) ABC (2) ADE (3) 
BCF. The sorted user sessions can reduce the time to scan 
the database. Sorting is completed when user sessions are 
extracted from the web log file at the same time. 

 
4.2 SP Algorithm 
 
4.2.1 Comparing Sorted User Sessions 

 
The SP algorithm reads sorted user sessions sequentially. 
After the first user session is retrieved, it is stored in a 
candidate string. The string is compared to the rest of the 
user sessions one by one. After each comparison, the 
counter of the candidate string is used to record the support 
value, as shown in Figure 2. Initially, the counters are set 
to one. Each counter is incremented after comparison until 
a match fails. The process repeats until all user sessions are 
read. We define a user session as {S1,S2,S3, … ,Sn}, and a 
candidate string as {C1,C2,C3… ,Cm}. Each Si and Cj 
represents a page (i=1,2,..,n; j=1,2,..,m). Every Cj has an 
associated counter to record its occurrences. If the counter 
of C3 is 5, it means that {C1C2C3} occurred 5 times. 

 

A B D G D H J 
7 7 5 3  1 1 1 

        {ABD}=5
       Counter

Ci

C3  
Figure 2. Data structure of a candidate string. 

 

At each comparison step between a user session and a 
candidate string, Si is compared with Cj starting from S1  
and C1. Values i and j are equal at each comparison. Each 
comparison observes three rules: 

1. If Cj equals Si, the counter of Cj is increased by one. 

2. If Cj is not equal to Si, or Si is non-existent, then Cj is 
moved from the string to a stack (Figure 7). Si  
becomes Cj if Si exists. When Cj is not equal to Si, 
the other Cj that does not comp are is regarded as 
unequal (i.e., AB≠AC => ABD≠ACD). The Cj that 
has the largest j value is removed first. This simple 
action does the match process for the stack. 

3. If Si exists but Cj does not, Si becomes Cj (counter 
=1). 

The removed Ci means that the counter of C1C2..Ci is 
known. For example, the counter of ABC is 11. The next 
comparing user session is ABDE. This means that the 
remain ing user sessions that are not accessed yet have 
ABC(C1C2C3). The reason is because the user session is 
sorted. The removed Ci (C) will be pushed into the stack. 
Path patterns that exceed inclination and support values 
will be found from the stack. When all user sessions are 
read, all large sessions are found.  

Figure 3 shows an example of string comparison. The 
algorithm for comparing strings is  shown in Figure 4. 

 

A page is denoted by Si, and S1 is the starting page. Let
L be a set of user sessions that have the same subset 
S1S2S3… Sn. The set L has m kinds of S1S2S3… SnSn+1

(i.e., m kinds of Sn+1), which are denoted as 
S1S2… Sn(Sn+1)1, S1S2 … Sn(Sn+1)2,… , S1S2… Sn (Sn+1)m. 
For each S1S2 … Sn(Sn+1)k in the set L, the inclination of 
S1S2S3… Sn => (Sn+1)k is: 

) m / )  ((/ mi
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  ?

?

?
ik NN  

Ni is the number of times S1S2… Sn(Sn+1)i is accessed. 



{A}add 1 {AB}add 1
H is replaced by B

Output {ABDGDH}=1

2nd User Session

3rd User Session

Candidate
String

Candidate
String

Candidate
String

{ABDGDH}=1
{ABDGDHJ}=1

{ABD}=2
{ABDG}=2
{ABDGD}=2
{ABDGDB}=1
{ABDGDBE}=1
{ABDGDBEI}=1
{ABDGDBEIE}=1

{ABDGDBEIIEH}=1

remove C6 and C7

remove
C3,C4,...,C10

remove

{AB}add 1{A}add 1

A B D G D H J 
1 1 1 1 1 1 1 

 
A B D G D B E I E H 
1 1 1 1 1 1 1 1 1 1 

 
 
A B D G D B E I E H 
2 2 2 2 2 1 1 1 1 1 

 
A B E I 
1 1 1 1 

 
 
A B E I 
3 3 1 1 

 

 
Figure 3. An example of string comparison. 

 
 
candidate = the first user session; 

while(1) 
Read a new user session; 
if  (new user session is NULL) then 

remove all Cj and exit while loop; 
    for each C j and S i 

  compare a candidate string with the user session 
  /* the rules of comparison are in Section 4.2.1 */ 
  if (Ci is removed) 

call function Stack (Ci, order of C i, counter of C i) 
 

Figure 4. Comparing strings  

 
4.2.2 Finding Path Patterns from the Stack  
 

In Section 3.2 we  described how to calculate inclination. A 
problem must be overcome. As shown in Figure 1, to 
calculate the inclination of AC=>B of the aggregating tree, 
the children node of AC must be known. They are B, E, D, 
and F nodes. The counter values of ACB, ACE, ACD, and 
ACF also must be known. A simple solution is to scan the 
database once to get this information for calculating each 
inclination. Database scanning requires lots of I/O time. 
We use a stack to record necessary information and to 
avoid scanning the database too many times. In fact, we 
scan the database only once.  

The stack records all brother nodes, B, E, D, and F. Before 
confirming how many brother nodes there are for AC, the 
brother nodes that are recorded will not pop out. When AC 
is also moved to a stack, all brother nodes are known. 
Since the user sessions are sorted, it is impossible to read a 
user session that is AC* after removing AC. If AC is 
moved to the stack, the inclinations of ACB, ACE, ACD, 
and ACF can be calculated. The stack also records each 
counter value. The path patterns will be filtered out if they 
pass the inclination and support values that are set by users. 

After a successful calculation, B, E, D, and F pop out and 
C (AC) is pushed in. Then the process continues to read 
the next user session and compares strings.  

We use an example to illustrate our algorithm for the stack. 
In Section 4.2.1 we move Ci to the stack. The data being 
pushed into the stack for Ci is: 1) the name of Ci; 2) the 
order of Ci; 3) the counter of Ci. For example, ABD was 
removed (C3 is D). The order of D is three, and the counter 
of D is 1. Those data will be pushed into the stack. The 
data structure is shown in Figure 5. 
 

 
Figure 5. The stack. 

 

We use a simple example to illustrate how path patterns 
can be found from the stack. A set of sorted user sessions 
was listed in Figure 6. The inclination value must exceed 
one, and the support value must exceed two (counter 
value).  
 

 
Figure 6. Example user sessions 

 

First, we read the sorted user sessions sequentially and 
compare strings. In Step 3 “D” is removed from the string 
and pushed into the stack (Figure 7). In Step 5 both “B” 
and “E” are moved to the stack. Since the order of “E” is 
larger than “B”, “E” is placed in the stack before “B”. This 
is a very important key for the stack operation. The 
elements on top of the stack must keep a status that the 
order of each element cannot be smaller than all the 
elements which are in the stack. In Figure 5, Step 5, “B” is 
moved to the stack. The order of “B” is two, and the 
element of “D” and “E” is three. It means the parent of 
“D” and “E” is “B”, and “B” has been removed. The 
children node for AB is known: “D” and “E”. The 
elements that are ordered smaller than “B” pop out. The 
elements, which have popped out in the same order, are 
brother nodes. The inclination value of AB?D and AB?E 
can be calculated: AB?D is 0.67 (support is two) and 
AB?E is 1.33(support is one). Each path is evaluated to 
become a rule if it passes the support and inclination 
values. AB?E is the rule and AB?D is forsaken. After 



popping, “B” is pushed back in the stack. In Step 6 all user 
sessions are read, and all the Ci’s are moved to the stack: C 
and A. When “A” is pushed into the stack, “B” and “C” 
pop out to be calculated: A?B is 1.6, and A?C is 0.4. 
Finally, we get that the inclination value of “A” is one. 

The algorithm for processing elements on the stack is 
described in Figure 8. 

 

 
Figure 7. Stack operations 

 
Stack (Ci, order of Ci, counter of C i) 
If the order of C i >= the order of element on the top 

Push C i into the stack  
top element-> C i 

else 
  pop out the elements whose order is larger than C i’s 
  calculate inclination and output rules 
 

Figure 8. The stack process 
 
4.3 Experiments and Discussion 
 
The experiments were performed on an Ultra Enterprise 
10000 running the Solaris. The clock speed of the 
processor is 250Mhz and the memory size is 4G bytes. A 
simulated Web-page tree based on a real Web site structure 
was created [1]. Each node represents a page. When a user 
stays at any one node, the probabilities that the user moves 
to a child node, backtracks to its parent node, or jump s to 
some other node in the tree are given just like in a real 
situation. A large number of user sessions were produced 
from the tree. 

Figure 9 shows the relationship between data size and 
execution time. The variable S is the average size of the 
sessions produced from a tree whose average height is ten. 
We get a linear relationship between the number of user 
sessions and execution time. Large sessions can show how 
most users browse among Web pages. To illustrate, we use 
a large session {ABACDCE} produced according to the 
tree. The large session shows that after visiting page B, 
users backtrack to page A and then visit page C. Adding a 
link from B to C maybe a good way to improve the site 
structure. 

Large sessions can also provide useful information at 

Internet-based learning sites. Using large sessions to 
analyze the association between students’ learning 
behaviors and test scores can really help both teachers and 
students. If more of user profiles are available, such as sex, 
age, and education, one can track different levels of users 
with different large sessions. This information is very 
valuable to E-commerce services as well. 
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Figure 9. Execution time 

 
5. VISUALIZATION OF PATH PATTERNS 

 
We designed a prototype that can be used to visualize 
mining results. Figure 10 shows the prototype. The 
prototype includes three components: Rule, Rule Tree and 
Rule Graph. The Rule shows path patterns. Each rule 
expresses a path with its hyperlinks between nodes, 
passing inclination and support values. The Rule Tree 
describes the rule’s position in the pruned aggregating tree. 
Each sub path where the target node links to leaf nodes of 
the aggregating tree having no rule is pruned. From the 
integral rule of distributing over the aggregating tree, we 
can analyze each rule for browsers more accurately. In 
order to distinguish the important rules more easily, we 
adopt the Rule Graph to show the rules. 

 

 
 

Figure 10. A prototype of mining path patterns 
 
 
 



 
 

Figure 11. Rule Tree 
 

Figure 11 expresses three rule trees. Each rule tree 
indicates a link that has larger inclination and support 
values than we specify. The path of the link is also shown. 
For example, [1]-[2]-[3]-[6]--->[7]=30%;1.50 means that 
the [6]--->[7] has 1.50 inclination value and 30% support 
value. After the browsing path [1]-[2]-[3]-[6], it will show 
this result. 
 

 
 

Figure 12. Rules 
 

Figure 12 shows the Rule interface. A rule expresses a path 
pattern. Each link of a rule has larger inclination and 
support values than we specify. 
 

 
 

Figure 13. Graph 
 

Figure 13 shows two rules using the Graph. We use the 
size of the circle and the width of the line to express 
different inclination and support values. The thicker line 

means a larger inclination value. The visualization 
interface helps us find interesting information from the 
mined rules [13] 
 

6. CONCLUSION 
 

In this paper, we propose an efficient algorithm for mining 
session path patterns. We use inclination values with 
support values to find frequent path patterns. The other 
methods of mining path patterns, which only concern 
support values, could lead to controversial results because 
of web structure. Their methods of mining paths only 
account for how the web site is browsed by users . They 
only provide information about what users  do. Our method 
is further concerned about how users  select their ways to 
browse the web site. We can analyze what users  want to do. 
In order to find path patterns efficiently, we propose a new 
algorithm SP. It scans databases only once and uses a small 
amount of memory.  

Our future works are to continue with further experiments 
using real user sessions. We will also try to improve the 
performance and capabilities of SP. We will use SP to mine 
students’ study behaviors on Internet-based learning. Large 
sessions will be used to find what subjects students like to 
learn first and what study behaviors occur more frequently. 
These information can help improve the effectiveness of 
Internet-based learning. 
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