
AN EFFICIENT WEB MINING ALGORITHM FOR
 SESSION PATH PATTERNS

*Don-Lin Yang, Shen-Hong Yang, and Ming-Chuan Hong
Department of Information Engineering

Feng Chia University, Taichung, Taiwan 407
*E-mail:dlyang@fcu.edu.tw

ABTRACT

Data mining in the World Wide Web has many practical
applications. Using efficient web mining algorithms to
discover WWW browsing path patterns can benefit web
users as well as administrators. For example, effective
information retrieval and better understanding of the user
behaviors can help attract more visitors and improve
service of E-commerce. However, d ifferent definitions of a
browsing path result in mining different knowledge. We
define a user session as a complete browsing path from the
entry page to the last page a user visited. An efficient
mining algorithm was proposed to find patterns of frequent
session path. We introduce a new measurement of
browser’s interest in a path as an inclination value. In this
paper, we show that our implementation takes less memory
space since the algorithm produces fewer candidate
transactions than that of others. Scanning the sorted
database only once, we can quickly find all large session
paths regardless of the support value.

Key words: Web mining, session path, support, confidence,
inclination.

1. INTRODUCTION

Due to the increasing number of databases and their
growing sizes today, data mining technology becomes
more important in acquiring knowledge for decision
making. One mining application on the World Wide Web is
referred to as web mining [9][11-12][14-15][18-19]. Web
mining has two kinds: web content mining and web usage
mining [10]. Web usage mining identifies the path patterns
when users browse through pages on the web. The
information of browsing path patterns helps put
advertisements on the web, improve web traffic, analyze
users’ behavior, and design better web sites [8][16].

Several researchers have studied web usage mining from
user sessions [1][2][6]. A user session is a set of pages
being referenced by a user during a single visit to the site.
User sessions are extracted from web server logs [17]. Path
patterns will be found from user sessions. The transactions
are produced from user sessions as processing units to
mine path patterns. Different definitions of transactions
have different meanings and results. [1] uses maximum

forward reference, and [2] uses reference length of time to
separate a user session into transactions. Other methods,
such as [6], regard a user session as a transaction directly.

These studies have two similar characteristic: 1) their
purpose is to mine the frequent path patterns; 2) algorithms
were improved from those mining association rules
[3][4][7]. A lthough the purposes are alike, different
methods and algorithms can produce different results from
the same web server log. It is hard to point out which one
is better. Association rules have two important vocabulary
words: Support and Confidence. Support is an argument
that decides whether the candidate is frequent or not. The
frequent path patterns are identified by their support values.
Confidence is an argument that describes the believable
degree of association rules. Those studies only use support
arguments but lack confidence. We infer that the cause is
because the traditional confidence definition is not suitable
for the web structure. The reason will be illustrated in
Section 3. The more the confidence is concerned, the more
information of browser behaviors is gained.

Web structure will influence the result of path pattern.
Because of this special structure, some pages are accessed
more frequently. Generally speaking, the home page is
accessed most frequently. The pages that are directly
linked by the home page also are accessed more frequently.
Intuitively, the frequent path patterns also are influenced
by web structure. It may confuse us when we analyze
browsers’ behaviors. We can’t recognize if the frequent
path pattern is expressed as an interesting browser act or is
just caused by web structure.

To solve foregoing problems, we use a new method to
mine path patterns. Our method provides both support and
confidence arguments. In most algorithms of mining
association rules, the support value is used first to find
large itemsets. The large itemsets that exceed the
confidence value become rules. We swap the order of
using those two arguments. First, the confidence argument
is used for filtering and then the support argument. We
believe this can increase the rules about browsers’
behavior and reduce the influence of web structure. To be
suitable for web structure, our confidence definition is
different from traditional one. In order to be able to
distinguish the difference, we use a new definition called
inclination. Our method emphases the inclination in
addition to the support. Since inclination is stressed, the

path pattern influenced by web structure will be reduced.
We will illustrate it in Section 3. We propose a new
algorithm SP to mine path patterns based on the idea of
inclination.

The rest of the paper is organized as follows. Data
preparation is described in Section 2. The inclination
definition is presented in Section 3. Our SP algorithm and
its implementation are shown in Section 4. Section 5
discusses the characteristics of path patterns. Section 6 is
the conclusion of the paper.

2. DATA PREPARATION

A web log records information when users access web
pages. The recorded information includes the IP address,
the access time, and the pages accessed. The data of web
server logs are in rows. A user session expresses a path of
how a user browses the web site. Each path may have a
different beginning page. Although every web site has a
homepage, some users may start browsing from
bookmarks or hyperlinks. To mine path patterns, user
sessions must be extracted from web server logs. [2]
discusses the methods of extracting a user session from the
web log.

Data can tie in different algorithms, so some special
methods are used in the data preparation phase. A user
session may be separated into several transactions. For
example, a user session of ABCDCEF (each letter of the
alphabet represents a web page) can be decomposed into
two transactions ABCD and ABCEF based on the
“maximum forward reference” [1]. Another method of
“reference length” [2] separates the session according to
the length of time users spend on the pages. A user session
can also be regarded as a transaction directly [21]. Each
different method of producing a transaction has different
algorithms to mine path patterns. Our method treats a user
session as a transaction. Unlike other methods, user
sessions are sorted to increase the efficiency of our
algorithm.

3. INCLINATION DEFINITION

3.1 Web Hyperlink Structure

In a web environment, the probability of each page
accessed is not fairly distributed. Page access time relates
to its distance from the starting pages (like homepages) of
browsers. Browsing transactions are different from
traditional transactions. In traditional business transactions,
customers may choose any goods arbitrarily. Each choice
may influence, but cannot limit, the kind of good to be
chosen next. Web browsers start to view a web site from its
homepage unless they input the page address directly. To
give a simple examp le, we use a tree structure for the web
pages. The pages closer to the top have better access time
generally. This problem of imbalance needs to be

improved in order to find more useful information.

The confidence cannot be adopted on a web hyperlink
structure. Using traditional methods to calculate
confidence is not suitable for path patterns. For example,
there is a frequent path pattern A?B. The page A that has
less hyperlinks to other pages will have a higher
confidence for A?B. If A is a homepage and has only one
hyperlink to page B, the confidence for A?B should be
higher. The reason is that after visiting page A, browsers
have no choice to link to other pages except page B. This
kind of confidence may throw off the user behavior
analysis.

3.2 Our Path Patterns

To overcome the problem of confidence value related to
the number of hyperlinks for a path, we propose a different
path pattern that Figure 1 illustrates. Figure 1 shows an
aggregating tree [20]. It is not the hyperlink structure of a
web site. The aggregating tree is constructed by using user
sessions. The page of level one is the starting page for user
sessions. The page M, for example, was accessed after
page C 130 times in the last level. This indicates the
number of user sessions containing A?C?D?C?M.

Figure 1. A simple aggregating tree

After browsing page A, one has pages B and C to choose
from. Comparing the number of times pages B and C are
accessed will show which page is more interesting to users
after browsing page A. The example in Figure 1 shows that
page C was accessed 675 times which is more than page
B’s 225 times. This information is useful for analyzing
user behaviors. We propose a new term called inclination
to express the information by using a measurable value.

Number of times
being accessed

Link Rate

We explain the formula with an example. In Figure 1 the
inclination of A=>C is:

675/((225+675)/2)=1.5

If users have no special inclination between A=>B and
A=>C, the frequencies of A=>B and A=>C should be the
same: (225+675)/2=450. The inclination value of 1 means
that there is no special inclination between A=>B and
A=>C. Here the inclination value of A=>C is 1.5. A value
larger than 1 shows that A=>C may be more interesting to
users than A=>B.

Our goal is to find the path patterns in which each
hyperlink exceeds the specified inclination and support
values. As a confidence value, the inclination value can be
set arbitrarily. If both A=>C and AC=>D exceed the
inclination and support values, they can merge to
A=>C=>D. We are interested more in the inclination than
the support. The support value confirms that the frequency
of the path pattern is large enough. A long path pattern
with a high inclination may express an interesting browser
behavior.

4. USE SP ALGORITHM TO MINE PATH
PATTERNS

4.1 Sorting User Sessions

We use aggregating trees to calculate the inclination value
and mine path patterns. Using the sorted user sessions in
our algorithm we need to scan the database only once. The
sorting is based on the ordering sequence of the k-th page
in each user session, where k starts from 1. For example,
assume we have three user sessions: ADE, BCF, and ABC.
Alphabetically, the result of sorting is: (1) ABC (2) ADE (3)
BCF. The sorted user sessions can reduce the time to scan
the database. Sorting is completed when user sessions are
extracted from the web log file at the same time.

4.2 SP Algorithm

4.2.1 Comparing Sorted User Sessions

The SP algorithm reads sorted user sessions sequentially.
After the first user session is retrieved, it is stored in a
candidate string. The string is compared to the rest of the
user sessions one by one. After each comparison, the
counter of the candidate string is used to record the support
value, as shown in Figure 2. Initially, the counters are set
to one. Each counter is incremented after comparison until
a match fails. The process repeats until all user sessions are
read. We define a user session as {S1,S2,S3, … ,Sn}, and a
candidate string as {C1,C2,C3… ,Cm}. Each Si and Cj
represents a page (i=1,2,..,n; j=1,2,..,m). Every Cj has an
associated counter to record its occurrences. If the counter
of C3 is 5, it means that {C1C2C3} occurred 5 times.

A B D G D H J
7 7 5 3 1 1 1

 {ABD}=5
 Counter

Ci

C3
Figure 2. Data structure of a candidate string.

At each comparison step between a user session and a
candidate string, Si is compared with Cj starting from S1
and C1. Values i and j are equal at each comparison. Each
comparison observes three rules:

1. If Cj equals Si, the counter of Cj is increased by one.

2. If Cj is not equal to Si, or Si is non-existent, then Cj is
moved from the string to a stack (Figure 7). Si
becomes Cj if Si exists. When Cj is not equal to Si,
the other Cj that does not comp are is regarded as
unequal (i.e., AB≠AC => ABD≠ACD). The Cj that
has the largest j value is removed first. This simple
action does the match process for the stack.

3. If Si exists but Cj does not, Si becomes Cj (counter
=1).

The removed Ci means that the counter of C1C2..Ci is
known. For example, the counter of ABC is 11. The next
comparing user session is ABDE. This means that the
remain ing user sessions that are not accessed yet have
ABC(C1C2C3). The reason is because the user session is
sorted. The removed Ci (C) will be pushed into the stack.
Path patterns that exceed inclination and support values
will be found from the stack. When all user sessions are
read, all large sessions are found.

Figure 3 shows an example of string comparison. The
algorithm for comparing strings is shown in Figure 4.

A page is denoted by Si, and S1 is the starting page. Let
L be a set of user sessions that have the same subset
S1S2S3… Sn. The set L has m kinds of S1S2S3… SnSn+1

(i.e., m kinds of Sn+1), which are denoted as
S1S2… Sn(Sn+1)1, S1S2 … Sn(Sn+1)2,… , S1S2… Sn (Sn+1)m.
For each S1S2 … Sn(Sn+1)k in the set L, the inclination of
S1S2S3… Sn => (Sn+1)k is:

) m /) ((/ mi

1i
 ?

?

?
ik NN

Ni is the number of times S1S2… Sn(Sn+1)i is accessed.

{A}add 1 {AB}add 1
H is replaced by B

Output {ABDGDH}=1

2nd User Session

3rd User Session

Candidate
String

Candidate
String

Candidate
String

{ABDGDH}=1
{ABDGDHJ}=1

{ABD}=2
{ABDG}=2
{ABDGD}=2
{ABDGDB}=1
{ABDGDBE}=1
{ABDGDBEI}=1
{ABDGDBEIE}=1

{ABDGDBEIIEH}=1

remove C6 and C7

remove
C3,C4,...,C10

remove

{AB}add 1{A}add 1

A B D G D H J
1 1 1 1 1 1 1

A B D G D B E I E H
1 1 1 1 1 1 1 1 1 1

A B D G D B E I E H
2 2 2 2 2 1 1 1 1 1

A B E I
1 1 1 1

A B E I
3 3 1 1

Figure 3. An example of string comparison.

candidate = the first user session;

while(1)
Read a new user session;
if (new user session is NULL) then

remove all Cj and exit while loop;
 for each C j and S i

 compare a candidate string with the user session
 /* the rules of comparison are in Section 4.2.1 */
 if (Ci is removed)

call function Stack (Ci, order of C i, counter of C i)

Figure 4. Comparing strings

4.2.2 Finding Path Patterns from the Stack

In Section 3.2 we described how to calculate inclination. A
problem must be overcome. As shown in Figure 1, to
calculate the inclination of AC=>B of the aggregating tree,
the children node of AC must be known. They are B, E, D,
and F nodes. The counter values of ACB, ACE, ACD, and
ACF also must be known. A simple solution is to scan the
database once to get this information for calculating each
inclination. Database scanning requires lots of I/O time.
We use a stack to record necessary information and to
avoid scanning the database too many times. In fact, we
scan the database only once.

The stack records all brother nodes, B, E, D, and F. Before
confirming how many brother nodes there are for AC, the
brother nodes that are recorded will not pop out. When AC
is also moved to a stack, all brother nodes are known.
Since the user sessions are sorted, it is impossible to read a
user session that is AC* after removing AC. If AC is
moved to the stack, the inclinations of ACB, ACE, ACD,
and ACF can be calculated. The stack also records each
counter value. The path patterns will be filtered out if they
pass the inclination and support values that are set by users.

After a successful calculation, B, E, D, and F pop out and
C (AC) is pushed in. Then the process continues to read
the next user session and compares strings.

We use an example to illustrate our algorithm for the stack.
In Section 4.2.1 we move Ci to the stack. The data being
pushed into the stack for Ci is: 1) the name of Ci; 2) the
order of Ci; 3) the counter of Ci. For example, ABD was
removed (C3 is D). The order of D is three, and the counter
of D is 1. Those data will be pushed into the stack. The
data structure is shown in Figure 5.

Figure 5. The stack.

We use a simple example to illustrate how path patterns
can be found from the stack. A set of sorted user sessions
was listed in Figure 6. The inclination value must exceed
one, and the support value must exceed two (counter
value).

Figure 6. Example user sessions

First, we read the sorted user sessions sequentially and
compare strings. In Step 3 “D” is removed from the string
and pushed into the stack (Figure 7). In Step 5 both “B”
and “E” are moved to the stack. Since the order of “E” is
larger than “B”, “E” is placed in the stack before “B”. This
is a very important key for the stack operation. The
elements on top of the stack must keep a status that the
order of each element cannot be smaller than all the
elements which are in the stack. In Figure 5, Step 5, “B” is
moved to the stack. The order of “B” is two, and the
element of “D” and “E” is three. It means the parent of
“D” and “E” is “B”, and “B” has been removed. The
children node for AB is known: “D” and “E”. The
elements that are ordered smaller than “B” pop out. The
elements, which have popped out in the same order, are
brother nodes. The inclination value of AB?D and AB?E
can be calculated: AB?D is 0.67 (support is two) and
AB?E is 1.33(support is one). Each path is evaluated to
become a rule if it passes the support and inclination
values. AB?E is the rule and AB?D is forsaken. After

popping, “B” is pushed back in the stack. In Step 6 all user
sessions are read, and all the Ci’s are moved to the stack: C
and A. When “A” is pushed into the stack, “B” and “C”
pop out to be calculated: A?B is 1.6, and A?C is 0.4.
Finally, we get that the inclination value of “A” is one.

The algorithm for processing elements on the stack is
described in Figure 8.

Figure 7. Stack operations

Stack (Ci, order of Ci, counter of C i)
If the order of C i >= the order of element on the top

Push C i into the stack
top element-> C i

else
 pop out the elements whose order is larger than C i’s
 calculate inclination and output rules

Figure 8. The stack process

4.3 Experiments and Discussion

The experiments were performed on an Ultra Enterprise
10000 running the Solaris. The clock speed of the
processor is 250Mhz and the memory size is 4G bytes. A
simulated Web-page tree based on a real Web site structure
was created [1]. Each node represents a page. When a user
stays at any one node, the probabilities that the user moves
to a child node, backtracks to its parent node, or jump s to
some other node in the tree are given just like in a real
situation. A large number of user sessions were produced
from the tree.

Figure 9 shows the relationship between data size and
execution time. The variable S is the average size of the
sessions produced from a tree whose average height is ten.
We get a linear relationship between the number of user
sessions and execution time. Large sessions can show how
most users browse among Web pages. To illustrate, we use
a large session {ABACDCE} produced according to the
tree. The large session shows that after visiting page B,
users backtrack to page A and then visit page C. Adding a
link from B to C maybe a good way to improve the site
structure.

Large sessions can also provide useful information at

Internet-based learning sites. Using large sessions to
analyze the association between students’ learning
behaviors and test scores can really help both teachers and
students. If more of user profiles are available, such as sex,
age, and education, one can track different levels of users
with different large sessions. This information is very
valuable to E-commerce services as well.

0

5

10

15

20

25

200k 400k 600k 800k1000k

Number of transactions

T
i
m
e
(
s
e
c
)

S=5

S=10

S=15

Figure 9. Execution time

5. VISUALIZATION OF PATH PATTERNS

We designed a prototype that can be used to visualize
mining results. Figure 10 shows the prototype. The
prototype includes three components: Rule, Rule Tree and
Rule Graph. The Rule shows path patterns. Each rule
expresses a path with its hyperlinks between nodes,
passing inclination and support values. The Rule Tree
describes the rule’s position in the pruned aggregating tree.
Each sub path where the target node links to leaf nodes of
the aggregating tree having no rule is pruned. From the
integral rule of distributing over the aggregating tree, we
can analyze each rule for browsers more accurately. In
order to distinguish the important rules more easily, we
adopt the Rule Graph to show the rules.

Figure 10. A prototype of mining path patterns

Figure 11. Rule Tree

Figure 11 expresses three rule trees. Each rule tree
indicates a link that has larger inclination and support
values than we specify. The path of the link is also shown.
For example, [1]-[2]-[3]-[6]--->[7]=30%;1.50 means that
the [6]--->[7] has 1.50 inclination value and 30% support
value. After the browsing path [1]-[2]-[3]-[6], it will show
this result.

Figure 12. Rules

Figure 12 shows the Rule interface. A rule expresses a path
pattern. Each link of a rule has larger inclination and
support values than we specify.

Figure 13. Graph

Figure 13 shows two rules using the Graph. We use the
size of the circle and the width of the line to express
different inclination and support values. The thicker line

means a larger inclination value. The visualization
interface helps us find interesting information from the
mined rules [13]

6. CONCLUSION

In this paper, we propose an efficient algorithm for mining
session path patterns. We use inclination values with
support values to find frequent path patterns. The other
methods of mining path patterns, which only concern
support values, could lead to controversial results because
of web structure. Their methods of mining paths only
account for how the web site is browsed by users . They
only provide information about what users do. Our method
is further concerned about how users select their ways to
browse the web site. We can analyze what users want to do.
In order to find path patterns efficiently, we propose a new
algorithm SP. It scans databases only once and uses a small
amount of memory.

Our future works are to continue with further experiments
using real user sessions. We will also try to improve the
performance and capabilities of SP. We will use SP to mine
students’ study behaviors on Internet-based learning. Large
sessions will be used to find what subjects students like to
learn first and what study behaviors occur more frequently.
These information can help improve the effectiveness of
Internet-based learning.

REFERENCE

[1] M.S. Chen, J.S. Park, and P.S. Yu, “Efficient Data
Mining for Path Traversal Patterns,” IEEE Tran. on
Knowledge and Data Engineering, Vol. 10, No. 2,
pp. 209-221, March/April 1998.

[2] B. Mobasher, and J. Srivastava, “Data Preparation
for Mining World Wide Web Browsing Patterns,”
Knowledge and Information Systems V1(1),
February 1999.

[3] R. Agrawal, R. Srikant, “Fast Algorithms for
Mining Association Rules,” In Proc. of the 20th
VLDB Conference, pages 487-499, Santiago, Chile,
1994.

[4] R. Agrawal, T. Imielinski, and A. Swami, “Mining
Association Rules between Sets of Items in Large
Database,” Proc. ACM SIGMOD, pp. 207-216, May
1993.

[5] J.S. Park, M.S. Chen, and P. S. Yu, “Using A
Hash-Based Method with Transaction Trimming for
Mining Association Rules,” IEEE Trans. On
Knowledge and Data Eng., Vol. 9, no. 5, pp.
813-825, Sept./Oct. 1997.

[6] M.S. Chen, J.S. Park, and P. S. Yu, “Data Mining
for Path Traversal Patterns in a Web Environment,”
Proc. of 16th Int’l Conf. on Distributed Computing
Systems, 1996.

[7] J. Han and Y. Fu, “Discovery of Multiple-Level
Association Rules from Large Databases,” Proc.
21th Int’l Conf. Very large Data Bases, pp. 420-431,

Sept. 1995.
[8] Ellen Spertus, “ParaSite: Mining Structural

Information on the Web,” 6th Int’l World Wide Web
Conference. http://atlanta.cs.nchu.edu.tw/
www/PAPER206.html, Apr., 1997.

[9] N.D. Sweany, T.F. McManus, D.C. Williams, and
K.D. Tothero, “The Use of Cognitive and
Metacognitive Strategies in a Hypermedia
Environment,” 1996.

[10] R. Cooley, B. Mobasher, and J. srivastava, “Web
Mining: Information and Pattern Discovery on the
World Wide Web,” Proc. of Int’l Conf. on Tools
with Artificial Intelligence, pp. 558-567, Newport
Beach, CA, 1997.

[11] B. Mobasher, N. Jain, E. Han, and J. Srivastava,
“Web mining: Pattern discovery from world wide
web transactions,” Technical Report TR 96-050,
University of Minnesota, Dept. of Computer
Science, Minneapolis, 1996.

[12] T.W. Yan, Matthew Jacobsen, G.M. Hector, and
Umeshwar Dayal, “From User Access Patterns to
Dynamic Hypertext Linking,” In Fifth World-Wide
Web Conference, 1996.

[13] M. Klemettinen, H. Mannila, P. Ronkainen, H.
Toivonen, A. I. Verkamo, “Finding Interesting Rules
from Large Sets of Discovered Association Rules,”
The Third International Conference on Information
and Knowledge Management, Ed. Nabil R. Adam,
Bharat K. Bhargava and Yelena Yesha,,
Gaithersburg, Maryland. ACM Press pp. 404-407.
Nov.,, 1994.

[14] L. D. Catledge and J.E. Pitkow, “Characterizing
Browsing Strategies in the World-Wide Web,” Proc.
Third WWW Conf., Apr., 1995.

[15] O. R. Zaiane, M. Xin, J. Han, “Discovering Web
Access Patterns and Trends by Applying OLAP and
Data Mining Technology on Web Logs,” Proc.
Advances in Digital Libraries Conf. (ADL'98),
Santa Barbara, CA, pp. 19-29, Apr., 1998.

[16] Hiroyuki Kawano, Toshiharu Hasegawa, “Mondou:
Interface with Text Data Mining for Web Search
Engine,” Proc. 31st Hawaii International
Conference on System Sciences, 1998.

[17] A. Luotonen, “The common log file format,”
http://www.w3.org/pub/WWW/ 1995

[18] Cyrus Shahabi, Amir Zarkesh, Jafar Adibi, and
Vishal Shah, “Knowledge Discovery from Users
Web-page Navigation,” Proceedings of Research
Issues in Data Engineering (RIDE) Conference,
Apr., 1997.

[19] Robert Cooley, Bamshad Mobasher, and Jaideep
Srivastava, “Grouping Web Page References into
Transactions for Mining World Wide Web Browsing
Patterns,” In Proceedings of the 1997 IEEE
Knowledge and Data Engineering Exchange
Workshop (KDEX-97), Nov., 1997.

[20] Myra Spiliopoulou, Lukas Faulstich, C., and
Karsten Winkler, “A Data Miner analyzing the

Navigational Behaviour of Web Users,” In Proc. of
the Workshop on Machine Learning in User
Modelling of the ACAI'99 Int. Conf., Creta, Greece,
July, 1999.

[21] X. Lin, L. Liu, Y. Zhang and X. Zhou, “Efficiently
Computing Frequent Tree-Like Topology Patterns
in a Web Environment,” Proceedings of the 31th
international Conference on Technology of
Object-Oriented.

