
PERFORMANCE EVALUATION OF SPATIAL JOIN STRATEGIES

Ye-In Changy Ming-Jyh Wuz

yDept. of Computer Science and Engineering zDept. of Applied Mathematics

National Sun Yat-Sen University National Sun Yat-Sen University

Kaohsiung, Taiwan Kaohsiung, Taiwan

Republic of China Republic of China

E-mail: changyi@cse.nsysu.edu.tw

ABSTRACT

Spatial database users frequently need to combine two
spatial inputs based on some spatial relationship be-
tween the objects in the two inputs, for example, map
overlap. This operation of combining two inputs based
on their spatial relationship is called a spatial join,
which is an expensive operation. Rotem's algorithm
is a well-known approach for overlap detection, which
is based on a new join index. However, there are some
errors in Rotem's algorithm, which can result in some
wrong answers. Brinkho� et al. have proposed a dif-
ferent approach for overlap detection which is based
on the R-tree. In this paper, we �rst correct the errors
in Rotem's algorithm. Next, we study the performance
of Rotem's and Brinkho� et al.'s algorithms for overlap
detection by simulation. From our simulation results,
we show that Brinkho� et al.'s algorithm needs longer
join processing time, a larger number of comparisons
and a smaller number of bu�ers than Rotem's algo-
rithm.

1. INTRODUCTION

Recently, spatial database systems have become
more and more important for public administration,
science and business. Several spatial database systems
(spatial DBSs), particularly designed for organizing
spatial data of a geographic information system (GIS),
have been developed for applications such as cartogra-
phy, environmental science and geography [1, 3, 14].

In analogy to relational DBSs, a collection of spa-
tial objects de�ned on the same attributes is called
a spatial relation. A typing spatial query is the win-
dow query where the response set consists of all ob-
jects whose geometric component overlaps with a given
query rectangle [3]. `Find all objects which intersect a
given window' is such an example. In contrast to a win-
dow query, the spatial join is de�ned on two or more

1
This research was supported in part by the National Science Council of

Republic of China under Grant No. NSC-89-2213-E-110-004

relations. The spatial join computes a subset of the
Cartesian product. It combines spatial objects from
these relations according to their geometric attributes,
such as distance, intersection, containment, etc [3].

In any case, the term spatial usually refers to ob-
jects and operators in a space of dimension 2 or higher.
That implies, however, that they have the following key
feature that makes the computation of spatial opera-
tors, including spatial joins and searches, signi�cantly
more diÆcult than the computation of their non-spatial
counterparts [4]: There is no total ordering among spa-
tial objects that preserves spatial proximity.

Since the representation of a spatial object can be
very large, spatial operations, including the spatial
join, typically operate in two steps [11]: (1) Filter
Step: In this step, an approximation of each spa-
tial objects, such as its Minimum Bounding Rectangle,
(MBR) is used to eliminate tuples that cannot be part
of the result. This step produces candidates that are a
superset of the actual result. (2) Re�nement Step:
In this step, each candidate is examined to check if
it is part of the result. This check generally requires
running a CPU-intensive computational geometry al-
gorithm.

Numerous algorithms have been proposed to exe-
cute the �lter step of a spatial join. Some of the ear-
lier algorithms are based on transforming an approx-
imation of spatial object into another domain (e.g. a
1-dimensional domain), and performing the �lter step
in the new domain [10, 15]. Naturally, we expect the
spatial join operator to take advantage of these in-
dices in the same way as a conventional join is typ-
ically performed using R-trees, R+-trees, or hash ta-
bles in most commercial relational database products
[2, 4, 5, 7, 9, 12]. Recently, an index called join index
was proposed as an accelerator for performing join op-
erations between two relations. The idea is to maintain
a precomputed structure that indicates which tuples
from one relation will match tuples of the other rela-

tion based on some join predicate [12, 13]. The other
simple and straightforward approach without using any
index is to apply the strategies for relational join op-
erations, including nested-loop and hash partition, to
spatial join operations [3, 6, 8, 11].

Among those algorithms for spatial joins, Rotem's
algorithm [12] is one of the well known algorithms
based on a spatial join index approach, while Brinkho�
et al.'s algorithm [2] is one of the well-known algorithms
based on the R-tree approach. In Rotem's algorithm, it
partially precomputes the results of a spatial join. The
algorithm for building the spatial join requires grid �les
for indexing the spatial data, and uses these grid �les
to compute the spatial join index. However, there are
some errors in Rotem's algorithm, which can result in
some wrong answers. In Brinkho� et al.'s algorithm,
it shows that the R-tree can also be exploited for per-
forming spatial joins eÆciently. The algorithm sorts
the entries in a node of the R-tree according to the
spatial location of the corresponding rectangles.

In this paper, we focus on the problem of region
data. Moreover, we focus on the �lter step. We �rst
correct the errors in Rotem's overlap detection algo-
rithm. Next, we study the performance of Rotem's and
Brinkho� et al.'s algorithms for overlap detection by
simulation. From our simulation results, we show that
Brinkho� et al.'s algorithm needs longer join process-
ing time, a larger number of comparisons and a smaller
number of bu�ers than Rotem's algorithm. Moreover,
both the algorithms need sorting process �rst.

2. A SURVEY

2.1 Rotem's Algorithm

In [12], Rotem proposed an algorithm to generate
a join index from two given grid �les. This algorithm
assumes that each �le Gi has an associated region di-
rectory RDi, already built for it. In the two dimen-
sional case, each entry includes a region-id entry and
two pairs of coordinates giving the bottom left and the
top right corners of each region.

The collection of regions de�ned by the region direc-
tory forms a tiling of the coverage area called a region
map. Assume that the region map of one grid �le is
super-imposed on top of the other one to obtain a sin-
gle map which includes all regions (see Figure 1). The
idea is to use a technique from computational geometry
called plane sweeping in which an imaginary line, par-
allel to the y axis, scans the super-imposed map from
left to right. At each point in time, all regions cut by
the line are called candidate regions. A region stops
being candidate when all its points are to the left of
the sweeping line. The algorithm observes that if two
regions have an overlap they must be simultaneously

r1

r

a sweeping line

r3

s1

2s 3s

2

X

Figure 1: A sweeping line

candidate at some point during the execution of the al-
gorithm as the line must cut their common intersection
area [12].

For that reason, it is necessary to maintain a list of
the current candidate regions for each directory RDi,
and add or delete regions from it as the line enters or
leaves them, respectively. Edges are to be the join in-
dex whenever it is detected that a region l from RDi

which just became candidate has an overlap with any
of the other regions on the candidate list for RDj where
j 6= i. Since the algorithm requires separating x and y
coordinates and merging information from both direc-
tories, it will scan the directories and construct three
auxiliary structures: a set X of vectors, a pair of arrays
Y1 and Y2 as described below.

From each single x coordinate found in RD1 or RD2,
a vector is built with the structure:
<value, bt, region-id, �le-id> with the following
interpretation: (1) value: a value of a coordinate. (2)
bt: 0 if this is a left coordinate, otherwise 1. (3)
region-id: the region-id number for this coordinate.
(4) �le-id: either 1 or 2 depending on the region di-
rectory RDj this coordinate comes from.

The set X , will have these vectors as its elements,
and will have a cardinality of 2t where t = n1 + n2, as
each region in the system contributes two x coordinates
to this set. (Note that here, the algorithm assumes that
G1 and G2 be two grid �les with n1 and n2 data pages,
respectively.)

Next, for the arrays which stores y coordinates, these
will be kept in one of two arrays declared as Y1[n1][2]
for y coordinates of RD1 and Y2[n2][2] for y coordi-
nates of RD2. In each of these arrays, the �rst sub-
script indicates region-id number and the second indi-
cates whether it is a bottom (subscript equals 0) or
top coordinate (subscript equals 1) for the region. For
example, assume that an entry in RD1 has region id
8, with bottom left corner (3,6) and top right cor-
ner (12,15). This will generate vectors <3,0,8,1> and
<12,1,8,1> in X and a pair of entries Y1[8][0]=6 and
Y1[8][1]=15 in Y1.

In this algorithm, it keeps an updated list of all can-

Algorithm-1: Join Index Generator
Input: A pair of region directories RD1 and RD2 with
jRDij = ni;
Output: Join graph edge list;
Begin:

Scan both directories RD1 and RD2

and generate a set X of vectors and the
pair of arrays Y 1 and Y 2;
Sort the set of vectors in X based on the �rst
and second component of each vector and
obtain ~X ;
t := n1 + n2;
For i := 1 to 2t Do

Call DETECT(~xi);
End;

Figure 2: Algorithm-1 in Rotem's algorithm

Procedure DETECT(~x : vector);
Begin

j = ~x[2]; k = ~x[3]; l = ~x[4];
(� j indicates if this is a left or right coordinate; k
and l provide the region and �le identity �)
If (j = 0) then (� the left coordinate �)

Begin

Insert <Y1[k][0]; Y1[k][1]; k> into binary
tree Bl;
Call SEARCH(Y1[k][0], Y1[k][1], k, l);
(� this is a new region, it must become
candidate and get inserted into the
appropriate tree �)

End

Else (� j = 1, the right coordinate �)
Delete the node ai with key Y1[k][0] from
Bl;
(� this is the end of the region, it must be
deleted from the tree �)

End;

Figure 3: Procedure DETECT in Rotem's algorithm

didate regions for each directory RDi. First, a new
region can become candidate (or stop being one) only
when the sweeping line passes over an x coordinate of
some region of RDj for j = 1, 2. At such points, called
detection points, the algorithm updates the candidate
list and calls a detection routine to �nd which new
overlaps are introduced.

In order to scan systematically the set of detection
points, the algorithm sorts the elements in X according
to their �rst component as major and second compo-
nent as minor both in an increasing order to obtain
the sorted set ~X =< ~x1 , ~x2 ,..... ~x2t >, where each ~xi
is some element of X . The algorithm simulates the
sweeping line motion by checking at each successive ~xi
which region has become a candidate or stopped be-

Procedure SEARCH(key1, key2, reg, tree-id :
integer);

Begin

If tree-id = 1 then m = 2 else m = 1;
(� �nd the correct tree in which to search �)
If (key1 is larger than the maximum key in Bm or
key2 is smaller than the minimum key in Bm) then

return; (� no overlap �) (� Case I �)
Search for the largest key in Bm which does not
exceed key1, call that node init;
If (search unsuccessful) then let init to be the
leftmost node in Bm;
Perform in-order traversal of Bm from init until
a node last found for which TOPlast (the second
component of node last) � key2 or tree traversal
completed; (� Case II �)
For each node n visited from init to last

Add an edge (denoting an overlap relationship)
to the join graph connecting region reg to
REGn; (� Case III �)

End;

Figure 4: Procedure SEARCH in Rotem's algorithm

r1

r

r

r

r4

2

3

X

6r5 Px(r1)

Px

PxPx

Px

Px

(r4)

(r5)

(r2)

(r3)

(r6)

X

Figure 5: Two sets of rectangles and their projection
onto the X-axis

ing a candidate. This is done by checking the second
component of ~xi , if it is 0, the new element represents
a beginning of a new region which must now become
candidate; otherwise, it is the end of a region which
must now stop being a candidate. The identity of the
region and the region directory (RD1 or RD2) it comes
from, can be found from the last two components of ~xi .
The whole algorithms are shown in Figures 2, 3 and 4.

2.2 Brinkho� et al.'s Algorithm

In [2], Brinkho� et al. have proposed an approach
for improving spatial join which sorts the entries in a
node of the R-tree according to the spatial location
of the corresponding rectangles. Let us consider a se-
quence Rseq = < r1,...., rn > (or Sseq = < s1,....,
sn >) of n rectangles. A rectangle ri is given by its
lower left corner (ri.xl, ri.yl) and its upper right corner
(ri.xu, ri.yu). The algorithm uses Px(ri) and Py(ri) to
refer to the projection of ri onto the X- and Y -axis,
if ri.xl � ri+1.xl, 1� i < n. For example, a sorted se-

Procedure SortedIntersectionTest(Rseq, Sseq:
sequence of rectangle;

Var Output: sequence of pair of rectangle);
(� Rseq and Sseq are sorted; jRseqj = number
of rectangles in Rseq �)

Begin

Output := <>; i := 1; j := 1;
While (i � jRseqj) and (j � jSseqj) Do
Begin If (ri:xl < sj :xl) then

Begin

Call InternalLoop(ri, j, Sseq, Output);
i := i + 1;

End

Else

Begin

Call InternalLoop(sj , i, Rseq, Output);
j := j + 1;

End;

End;

End;

Figure 6: Procedure SortedIntersectionTest in
Brinkho� et al.'s algorithm

Procedure InternalLoop(t: rectangle; unmarked:
cardinal;
Sseq: sequence of rectangle; Var Output:
sequence of pair of rectangle);

Begin

k := unmarked;
While (k � jSseqj) and (sk:xl � t:xu) Do
Begin

If (t:yl < sk:yu) and (t:yu > sk:yl) then
Append (t,sk) to Output;

k := k + 1;
End;

End;

Figure 7: Procedure InternalLoop in Brinkho� et al.'s
algorithm

quence of 6 rectangles depicted in Figure 5 is < r1, r4,
r2, r5, r3, r6 >.

Plane sweep is a common techniques for computing
intersections. The basic idea is to move a line, the
so-called sweep-line, perpendicular to one of the axes,
e.g. the x-axis, from left to right. Given two sequences
of rectangles Rseq and Sseq, they exploit the plane-
sweep technique without the overhead of building up
any additional dynamic data structure. The formal
descriptions of the algorithm are shown in Figures 6
and 7. For example, in Figure 8, the sweep-line stops
at rectangles r1, s1, r2, s2 and r3. For each step, the
pairs of rectangles which are tested for intersection are
given on the right hand side of Figure 8.

s1

r1

2s

r

t = s3 : -

3
3s

X

Y

r2

sequence of intersection tests:

t = s1 : s1 <-> r1

t = r1 : r1 <-> s2

t = s2 : s2 <-> r3 , s2 <-> r2

t = r3 : r3 <-> s3

t = r2 : r2 <-> s3

Figure 8: An example for the sorted intersection test

4; 5; 9

4; 5; 6

a

g

2; 4; 7

w

5; 7; 3

y

Figure 9: A binary search tree for Figure 10-(b)

3. A CORRECTION TO ROTEM'S

OVERLAP DETECTION

ALGORITHM

Rotem's algorithm [12] is a well-known approach for
overlap detection, which is based on a new join index.
However, there are some errors in Rotem's algorithm,
which can result in some wrong answers. In this sec-
tion, we correct the errors in Rotem's algorithm.

Following the basic concept about the data structure
used in Rotem's algorithm as described in Section 2.1,
we now describe Rotem's algorithm [12] in more de-
tails. Assume that a region with region-id i from RD1

becomes candidate. Its bottom and top y coordinates
can be read from the entries Y1[i][0] and Y1[i][1], re-
spectively. In this way, the algorithm can maintain the
y coordinates of all regions which are currently candi-
date in a suitable data structure which will allow us to
add or delete such coordinates, and search for overlaps
between region i and current candidate regions from
RD2. The algorithm observes that such a region l 2
RD2 will overlap region i if conditions (I) or (II) hold:

(I) Y2[l][0] � Y1[i][0] � Y2[l][1];

(II) Y1[i][0] � Y2[l][0] � Y1[i][1].

A binary search tree B1 for RD1 based on bottom
coordinates as keys is suitable for this purpose as shown
in Figure 9. More speci�cally, each node s in this tree
contains three elements<BOTs; TOPs; REGs >. The
�rst element is the key of the node (in the binary search
tree) which is also the bottom coordinate of the region
REGs, and the second element identi�es the top coor-
dinate of that region. The third element identi�es the
region-id. A similar binary tree B2 is constructed for
candidate regions of RD2.

y

g a

w

2

4

5
a

w

g

y

(a)

(b) (c)
i

7

7

w

g

6 9

a
i

3

y

i

Figure 10: Three possible cases in overlap detection:
(a) Case I; (b) Case II; (c) Case III.

(X ,Y)l l

n

(X ,Y)uu

Y[i][0] (key1)

Y1[i][1] (key2)

i(reg)

B1

B2

n
TOP

BOT

n

Figure 11: Case I in overlap detection

For each new candidate region i from RD1, the algo-
rithm inserts the triple <Y1[i][0]; Y1[i][1]; i> into the
tree B1. Next, the following three cases (in which there
exist some errors) are considered in Rotem's algorithm:

Case I : Y1[i][1] is smaller than any key in B2 or
Y1[i][0] is bigger than any key in B2. The algorithm
denotes that in this case, no overlaps involving region i
are possible as shown in Figure 10-(a). However, based
on this test as presented in Procedure SEARCH shown
in Figure 4, for the example shown in Figure 11, it will
conclude that there is no overlap between nodes n and
reg, since it satis�es the condition "key1 (= Y1[i][0]) is
larger than the maximum key in B2," where the max-
imum key in B2 is Botn. (Note that the key of the
binary search tree is the bottom left y coordinate of
node n.) To avoid such a mistake, we should replace
this test with the condition "key1 (= Y1 [i][0]) is larger
than the maximum TOPn (i.e., the second component
of node n)."

Case II : A node w exists in B2 such that BOTw �
Y1[i][0] � TOPw. If such a node is found, we search
forward from that node in an increasing order of keys
(inorder traversal) until we reach the end of the tree or
a node y such that

BOTy � Y1[i][1] � TOPy.
All the regions whose region-id is found on nodes

visited by this traversal have an overlap with the region
i as shown in Figure 10-(b).

Case III : A node w (as described in Case II) does

i

(b)

B2

1, 3, w

init

6, 7, y

last

(2, 6)

(5, 4)

(6, 7)

(7, 3)

(4, 1)

(a)

(8, 5)

y

(c)

w

File 1

yw

i

2

1

File 2

Figure 12: A counterexample

not exist, i.e., Y1[i][0] is smaller than any key in B2.
Since we rule out the case of no overlaps (Case I), it
follows that i overlaps the region represented by the
leftmost node in B2. The regions which have an over-
lap with i can be found by an inorder traversal of B2,
starting from the leftmost node until some node a is
found where

BOTa � Y1[i][1] � TOPa,

i.e, the end of the tree is reached. Figure 10-(c)
shows such a case.

However, in Rotem's procedure SEARCH as pre-
sented in Figure 4, for Cases II and III, it only checks
whether there exists a node a (in tree B2) whose second
component (i.e., the upper right y coordinate denoted
as TOPa) is larger than Y1[i][1]. For Case II, it only
checks whether there exists a node b (in tree Bm) whose
�rst component (i.e., the bottom left y coordinate de-
noted as BOTb) is smaller than Y1[i][0]. Based on these
pseudo-codes, they can result in a wrong answer. Let's
see a counterexample. For the example shown in Fig-
ure 12, Rotem's procedure SEARCH will �nd init = w
and last = y, and conclude that there exist an overlap
relationship between regions i and w, and an overlap
relationship between regions i and y. This wrong de-
cision is caused by the following condition: when we
traversal inorder from node init and last, there may
exist nodes a and b on the same path in B2, such that

BOTb � TOPb � Y1[i][0] and

Y1[i][1] � BOTa � TOPa.

In this case, there should be no overlap relationship
between nodes a(b) and i. To rule out such a case,
we have to check each possible overlap case between
the incoming node reg and each one of those nodes n
on the path between node init to node last shown in
Figure 13. Figure 13-(a) means BOTn � key1 � TOPn,

key1

n

key2

reg

key1

key2

n

reg

key1

n
reg

(a)

(b)

(c)

file 1

file 2

key2

Figure 13: Three overlap cases: (a) BOTn � key1 �
TOPn; (b) BOTn � key2 � TOPn; (c) key1 � BOTn
� TOPn � key2.

Figure 13-(b) means BOTn � key2 � TOPn and Figure
13-(c) means key1 � BOTn � TOPn � key2.

The correct SEARCH algorithm for overlap detec-
tion is shown in Figure 14.

4. PERFORMANCE EVALUATION

4.1 Simulation Study

In our performance model, we make some assump-
tions. Each rectangles was displaced at random within
the given two-dimensional data space; i.e., the data
are uniform distribution. All databases used in this
performance evaluation are randomly generated sets of
rectangles with the overlap selectivity, where an over-
lap selectivity is de�ned as follows:

p =
the number of the data with overlap relationship

the total number of data (N)
,

where both given �les for the spatial join algorithms
have the same total number of data N. Moreover, the
bu�ers for join operations are in�nite large. There are
two major parameters that characterize such a geomet-
ric database: the number of data objects (the database
size), N, and the overlap selectivity p (0 � p � 1) [4].

In our simulation experiences, we �rst consider a
map with 10000x10000 pixels in which N rectangles
with a size between 5x5 and 25x25 pixels are uniformly
distribution, where N = 1000, 2000, 3000, 4000, 5000,
6000, 7000, 8000, 9000 and 10000. Based on such a
map A and a given overlap selectivity p, we create the
other map B in the following way, where p = 0.3, 0.4,

Procedure SEARCH(key1, key2, reg, tree-id :
integer);

Begin

If tree-id = 1 then m = 2 else m = 1;
If (key1 is larger than the maximum TOPn in
Bm or key2 is smaller than the minimum key in
Bm) then

return; (� no overlap �) (� Case I �)
Search for the largest key in Bm which does
not exceed key1, call that node init;
If (search unsuccessful) then let init to be
the leftmost node in Bm;
Perform inorder traversal of Bm from init
until a node last found for which TOPlast �key2 or
tree traversal completed;
For each node n visited from init to last
(� Case II �)

If (BOTn � key1 � TOPn) or
(BOTn � key2 � TOPn) or
(key1 � BOTn � TOPn � key2)then
(� Case III �)

Add an edge (denoting an overlap
relationship) to the join graph
connecting region reg to REGn;

End;

Figure 14: The correct version of Procedure SEARCH

0.5, 0.6, 0.7 and 0.8. For each rectangle t in map A, we
call a random function which returns a random number
w. If w � p, we create a rectangle s in map B such
that s \ t 6= ;; otherwise, we create a rectangle s in
map B such that s\ t = ;, where \ means the overlap
relationship. Therefore, there are totally 60 data �les
for map A and the related 60 data �les for map B.

In this simulation study, we collect the following
performance measures: (1) The total join time (in
terms of msec) to process the join operation.
(Note that here, we do not include the sorting time in
both algorithms.) (2) The total number of com-
parisons between these two input maps. For ex-
ample, in a nested join approach with an in�nite bu�er
for �les R and S, the total of comparisons is jRj � jSj,
where jRj is the size of �le R. (3) The number of
bu�ers. In Rotem's algorithm, we need bu�er to store
both the binary trees. In Brinkho� et al.'s algorithm,
we need bu�ers to store the rectangles in the plane-
sweep process.

4.2 Simulation Results

Tables 1 and 2 show the join processing time in
Rotem's and Brinkho� et al.'s algorithms, respec-
tively. From these tables, we observe that Brinkho� et
al.'s algorithm needs longer join processing time than
Rotem's algorithm. Tables 3 and 4 show the number

 p

 N 0.3 0.4 0.5 0.6 0.7 0.8

1000 15 17 16 16 11 16

2000 27 33 33 33 33 33

3000 60 55 66 60 60 66

4000 77 88 83 83 88 88

5000 99 99 110 104 116 110

6000 116 126 126 121 126 138

7000 137 138 143 143 149 159

8000 176 165 154 159 148 171

9000 181 176 176 182 193 175

10000 198 176 175 220 186 198

Table 1: The join processing time (msec) in Rotem's
algorithm

 p

 N 0.3 0.4 0.5 0.6 0.7 0.8

1000 17 22 22 22 22 22

2000 82 82 77 83 83 88

3000 159 154 159 159 165 159

4000 242 242 236 236 241 241

5000 335 335 335 341 335 340

6000 451 451 451 456 450 456

7000 510 599 599 610 599 604

8000 763 758 769 753 830 747

9000 967 928 1022 1022 994 977

10000 1252 1257 1263 1176 1225 1264

Table 2: The join processing time (msec) in Brinkho�
et al.'s algorithm

 p

 N

0.3 0.4 0.5 0.6 0.7 0.8

1000 2204 2293 2350 2461 2576 2738

2000 7069 7230 7567 7728 7970 8170

3000 13777 14184 14512 14784 15072 15221

4000 21933 22562 22882 23527 23822 24311

5000 31629 31872 32454 32932 33700 33790

6000 42222 42933 43323 43852 44553 44853

7000 53565 54860 55294 56057 56892 57361

8000 66625 67175 67804 69357 69775 71087

9000 80476 81176 82371 83391 84257 85462

10000 96016 96607 97944 99184 100341 103180

Table 3: The number of comparisons in Rotem's algo-
rithm

 p

 N
0.3 0.4 0.5 0.6 0.7 0.8

1000 2539 2600 2680 2786 2942 3129

2000 9415 9726 9980 10276 10436 10631

3000 20722 21199 21550 21728 22236 22024

4000 36659 37468 37709 38524 38456 39382

5000 57212 57539 58279 58054 59065 59542

6000 81850 82281 83050 83377 84073 84406

7000 110592 111764 113096 113225 113780 113880

8000 143767 145336 145713 147592 147692 148531

9000 181957 182860 183666 185674 185993 187285

10000 226047 225224 226583 228857 231379 232271

Table 4: The number of comparisons in Brinkho� et
al.'s algorithm

of comparisons in Rotem's and Brinkho� et al.'s al-
gorithms, respectively. From these tables, we observe
that Brinkho� et al.'s algorithm needs a larger num-
ber of comparison than Rotem's algorithm. Tables
5 and 6 show the number of bu�ers used in Rotem's
and Brinkho� et al.'s algorithms, respectively. From
these tables, we observe that Brinkho� et al.'s algo-
rithm needs a smaller number of bu�ers than Rotem's
algorithm.

Consequently, from our simulation study, we con-
clude that Brinkho� et al.'s algorithm needs longer
join processing time, larger number of comparisons and
a smaller number of bu�ers than Rotem's algorithm.
Moreover, both the algorithms need sorting process
�rst. For the index structure part, Rotem's algorithm
creates join index, while Brinkho� et al.'s algorithm is

 p

 N 0.3 0.4 0.5 0.6 0.7 0.8

1000 11 10 10 10 13 11

2000 15 15 17 18 17 16

3000 20 21 21 22 19 21

4000 24 25 25 26 28 25

5000 27 31 25 27 28 29

6000 33 30 33 31 37 33

7000 35 38 37 36 36 41

8000 38 40 43 38 39 45

9000 45 47 46 46 39 45

10000 49 47 45 47 49 51

Table 5: The number of bu�ers used in Rotem's algo-
rithm

 p

 N 0.3 0.4 0.5 0.6 0.7 0.8

1000 7 6 7 9 7 7

2000 10 11 13 12 12 11

3000 14 15 13 14 14 15

4000 17 19 17 19 17 20

5000 21 19 22 20 23 21

6000 26 23 24 23 26 22

7000 26 28 28 26 26 27

8000 27 29 29 29 27 29

9000 31 32 32 31 32 31

10000 34 36 33 35 38 34

Table 6: The number of bu�ers used in Brinkho� et
al.'s algorithm

based on R-tree.

5. CONCLUSION

In this paper, we have corrected the errors in
Rotem's overlap detection algorithm. Moreover, we
have studied the performance of Rotem's and Brinkho�
et al.'s algorithms for overlap detection by simulation.
From our simulation study, we have shown that that
Brinkho� et al.'s algorithm needs longer join processing
time, larger number of comparisons and a smaller num-
ber of bu�ers than Rotem's algorithm. How to extend
those overlap detection algorithms for other region re-
lationships, likemeet, disjoin, cover, contain and equal,
is the possible future research direction.

References

[1] E. Bertino and B. C. Ooi, "The Indispensability of
Dispensable Indexes," IEEE Trans. on Knowledge and
Data engineering, Vol. 11, No. 1, pp. 17-27, Jan./Feb.
1999.

[2] Thomas Brinkho�, Hans-Peter Kriegel and Bernhard
Seeger, "EÆcient Processing of Spatial Joins Using R-
Trees," in Proc. of ACM SIGMOD Int. Conf. on Man-
agement of Data, pp. 237-246, 1993.

[3] Thomas Brinkho�, Hans-Peter Kriegel, Ralf Schneider
and Bernhard Seeger, "Multi-Step Processing of Spa-
tial Joins," in Proc. of ACM SIGMOD Int. Conf. on
Management of Data, pp. 197-208, 1994.

[4] Oliver Gunther, "EÆcient Computation of Spatial
Joins," Proc. of Int. Conf. on Data Engineering, pp.
50-59, 1993.

[5] Erik G. Hoel and Hanan Samet, "Benchmarking Spa-
tial Join Operations with Spatial Output," Proc. of
VLDB Conf., pp. 606-618, 1995.

[6] Nick Koudas and Kenneth C. Sevcik, "Size Separation
Spatial Join." in Proc. of ACM SIGMOD Int. Conf.
on Management of Data. pp. 324-335, 1997.

[7] Ming-Ling Lo and Chinya V. Ravishanker, "The De-
sign and Implementation of Seeded Trees: An EÆcient
Method for Spatial Joins," IEEE Trans. on Knowledge
and Data Engineering, Vol. 10, No. 1, pp. 136-152,
Jan./Feb. 1998.

[8] Ming-Ling Lo and Chinya V. Ravishanker, "Spatial
Hash-Joins," in Proc. of ACM SIGMOD Int. Conf. on
Management of Data, pp. 247-258, 1996.

[9] Nikos Mamoulis and Dimitris Papadias, "Integration
of Spatial Join Algorithms for Processing Multiple In-
puts," Proc. of ACM SIGMOD'99, pp. 1-12, 1999.

[10] Jack Orenstein, "An Algorithm for Computing the
Overlay of K-Dimensional Spaces," in Advances in
Spatial Databases - 2nd Symp., SSD'91, pp. 381-400,
1991.

[11] Jignesh M. Patel and David J. DeWitt, "Partition
Based Spatial-Merge Join," in Proc. of ACM SIGMOD
Int. Conf. on Management of Data, pp. 259-270, 1996.

[12] Doron Rotem, "Spatial Join Indices," in Proc. of Int.
Conf. on Data Engineering, pp. 500-509, 1991.

[13] Kenneth C. Sevcik and Nikos Koudas, "Filter Trees for
Managing Spatial Data Over a Range of Size Granu-
larities," Proc. of VLDB Conf., pp. 16-27, 1996.

[14] S. Shekhar, S. Chawla, S. Ravada, A. Fetterer, X. Liu
and C. T. Lu, "Spatial Databases { Accomplishments
and Research Needs," IEEE Trans. on Knowledge and
Data Engineering, Vol. 11, No. 1, pp. 45-55, Jan./Feb.
1999.

[15] J. W. Song, K. Y. Whang, Y. K. Lee, M. J. Lee and S.
W. Kim, "Spatial Join Processing Using Corner Trans-
formation." IEEE Trans. on Knowledge and Data En-
gineering, Vol. 11, No. 4, pp. 688-695, July/Aug. 1999.

