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ABSTRACT

An analytic model is proposed to explore
performance of a concurrency control algorithm
(CCA) of access method. Three dominant factors
can indicate whether a CCA is better (or worse) than
another in a multi-user environment. These factors
reflect the methods for search and concurrency
control of a CCA. To make a criterion for evaluating
a CCA in term of these three factors, an analytic
model is derived to formularize each value of each
factor for the worst case. By the model, we can
evaluate the performance of each CCA and identify
which CCA has the best performance. To illustrate
the applicability of the model, four CCAs for R-trees
are used as examples to explain how to compute the
values of these three factors of a CCA through the
analytic model.
KEYWORDS: Performance evaluation, Analytic
model, Access method, Concurrency control

1. INTRODUCTION

The performance of a CCA is usually evaluated
based on throughput, response time, or both [1], [2],
[6], [7], [21], [23], [24]. However, these two metric
criteria can be obtained from either a practical or a
simulation database system and that will take much
time. Another quick method is using an analytic model
[12], [15], [24] and this paper is presented for this
purpose. Many factors in fact influence the response
time or throughput of a CCA. Some are related to the
access method, the underlying data structure, and the
protocols for locking/unlocking a data object. Among
them, three main factors have dominant influence in
the performance of a CCA, namely, the number of
accessed nodes, the number of locked nodes, and the
locked range [10]. Basically, these factors can be
measured through analyzing the properties of a CCA.
Therefore we can compute the values of the three
factors for each CCA and identify a CCA that has the

best performance.
To make a criterion in term of these three factors, we
propose an analytic model that can formularize each
value of each factor for a special access method that
uses a certain data structure and/or locking protocol.
Then we total the values of the three factors as a
standard value. This standard value is used for
comparison with other summation value of the three
factors of an evaluated CCA. If we want to select a
CCA that has the best performance from some
evaluated CCAs, we first compute the summation
value of the three factors for each CCA. Then each
difference between each summation value for each
CCA and the standard value created by the analytic
model is computed. Finally the CCA with the smallest
difference is identified. To illustrate the applicability of
the analytic model, two couples of proposed R-tree
[11] CCAs are selected as examples since the R-tree
family [3], [11], [20] are popular in many applications
[5], [19], [22]. Figure 1 shows an R-tree for
illustration. The first couple of CCA examples are
NK (proposed by Ng and Kameda [16]) and CHC
(proposed by Chen, Huang, and Chin [9]). Their
locking protocol is based on the technique of lock-
coupling [4]. The second couple of CCA examples
are KB (proposed by Kornacker and Banks [13])
and CC (proposed by Chen and Chin [8]) that use
the right-linking technique [14] as their locking
protocol1. As a result, CHC (CC) has better
performance than NK (KB) because the difference
between the values of the three factors for CHC (CC)
and the standard value is smaller than that for NK
(KB).

2. THREE FACTORS

The semantic definitions of the three factors are
described as follows. First, the number of accessed

                                                
1 The CCA [17] cannot be used since its insertion algorithm is
unavailable.



nodes (AN) indicates how many nodes are accessed
by an evaluated operation. An operation may take a
long time to access nodes if the value of AN is large.
Second, the number of locked nodes (LN) describes
the total number of nodes that have ever been locked
by an evaluated operation. The larger the value of LN,
the longer the waiting and locking time. Third, the
locked range (LR) represents the largest number of
nodes that were locked at the same time by an
evaluated operation. This factor reflects the
phenomenon of resource holding made by a
concurrent operation, and it influences the liquidity of
other concurrent operations. The larger the value of
LR, the lower the degree of concurrency. These three
factors are directly relevant to an access method and
the concurrent control protocol used by the access
method. In general, the smaller the values of these
factors of a CCA, the better the performance of the
CCA.
As the definitions of these factors stated, both AN,
LN are related to the response time. LR has an
influence on both the response time and throughput.
Therefore, these three factors can be used as basic
indicators to verify the performance of a CCA. An
analytic model is then derived for evaluating the
performance of a CCA. For illustration, Section 4.1
shows how to apply the the analytic model to identify
the desired CCA using the lock-coupling locking
protocol. Section 4.2 presents the same procedure to
identify the desired CCA using the right-linking
locking protocol.

3. ANALYSIS MODEL

The values of the three factors are analyzed and the
corresponding formula for each factor is derived for
the worst case. Different locking protocols produce
different values of the factors in a CCA. To be a
representative, two popular locking protocols: lock-
coupling [4] and right-linking [14] are selected. The
fundamental difference between lock-coupling and
right-linking is as follows. The technique of lock-
coupling is to release the lock on the parent node as
soon as the locking request of its child node was
granted by the lock manager. In this way, the child
node is guaranteed to be intact before visiting this
child. Contrarily, right-linking will first release the lock
on the parent node, and then lock the target child

node. This technique uses the right-link pointer to find
the correct node if the node-missing problem occurs.
Without loss of generality, there are three
assumptions in the R-tree as follows. First, the
maximum fanout of a node is M which indicates that a
node may have at most M children and at least m
children, where m ≥ M/2. Second, the height of the
R-tree is h. Third, the R-tree is leveled in an
ascending order from root to leaves; therefore, the
levels are numbered 0, 1, 2, ..., h-1. The analysis for
each methodical factor is in the following.

3.1 AN Factor
In a search operation with either lock-coupling or
right-linking, all the nodes in the R-tree will be visited
when the search range is large enough to cover all
data objects in the tree for the worst case. The value
of AN for such a search operation is the total number
of nodes in the R-tree. The total number of nodes can
be estimated by computing the average of the
maximum and the minimum of nodes. In the case of
maximum, each non-leaf node has M children. Since
the height of the R-tree is h, the total number, say,
N-max, of nodes in the R-tree can be derived
approximately as follows: N-max = 1 + M + M2 + M3

+ ... + Mh-1 = (Mh - 1) / (M - 1). In the case of
minimum, each non-leaf node has m children and the
root has only two children. The total number, say,
N-min, of nodes in the R-tree can be derived
approximately as follows: N-min = 1 + 2 + 2m + 2m2

+ ... + 2mh-2 = 1 + 2(mh-1 - 1) / (m - 1). Therefore, the
formula for computing the average value of AN is
(N-max+N-min) / 2 = [(Mh-1)/(M-1) + 1 + 2(mh-1-
1)/(m-1)] / 2 = 1/2 + (Mh-1)/[2(M-1)] + (mh-1-
1)/(m-1). In an update (insert/delete) operation with
either lock-coupling or right-linking, we only
descends along a path to a target leaf node. The value
of AN in an update operation can be described as
follows. To traverse the path, we need to access h
nodes. The ancestors of the target leaf node must be
accessed again if the leaf node is split and the split
propagates upward to the root. To handle the split
propagation, we must re-access h-1 nodes (the
ancestors of the leaf node in the path)2. Besides, there
are h new nodes to be created as twins of the nodes in
the path. Finally, a new root node must be created.

                                                
2For simplicity, we do not consider the extra accessed nodes
due to the node-missing problem.



Thus, the formula for the value of AN is h + (h - 1) +
h + 1 = 3h.
3.2 LN Factor
In a search operation with lock-coupling, each node
must be locked before being visited. All the nodes in
the R-tree must be locked at least once if the search
range is large enough to cover all data objects.
Therefore, the formula for the value of LN is the same
as that of AN in the search operation, namely, 1/2 +
(Mh-1) / 2(M-1) + (mh-1-1) / (m-1). Contrarily, a
search operation with right-linking has no need to
lock any node before visiting that node because the
right-link pointer can solve the node-missing problem.
Hence, the formula for the value of LN is 0.
In an update operation with lock-coupling, each node
should be locked before being visited when
descending along a path to a leaf node. The value of
LN is similar to that of AN in an update operation.
However, we have no need to lock the h new twins of
the nodes in the path we pass because the twins are
isolated when they are created. Thus, we need to lock
h nodes, re-lock h-1 nodes (ancestors of the target
leaf node), and lock the new root. The formula for the
value of LN is h+(h-1)+1 = 2h. As for an update
operation with right-linking, the answer is different to
2h. Except for the leaf node, we can omit locking h-
1 ancestors of the target leaf node when descending
alone a path to the leaf node. This is because we can
correctly reach the target leaf node by right-link
pointers, if necessary. However, we still need to lock
the ancestors of the leaf node if the leaf node is split
and the split propagates upward to the root.
Therefore, the formula for the value of LN is 1+(h-
1)+1 = h+1.

3.3 LR Factor
In a search operation with lock-coupling, LR has
different values according to the search method used
in the CCA. If depth-first search is used, we may
need to lock all the nodes along a path. The value of
LR may be h. If breadth-first search is used, the
situation of maximal locked nodes appears when a
certain node is being visited and all its children are
selected, locked to be visited later. The value of LR
may be M+1. In general, M is larger than h because h
is usually not more than 5 as stated in [18]. Thus, the
formula for the value of LR is defined to be M+1.
Obviously, the formula for the value of LR in a search

operation with right-linking is 0 since the search
operation does not lock any node when searching the
tree.
In an update operation with lock-coupling, the
formula for the value of LR is 2 and it occurs when the
child node is locked successfully while the parent
node is not released yet. As for an update operation
with right-linking, the formula for the value of LR is 1
because a node is locked only if it will be modified
immediately and is released right away after the
modification. To summarize the analysis, the formulas
of the methodical factors are shown in Tables 1 and 2.

TABLE 1
The Formulas of the Methodical Factors for CCA

 with Lock-Coupling in the Worst Case
AN LN LR

Search
Operation

1/2 + (Mh-
1)/[2(M-1)]

+ (mh-1-
1)/(m-1)

1/2 + (Mh-
1)/[2(M-1)]

+ (mh-1-
1)/(m-1)

M + 1

Update
Operation

3h 2h 2

TABLE 2
The Formulas of the Methodical Factors for CCA

with Right-Linking in the Worst Case
AN LN LR

Search
Operation

1/2 + (Mh-
1)/[2(M-1)]

+ (mh-1-
1)/(m-1)

0 0

Update
Operation

3h h + 1 1

4. ILLUSTRATIVE CCAS

Two couples of CCAs are selected as illustrative
examples to describe how to identify a well-
performance CCA through the analytic model. The
criterion for selection was based on the popularity of
techniques of concurrency control protocols. The first
couple of CCA examples, based on the popular
lock-coupling technique, are NK (proposed by Ng
and Kameda [16]) and CHC (proposed by Chen,
Huang, and Chin [9]). The second couple of CCA
examples, adopting the right-linking technique, are
KB (proposed by Kornacker and Banks [13]) and



CC (proposed by Chen and Chin [8]). Subsequently,
the search and update (insert/delete) operations
based on the corresponding algorithms in the four
CCAs are briefly described. The values of the three
factors for each CCA are estimated for the worst
case.

4.1 Lock-coupling CCA
For a search operation, NK or CHC usually lock-
couples along multi-paths, starting from the root to the
desired leaf nodes. They use the same search method,
the same data structure of tree, and the same locking
protocol. Therefore the values of the three factors of
both NK and CHC are the same as the standard ones
for the worst case, namely, 1/2 + (Mh-1)/2(M-1) +
(mh-1-1)/(m-1), 1/2 + (Mh-1)/2(M-1) + (mh-1-1)/(m-
1), and M+1.
For an update operation, NK or CHC first lock-
couples along a path downward to find an
appropriate leaf node and builds a scope3 for
reconstruction if necessary. After inserting (deleting)
the object into (from) the desired leaf node, the
update operation adjusts the MBRs (maximum
bounding rectangles) of the leaf node and its
ancestors in ascending order, reconstructing the tree if
overflows or underflows occur. Likewise, NK and
CHC use the same search method, the same data
structure, and the same locking protocol to update a
data object, but the process of overflow (underflow)
is different. The values of the three factors of NK are
larger than those values of CHC when overflows
(underflows) occur. The reason is because NK
accesses and locks concurrently several nodes for
overflow (underflow) processing. When an overflow
(underflow) occurs, NK always overlays three
adjacent levels of tree and exclusively locks relevant
nodes on these three levels. The involved nodes are
(1) the overflow (underflow) node itself, (2) its parent
node, and (3) all its child nodes. The values of AN,
LN, and LR of NK are increased as follows. There
are 1, (M+1)(h-2), M extra nodes must be accessed
for the overflow (underflow) processing of the leaf
node, non-leaf nodes, the root, respectively. The
value of AN is increased to 3h + 1 + (M+1)(h-2) + M
= 3h + (M+1)(h-1). The number of extra nodes to be
locked for the overflow (underflow) processing is the

                                                
3 In a path, a chain of nodes modified by an update operation
is called the scope of the update operation [21].

same as that of extra accessed nodes. Thus the value
of LN is also increased to 3h+(M+1)(h-1). As to the
value of LR, it is M+2 because the overflow
(underflow) node itself, the parent node, and all the
child nodes are all locked concurrently at a time.
As for CHC, it handles the overflow (underflow) by
exclusively locking only the overflow (underflow)
node and one of its child nodes. The number of
locked adjacent levels can be reduced from three to
two and only two nodes are involved at each
overflow (underflow) processing. Only h-1 extra
nodes must be accessed and locked for the overflow
(underflow) processing of the nodes in the path. The
value of AN is increased to 3h + h - 1. The value of
LN is also increased to 3h+h-1. As to the value of LR,
it is 2, equaling the standard value, because only two
nodes are involved at each overflow (underflow)
processing. Figure 2 gives an example about this
situation. Assume an object N is inserted into the leaf
node f. Node f is split into two nodes, f and j, due to
an overflow. The overflow propagates upward to
node b. When node b is being split, CHC only locks
nodes b and f, which overlay two adjacent levels of
tree, while NK locks all related nodes a, b, d, e, and
f, which overlay three adjacent levels of tree. Now
we compute the difference between the standard
summation value and the summation value of the three
factors for CHC and NK. The difference for NK is
[0+0+0] + [(M+1)(h-1)+(M+1)(h-1)+(M+2)] =
2(M+1)(h-1) + M + 2. The difference for CHC is
[0+0+0] + [(h-1)+(h-1)+0] = 2(h-1). As a result,
CHC has better performance than NK does since
2(M+1)(h-1) + M + 2 is larger than 2(h-1).

4.2 Right-linking CCA
A right-link CCA applies a right-link pointer to each
node of an R-tree. A right-link pointer points to its
right sibling as the Blink-tree does [14]. However, the
property of high key in Blink-trees does not exist in
R-trees because keys in a B-tree are ordered linearly,
while MBRs in R-trees have no such a property. To
detect that the right margin is reached when moving
from one node to its right siblings by right-link
pointers, KB uses a time-stamp-like data item: LSN
(logical sequence number) [13] while CC uses a
pointer called delimiter [8].
For a search operation, KB descends down the tree
along multiple paths from the root to the desired leaf



nodes and uses the right-link pointer to solve the
node-missing problem. The value of AN for KB is
equal to the standard value. However, the values of
LN and LR for KB are increased because KB locks
each visited node and more than one node may be
locked at a time when the node-missing problem
occurs. Such a locking method does not sufficiently
utilize the property of the right-linking technique to
achieve the goal of a lock-freedom method as
described in [14]. The value of LN is increased to 0 +
[1/2+(Mh-1)/2(M-1)+(mh-1-1)/(m-1)]. The value of
LR is increased to 0+1. Contrarily, CC does the
same searching operation as the Blink-tree does
without locking any node [14]. In this way, the values
of AN, LN and LR for CC are the same as the
standard values of the three factors. For example,
Figure 3 shows the location of the search window of a
search operation. The target objects are G and K.
KB's search operation accesses and locks at least 5
nodes, a, b, c, f, and h, if other nodes accessed and
locked during right-link navigation are not counted for
ease of illustration. Following the search operation
based on the search algorithm in CC, these 5 nodes
are only accessed without any requirement of locking
them.
For an update operation, KB performs the same way
that a lock-coupling CCA does without building a
scope. KB solves the node-missing problem by using
the right-link pointer like its search operation does.
We observe that the value of AN for KB is the same
as the standard value of AN, but the values of LN and
LR for KB are increased due to the following two
reasons. First, KB locks each visited node when
descending along a path as its search operation does.
This method also violates the goal of the lock-
freedom property supported by the right-linking
technique [14]. There are h-1 extra nodes to be
locked. The value of LN is increased to h + 1 + (h-
1). The value of LR is no changed. Second, KB may
lock three nodes simultaneously when ascending a
tree path if overflow and the node-missing problem
occur. Figure 4 shows an example of reconstructing
the tree after an object N is inserted into the leaf node
f. When the overflow of node f propagates to node b,
KB will lock node f and the twin nodes of b and k
concurrently. Therefore 2(h-1) extra nodes may be
locked to handle the overflow and the node-missing
problem when ascending the tree path. The value of

LN is increased to h + 1 + 2(h-1). The value of LR is
increased to 1+2. As for CC, the update operation
locks only the leaf node, which must be locked for
inserting (deleting) an object, when descending the
tree path as [14] does. Following the method stated in
[14], an update operation locks at most one node at a
time when ascending a tree path. Thus, the values of
the three factors of CC are the same as the standard
values of the three factors. Finally we compute the
difference between the standard summation value and
the summation value of the three factors of CC and
KB. The difference for KB is [0+(1/2+(Mh-1)/2(M-
1)+(mh-1-1)/(m-1))+1] + [0+((h-1)+2(h-1))+2] =
(Mh-1)/2(M-1) + (mh-1-1)/(m-1) + 3h + 1/2. The
difference for CC is [0+0+0] + [0+0+0] = 0.
Consequently, CC is better than KB in performance
because (Mh-1)/2(M-1) + (mh-1-1)/(m-1) + 3h + 1/2
is larger than 0.

5. CONCLUSION

As shown from the analyses of the four CCAs, the
analytic model provides deep explanations about the
performance of a CCA. This analytic model can
formulate the values of the three maim factors, AN,
LN, and LR, that influence the performance of CCAs
into a standard summation value. We can use the
standard summation value to evaluate some proposed
CCAs in order to identify which CCA has the best
performance. Therefore, an efficient CCA should be
designed with these three factors as critical clues. A
good designer should design a CCA that makes the
values of the three factors as small as possible.
Although we use R-trees as illustrative cases, the
definition of this analytic model is general and logical.
They can be used as guidelines and clues to design an
efficient CCA in the areas such as traditional or other
spatial access methods.
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Figure 1. Spatial data objects and the corresponding R-tree.
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Figure 2. An example for illustrating the overflow-handling.
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Figure 3. A search example for the lock-coupling CCA.
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Figure 4. An insertion example for reconstructing the tree.
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