
 1

CONCURRENT CONTROL OF PARTIAL MATCH QUERIES
FOR MULTIDISK MKH FILES

H. F. Lin* and C. Y. Chen**

* H. F. Lin is with the Institude of Information Engineering, Feng Chia University, Taichung, Taiwan
40724, R. O. C. E-mail: hflin@fcu.edu.tw.

** C. Y. Chen is with the Department of Electronics, Feng Chia University, Taichung, Taiwan 40724, R.
O. C. E-mail: chihchen@fcu.edu.tw.

ABSTRACT

 Since more and more queries may occur at the

same time for a large file system, in order to increase query

throughput per unit of time and further reduce average

query response time, in this paper, we propose a new

multidisk MKH file design scheme. It is seen that an

MKH file obtained from the proposed scheme does

guarantee certain partial match queries of different types to

be answered concurrently .

Keywords: multidisk file system, partial match query,

query response time, concurrent control, query throughput

1. Introduction

 Because files become more and more large in real

applications, the design of a large multiattribute file in a

multidisk system such that the average response time over

all possible queries is minimized is one of the most

concerned database research issues in recent

years[1-28,30,32-33].

 In an information retrieval system, a file is a

collection of records, a multiattribute file is a file whose

records are characterized by more than one attribute, and a

query is a specification of values of the attributes which is

used to retrieve the specified records from the file.

 The partial match query (PMQ) is the most

commonly used query type for multiattribute files. Let

there be a file with N attributes N21 ,,, ΑΑΑ Λ and N

corresponding domains N21 D,,D,D Λ . A PMQ is a

query retrieving all records of the form

(,a11 =Α ,aA 22 = ,Λ NN aA =), where

ia , ,Ni1 ≤≤ is either a key belonging to iD or is

unspecified (i.e., a don’t care condition), in which case it

is denoted by “ ∗ ”. For instance,)b,,a(q ∗= denotes

a PMQ to retrieve the records with the first attribute

a=Α1 , the third attribute b=Α 3 , and the second

attribute arbitrary from some three-attribute file. Let

1iii i1A,,A,A{Q
n21

≤= Λ ＜ 2i ＜ … ＜

bi },,,{}N N21 ΑΑΑ⊆≤ Λ . We say that a PMQ is of

type Q , denoted as Qq or ,q
b21 i,,i,i Λ if the set of

attributes specified in the query is equal to Q .

Accordingly, there are totally 2N different query types for

an N-attribute file.

 The multidisk file design problem generally

consists of first organizing a given set of records into a

fixed number of buckets in such a way that the average

number of buckets need to be examined, over all possible

queries, is minimized; and then allocating the buckets onto

a fixed number of independently accessible disks in such a

way that the disk access concurrence is maximized and

therefore the average response time over all possible

queries is minimized. It should be pointed out that both

the record organization problem and the bucket allocation

problem for PMQs have been shown to be NP-complete

problems [13,32-33]. Hence all design schemes that have

been proposed so far are all heuristics [1-28,30,32-33],

meaning that they guarantee some optimalities under some

 2

particular conditions while give near optomal or good

performances in the general case.

 However, among the so far proposed heuristic

record organization schemes [2,23,25-26,28,30], the

multiple key hashing (MKH) file concept suggested by

Rothnie and Lozano [30] has been shown to be very

effective for PMQs [3,7,11,12,25,30]. Hence, almost all

researches concerning the bucket allocation problem were

focused on MKH files [1,5,6,9-10,14-22,24,31]. By an

N-attribute MKH file with attributes N21 ,,, ΑΑΑ Λ

and corresponding domains N21 D,,D,D Λ , we mean an

N-attribute file in which each record (N21 a,,a,a Λ),

ia iD∈ for 1 Ni ≤≤ , is assigned into a bucket denoted

as [)a(h),a(h),a(h N21 Λ], where ih is a hashing

function from iD to the set {0,1,… , 1mi − } for

1 Ni ≤≤ and ∏
=

N

1i
im equals the total number of

available buckets. An MKH file constructed above is

often denoted as < N21 m,,m,m Λ >. For instance,

consider a simple case where N=2, D1=D2={a,b,c,d},

h1(x)=0 if x=a,b; 1 if x=c,d, h2(y)=0 if y= a,b; 1 if y=c; and

2 if y=d. Then we have a 2-attribute MKH file <2, 3>

consisting of the following six buckets: [0, 0]={(a, a), (a, b),

(b, a), (b, b)}, [0, 1]={(a, c), (b,c)}, [0, 2]={(a, d), (b, d) },

[1, 0]={(c, a), (c, b), (d, a), (d, b)}, [1, 1]={(c, c), (d, c)},

and [1, 2]={(c, d), (d, d)}. Assume that both overflow

and underflow problems are ignored. Then the buckets to

be examined by the PMQ q=(c, *) are [1, 0], [1, 1], and [1,

2].

 In the bucket allocation problem, it is assumed

that the m disks can be accessed independently. Also, it is

assumed that the retrieval of one bucket takes one unit of

time. Therefore, the time taken to respond to a query can

be simply measured in terms of the maximum number of

buckets needed to be accessed on a particular disk.

Accordingly, let R(q) denote the set of all qualifying

buckets for a query q. Then a lower bound to the

response time of q is  m/)q(R , where m is the total

number of available disks. A bucket allocation method

that minimizes the average response time over all possible

PMQs is called an optimal allocation method [19]. An

allocation method that minimizes the response time of each

PMQ is called a strictly optimal allocation method [19].

If, in addition, a strictly optimal allocation method also

assigns all buckets uniformly among the disks, it is called a

perfectly optimal allocation method [17].

 Although there has been a great progress on the

design of multidisk files for facilitating PMQs in the past

years [1-28,30,32-33]; however, in all the previously

suggested design schemes, queries can be answered only in

a sequential way; i.e., only one query can be processed at

one time. Since, in real applications, more and more

queries may occur at the same time for the same file, it is

urgently expected to concern the problem of answering

multiple queries for a file concurrently to increase query

throughput per unit of time in addition to reduce average

query response time. Unfortunately, to our knowledge, so

far the problem has not been addressed.

 Accordingly, in this paper, we are concerned with

the problem of multidisk MKH file design for facilitating

concurrent control of PMQs. Based upon the concept

given in [27] that any record clustering scheme (i.e.,

record organization scheme) often “biased” toward the

most common queries, and different queries often have

significantly different clustering requirements, hence no

single clustering scheme can satisfy each query; in this

paper, we propose a new multidisk MKH file design

scheme in which multiple copies of the file are used and

each of which is clustered differently. It is seen that a file

obtained by using the proposed scheme guarantees certain

queries of different types to be answered concurrently.

 The proposed scheme and some discussions are

given in Section 2. Section 3 contains a small example to

illustrate our proposed scheme. Finally, conclusions and

further research problems are presented in Section 4.

2. A New Redundant Multidisk MKH File
Design Scheme

 3

2.1 The Design Scheme

 Let there be a set of N-attribute records, a set of

NB buckets and m independently accessible disks.

Suppose the probability distribution of all PMQ types is

known. Then our file design scheme among m disks

which allows certain PMQs of different types to be

answered concurrently can be described as the following

algorithm.

Algorithm 2.1 : A Redundant Multidisk File Design

Scheme

Input: The values of NB,N and m .

Output: A multidisk file for which certain queries of

different types are allowed to be answered

concurrently.

Steps:1.Partition the set of all attributes

S ={ N21 ,,, ΑΑΑ Λ } into r disjoint subsets

r21 S,,S,S Λ according to the probability

distribution of query types.

 2. (1) Reproduce r copies of the given file.

 (2) Cluster the records of the i -th copy on

attributes in iS , ri1 ≤≤ , into an MKH

file.

 3. Determine, for each query type, a facile copy for

processing it .

 4.(1) Partition the set of disks W =

{ 1m10 Disk,,Disk,Disk −Λ } into t

disjoint subsets ,W1 ,W2 tW,Λ .

 (2) Determine, for each copy, a set of disks and

allocate all buckets of the copy onto the

determined disks.

 5. Maintain a table of size N2 to map each query

type to the copy that is used to process all queries

of the type. Also maintain another table of size

r to map each copy to the disks where the copy

is stored.

 After constructing a file system according to the

above stated scheme, it is easy to determine whether a set

of queries of different types for the file can be answered

concurrently or not. The determination can be described

as the following algorithm.

Algorithm 2.2 : The Determination of Concurrent Control

Input: A set of queries of different types for a file obtained

from Algorithm 2.1.

Output:〝1〞denoting that the queries can be concurrently

processed ; 〝0〞 denoting that the queries can not

be concurrently processed.

Steps:1. Determine, for each query, the copy that is used to

answer the query.

 2.Determine, for each copy obtained in Step 1, the

set of disks that are used to store this copy.

 3. If the copies obtained in Step 1 are pairwise

distinct and the sets of disks found in Step 2 are

pairwise disjoint then return〝1〞else return〝0〞.

2.2 Some Discussions

 Let Q be a nonempty subset of the set S of all

attributes. Observe that if a file is clustered on the

attributes in Q then there is only one bucket need to be

examined for each query of type Q . This suggests each

copy ought to be clustered on a set of attributes for which

the corresponding query type occurs more frequently.

Accordingly, the partition { r21 S,,S,S Λ } of S we

made in Step 1 of Algorithm 2.1 is the one for which

)q(P
r

1i
Si∑

=

 is the maximum, where)q(P
iS denotes the

occurrence probability of a query of type iS . Usually,

the probability distribution of query types for a file can be

known by collecting statistics on the various query types

when the file has been used for a certain period of time or,

by estimating the expected usage of the various query types

when the file is being designed.

 Since it has been shown in [16,27,31] that the

MMI(minimum marginal increase) method which

allocates some units to a set of variables, one at a time, in

the direction of minimum marginal direction is very

effectively for clustering a set of records into an MKH file

 4

for answering PMQs, in Step 2 of Algorithm 2.1, the MMI

method is suggested to be used for clustering each copy

into an optimal or good MKH file to reduce the number of

buckets qualified by each query. For the limitation of

space, we don’t give a detail introduction for the MMI

method here. The interested reader may consult

[16,27,31].

 The task to determine a facile copy to answer a

query in Step 3 of Algorithm2.1 is easy. It should only to

select the one which minimizes the number of buckets

qualified by the query. Suppose, after clustering each

copy iC on iS , we have iC =

<)i(
N

)i(
2

)i(
1 m,,m,m Λ > for 1≦ i≦ r and let q be a

query of type Q . Then the number of buckets qualified

by q can be computed as ∏
−∈Α QS

)i(
j

j

m ∏
−∈Α QS

)i(
j

j

m .

 In order to increase the degree of parallel

processing for different query types, the number of

partitions of all disks is suggested to be equal to the

number of partitions for all attributes. Further, in order to

reduce the average response time of all queries, the number

of disks in each partition for storing a copy file is

suggested to be proportional to the maximum number of

buckets qualified by the queries answered by the copy.

 Although so far there has no general method been

proposed for allocating an MKH file optimally on a

multidisk system; however, a number of heuristic methods

that guarantee optimal allocation performance in certain

conditions and provide near optimal or good performance

in general case have been suggested

[1,5-6,9-10,14-22,24,32]. For instance, consider an MKH

file F= < N21 m,,m,m Λ > and m disks. If m∈ {2,.3}

or mi mod m∈ {0, 1, m-1} for each Ni1 ≤≤ , the DM

(Disk Modulo) allocation method given by Du and

Sobolewski [19] guarantees strictly optimal performance

for F. If N21 m,,m,m Λ are pairwise relatively prime,

the RNS (Residue Number System) allocation method

suggested newly by Lin and Chen [24] guarantees perfectly

optimal performance for F. Accordingly, depending on

various conditions on the values of N, m and mi,

1 Ni ≤≤ , we can select a facile method for allocating

each copy onto the designate disks to facilitate all queries

processed by that copy.

 Finally, when the size of the table obtained in Step

5 of Algorithm 2.1 is too large, we may, instead of

maintaining the table, store r sets r21 U,,U,U Λ ,

where iU is the set of query types processed by the i -th

copy iC . And we can know the copy for a query q by

finding which set of { r21 U,,U,U Λ } containing q .

3. A Small Example

 In this section, a small example is given to

illustrate how certain queries of different types for a file

obtained from Algorithm 2.1 can be answered

concurrently.

 Let 3N = , 30NB = and 3m = . Suppose

the probability distribution of all PMQ types is known as

follows: ,23.0P1 = ,08.0P2 = ,12.0P3 =

,06.0P12 = ,11.0P13 = 31.0P23 = , and

09.0P123 = . We proceed to construct a file according to

Algorithm 2.1 as follows.

Step 1:Since 23P > 1P > 12P > … > 12P and

{2,3} ∪ {1}={1,2,3}, S={ 321 A,A,A }is

partitioned into }A{S 11 = and

2S = 32 A,A{ }

Step 2: Reproduce two copies of the file and cluster them

on 1S and 2S , respectively, into two MKH files

>=< 1,1,30C1 and >=< 6,5,1C2 by using

the MMI method.

Step 3: Determine, for each query type, a copy that

minimizes the number of qualified bucket as shown

in Table 3.1.

Step 4:Partition the set of disks

}Disk,Disk,Disk{W 210= into

}Disk{W 01 = and }Disk,Disk{W 212 =

 . Allocate C1 onto disks in 1W and 2C onto disks

in 2W , respectively, by the DM allocation

method [19].

 5

 Note that the use of the DM method is because it

has strictly optimal response time performance for

each PMQ in a two-disk system [19].

Step 5: The query-copy mapping table and copy –disk

mapping table are shown as follows.

Table 3.1

Query

types
Used copy

Number of

qualified

buckets

Response

time

1q 1C 1 1

2q 2C 6 3

3q 2C 5 3

12q 1C 1 1

13q 1C 1 1

23q 2C 1 1

123q 1C 1 1

Table 3.2

Copy Stored disks

1C 0D

2C 21 D,D

 Suppose, according to the probability distribution

of query types, there are ten queries of various types

212313323232311 q,q,q,q,q,q,q,q,q and 12q which

occur at the same time for the above obtained file.

Consider a query q in U1= }q,q,q,q{ 12313121 and a query

∗q in U2= }q,q,q{ 2332 . Since q and ∗q are

answered by different copies 1C and 2C , respectively,

which are stored on disjoint sets of

disks }Disk{ 0 and }Disk,Disk{ 21 , they can be

processed concurrently. Accordingly, from Table 3.1, we

have the total response time for all queries is 9 units of

time. Therefore, the query throughput is 10/9 ≈ 1.1 while

the average response time is 9/10. ≈ 0.9. Suppose the

above queries are answered by a single copy and strictly

optimal sequential processing system. The total response

time would be 14 and the query throughput and average

response time would be 10/14 ≈ 0.71 and 14/10 ≈ 1.4,

respectively. It is seen that our proposed method can

indeed increase query throughput per unit of time and

reduce average response time.

4. Conclusions

 In this paper, we have proposed a new multidisk

MKH file design scheme. It has been seen that our

method does guarantee that certain queries of different

types can be answered concurrently. Therefore, the query

throughput per unit of time is significantly increased.

Further, since redundant copies of the file are used, the

average response time over all possible queries is also

reduced. However, it is difficult to have a mathematical

mode for analyzing the performance on various related

parameters. On the other hand, only queries of different

types can be parallelly processed by the proposed method.

In order to maximize query throughput per unit of time, it

is challenging to develop more powerful design schemes

that would also guarantee concurrently control for various

queries of the same type. This remains to be our further

research problem.

REFERENCES

 [1] K. A. S. Abdel-Ghaffar and A. El. Abbadi, “Optimal Disk

Allocation for Partial Match Queries,” ACM Trans.

Database Systems, vol. 18, no. 1, pp. 132-156, 1993.

 [2] A. V. Aho and J. D. Ullman, “Optimal Partial-Match

Retrieval When Fields Are Independently Specified,” ACM

Trans. Database Systems, vol. 4, no. 2, pp. 168-179, 1979.

 [3] A. Bolour, “Optimality properties of Multiple Key Hashing

Functions,” J. Assoc. Computing, vol. 26, no. 2, pp. 196-210,

1979.

 [4] W. A. Burkhard, “Partial Match Hash Coding: Benefits of

Redundancy,” ACM Trans. Database Systems, vol. 4, no. 2,

pp. 228-239, 1979.

 [5] M. Y. Chan, “Multidisk File Design: An Analysis of Folding

 6

Buckets to Disks,” BIT, vol. 24, pp. 262-268, 1984.

 [6] M. Y. Chan, “A Note on Redundant Disk Allocation,” IPL,

vol. 20, pp. 121-123, 1985.

 [7] C. C. Chang, “Optimal Information Retrieval When Queries

Are Not Random,” Information Sciences, vol. 34, pp.

199-223, 1984.

 [8] C. C. Chang, “Application of Principal Component Analysis

to Multidisk Concurrent Accessing,” BIT, vol. 28, pp.

205-214, 1988.

 [9] C. C. Chang and C. Y. Chen, “Gray Code as a Declustering

Scheme for Concurrent Disk Retrieval,” Information Science

and Eng., vol. 13, no. 2, pp. 177-188, 1987.

[10] C. C. Chang and C. Y. Chen, “Symbolic Gray Code as a Data

Allocation Scheme for Two-disk Systems,” The Computer

J., U. K., vol. 35, no. 3, pp. 299-305, 1992.

[11] C. C. Chang, M. W. Du, and R. C. T. Lee, “Performance

Analysis of Cartesian Product Files and Random Files,”

IEEE Trans. Software Eng., vol. 10, no. 1, pp. 88-99, 1984.

[12] C. C. Chang, R. C. T. Lee, and H. C. Du, “Some Properties

of Cartesian Product Files,” Proc. ACM-SIGMOD Conf.,

pp. 157-168, 1980.

[13] C. C. Chang and J. C. Shieh, “On the Complexity of File

Allocation Problem,” Proc. Int’l Conf. Foundation of Data

Organization, Kyoto, Japan, pp. 113-115, May 1985.

[14] C. Y. Chen and H. F. Lin, “Optimality Criteria of the Disk

Modulo Allocation Method for Cartesian Product Files,”

BIT, vol. 31, pp. 566-575, 1991.

[15] C. Y. Chen, H. F. Lin, R. C. T. Lee and C. C. Chang,

“Redundant MKH Files Design among Multiple Disks for

Concurrent Partial Match Retrieval,” J. Systems and

software, vol. 35, pp. 199-207, 1996.

[16] C. Y. Chen, C. C. Chang and R.C.T. Lee, “Optimal MMI File

Systems for Orthogonal Range Retrieval,” Information

Systems, vol. 18, No. 1, PP. 37-54, 1993.

[17] C. Y. Chen, H. F. Lin, C. C. Chang and R. C. T. Lee,

“Optimal Bucket Allocation Design of K-ary MKH Files for

Partial Match Retrieval,” IEEE Trans. Knowledge and Data

Engineering, vol. 9, no. 1, pp. 148-159, 1997.

[18] H. C. Du, “Disk Allocation Methods for Binary Cartesian

Product Files,” BIT, vol. 26, pp. 138-147, 1986.

[19] H. C. Du and J. S. Sobolewski, “Disk Allocation for

Cartesian Product Files on Multiple Disk Systems,” ACM

Trans. Database Systems, vol. 7, no. 1, pp. 82-101, 1982.

[20] C. Faloutsos and D. Metaxas, “Disk Allocation Methods

Using Error Correcting Codes,” IEEE Trans. Computers,

vol. 40, no. 8, pp. 907-914, 1991.

[21] M. F. Fang, R. C. T. Lee, and C. C. Chang, “The Idea of

Declustering and Its Applications,” Proc. 12th Int’l Conf.

VLDB, Kyoto, Japan, pp. 181-188, Aug. 1986.

[22] M. H. Kim and S. Pramanik, “Optimal File Distribution for

partial Match Retrieval,” Proc. ACM-SIGMOD Conf., pp.

173-182, 1988.

[23] R. C. T. Lee and S. H. Tseng, “Multikey Sorting,” Policy

Analysis and Information Systems, vol. 3, no. 2,pp.1-20,

1979.

[24] H. F. Lin and C. Y. Chen,”An RNS Based Data Allocation

Method as a Perfectly Optimal Multiattribute Declustering

Scheme,” in submission to IEEE Int’l Conf. CLUSTER

2000.

[25] W. C. Lin, R. C. T. Lee, and H. C. Du, “Common Properties

of some Multi-Attribute File Systems,” IEEE Trans.

Software Eng., vol. 1, SE-5, no. 2, pp. 160-174, 1979.

[26] J. H. Liou and S.B. Yao, “Multi-Dimension Clustering for

Database Organizations,” Information Systems, vol. 2, no.

2,pp. 187-198, 1977.

[27] K. Ramamohanarao, J. Shepherd, and R. Sacks-Davis,

“Multi-Attribute Hashing with Multiple File Copies for

High Performance Partial-Match Retrieval,” BIT, vol. 30,

pp. 404-423, 1990.

[28] R. L. Rivest, “Partial-Match Retrieval Algorithms,” SIAM J.

Computing, vol. 14, no. 1, pp. 19-50, 1976.

[29] K. H. Rosen, Elementary Number Theory and Its

Applications, 3rd ed., Addison Wesley, 1993.

[30] J. B. Rothnie and T. Rozano, “Attribute Based File

Origanization in a paged Memory Environment,” CACM,

vol. 17, no. 2, pp. 63-69, 1974.

[31] J. L. Saaty, Optimization in Integers and Related Extremal

Problems, Mc-Graw-Hill, New York, 1970.

 7

[32] Y. Y. Sung, “Performance Analysis of Disk Allocation

Method for Cartesian Product Files,” IEEE Trans. Software

Eng., vol. 13,no. 9, pp. 1,018-1,026, 1987.

[33] C. Y. Tang, D. J. Buehrer, and R. C. T. Lee, “On the

Complexity of Some Multiattribute File Design Problems,”

Information Systems, vol.10, no. 1, pp.21-25, 1985.

