
 1

A Vowel-oriented Retrieval Scheme on Minimal Perfect Hashing Searching

Shiuh-Jeng, Wang∗ and Yau-Han Chang
*Department of Information Management

Central Police University
Taoyuan, Taiwan 333

E-mail: sjwang＠sun4.cpu.edu.tw

∗ whom correspondence

Abstract
Another hashing function for

letter-oriented keywords based vowel-letter
addressing mode is proposed in this paper. Our
proposal could process a large number of keywords
up to thousands in efficiency. A set of particular
keywords is mechanically transformed into a hashing
table in terms of the sets of offset and constant
number associated with the extracted letters within
the keywords. Having setup the hashing table, the
retrieval for a query keyword could be immediately
executed through a modular operation using a
key-pair comp rising of an extracted letter and a
specific number featured from the keyword. The
manipulated times in average to address an exact
keyword is notably less than that of [8] over the result
of experiments. Moreover, not only the total mount of
keywords processed in our scheme is more large than
some other literatures, but also the collisions
occurring among the keywords mapping are
reduced under our proposed algorithms.

 Keywords﹕Perfect Hashing function,
letter-oriented, collision, data retrieval

1. Introduction

A fast searching to a set of particular
keywords is an important issue in now electronic
data processing era. The most efficient technique
adopted to carry out the scenario is the hashing
function. A hashing function is an arithmetic
operation that directly maps the keywords into the
array indices associated with their storage space. In
this manner, the data searching could be quickly
executed. The applications of hashing are usually
seen on the keywords searching in database,
the common words filtering in natural language
and the keywords search engine on WWW web site
of Internet and etc. However, there will probably be a
situation happening that an available storage space is
occupied by more than two keywords if either the
storage space is not enough or the hashing function is
not well-defined. This is so-called a collision in
this case. To solve the problem of collisions among

the keywords mapping, a perfect hashing function in
which the ‘one-to-one’ mapping is performed from
the keyword set to the range of storage location is
proposed. In general, the perfect hashing function is
not difficult to find if the mapping storage space is
rather sufficient. Whereas, the loading factor in
performing perfect hashing might become small if
most spaces are remained to be empty. Therefore, a
kind of hashing, say minimal perfect hashing
function (MPHF), is more worth to be
explored to compact the utilization of memory space.
In MPHF the keywords are mapped into
its corresponding addresses with the both relations of
‘one-to-one’ and ‘onto’ without losing any memory
location. Consequently, the explorations of MPHF
thus become the keen research to realize the fast
searching on a variety of applications.

Recall the researches of MPHF, there have
been found in [1-7] to optimize the usage of storage
space. In Cichelli [2], the hashing function as
h(k)=length(k) + value(the first letter of k)
+value(the last letter of k) for a keyword k is
proposed. The method is executed by heuristic
manner and a table for the
associated letter-oriented is built. Nevertheless, this
work is not suitable for many non-trivial sets of keys.
The MPHF in [5] is then presented, in which the
hashing function is expressed as h(k)=C/(Dk+E)
mod n, where the parameters C,D and E
are computed by the designed algorithms and k is
obtained from the processed keywords set. Next,
Chang [1] proposed a method to translate the
associated keywords into a constant C based upon the
Chinese remainder theorem (CRT). The
letter-selection keyword considered in Chang’s
method is retrieved by performing only a modular
operation, but the retrieval of a keywords set is
limited in a smaller set. In 1992, some researchers
proposed multiple -function hashing schemes
defined as h(key)=(g(f1(key))+g(f2(key))) mod N [3]
and h(key)=(f0(key)+(g(f1(key))+g(f2(key))) mod N to
address an exact location for a query key, where f0, f1,
f2 are functions that map strings into integers, and g is
an integer function. Both the schemes they
proposed in [3,4] were to take into account the whole

 2

string of keyword as key feature in the design of
MPHF. In recent study, Wang et al. [8] proposed a
displacement addressing method on keywords
hashing. In their method, the keywords set need to be
divided into several subsets of adequate size to
remain its performance of decent hashing times when
the keywords set is larger. Accordingly, we develop a
new MPHF to address the keywords’ locations in
efficiency in this paper to avoid the set segmentations
with proper size beforehand. Furthermore, the
amount of processed keywords in our scheme is more
than that of [8] and the hashing times in average is
even lower than the execution in [8] over the
experiment show.
 The rest sections are organized as follows. Sec.
2 describes our efficient vowel-oriented MPHF. Then
an example of more keywords is
illustrated and a comparative experiment for
thousands of keywords is shown in Sec 3. Finally,
the conclusions are given in Sec. 4.

2. A Vowel-oriented Retrieval Scheme on MPHF
Searching

Without loss generality, each
keyword considered in our scheme is assumed to be a
non-trivial string of characters in English. The MPHF
explored in our scheme is a way that features a
key-pair of (EL, SN) in a keyword, where EL is a
letter extracted from the heading letter and SN is a
specific number computed from the distribution of
the vowel-letters and the last consonant-letter within
the keyword. These key-pairs, afterwards, are
grouped into a table, named group table, in lexical
ordering of the EL’s. The second components SN’s of
key-pairs in each group would be then gathered into
a representative constant. Meanwhile, the offset
number of EL in each group is required to be
recorded in order to efficiently utilize the storage
space. Eventually, an addressing hashing table is
thus constructed in terms of the sets of offset
and representative constant.

In the following, a simple example using
reserved words in PASCAL is introduced to illustrate
the group table generation during hashing process so
as to facilitate readers to understand our
proposed algorithms later. First of all, we define the
letter-to-number translation relations, Rv and Rc, for
the vowel-letter and consonant-letter in English,
respectively. The set of vowel-letters {A,E,I,O,U} is
then translated to a set of a sequence of numbers as
{ Rv (A)=0, Rv (E)=1, Rv (I)=2, Rv (O)=3, Rv (U)=4}.
Follow this principle, the set of consonant-letter
{B,C,… ,Y, Z} is also mapped to a numerical set of
{Rc(B)=2, Rc(C)=3, … Rc(Y)=25, Rc(Z)=26}, where
Rc(‘vowel-letter’) is undefined. Second, the key-pair
of (EL, SN) is characterized from each keyword.
Third, group the keywords set in lexical ordering of
the heading letter EL’s of the processed keywords.
Subsequently, consider a reserved word “PACKED”
in PASCAL, for instance, in which the letter-vowels

and the last consonant as ‘A’, ‘E’ and ‘D’ are
posted at locations 2, 5 and 6. For the three letters,
which could be encoded into an initial number IN=
205164 of resulting from the concatenation of the
three pairs of (L,R(L))s =(2,0), (5,1), (6,4), where L
denote the position number of placing a letter
numerated from left-to-right starting at 1 on the
processed keyword and R(•) is the letter-to-number
translation relation for L. Furthermore, in order
to conduct the specific number SN, a modulus of
prime 29 is chosen to gain SN=IN mod 29=205164
mod 29=18. A pair of (EL,SN)= (P,18)
associated with “PACKED” is therefore featured.
Similarly, we could obtain the other key-pairs such as
(B,23) for “BEGIN” and (E,3) for “END”.
Eventually, group all key-pairs (EL, SN)s
associated the reserved words in PASCAL in the
lexical ordering of the EL’s. The group table is then
shown as Table 1 below.

Observe the Table 1, we find out that the two
keywords, “THEN” and “TO” in ‘T’-head group
generate the same specific number SN=7, i.e.
they could not to be distinguished in a hashing
process. Therefore, a cyclic extraction process that
generates next key-pair of (EL, SN) for the
two collided words is needed to be launched until all
keywords could be completely recognized. In our
scheme, the next key-pairs of (EL,SN)s=(O,13),
(H,19) are capable of being featured by the rest
keywords “O” and “HEN”, respectively resulted from
removing the head-letter of the original words. The
two words collided to each other in ‘T’-head group in
the first hashing would be further subdivided into a
subgroup of ‘O’-head and a subgroup of
‘H’-head within the area of ‘T’-head group for next
hashing use. In conclusion, the work to thoroughly
distinguish all key-pairs for the reserved words in
PASCAL is done.

In order to further form the addressing hashing
table, the CRT is employed to generate the
representative constant planted inside the table for
later keyword retrieval use. The application for CRT
to generate the constant is now shown as follows:

Theorem 1 (Chinese remainder theorem)
Let r1,r2 ,… … .rn be integers. There exists an integer C
such that r1=C (mod p1), r2=C (mod p2), … , and rn
=C (mod pn), if pi and pj are relatively prime for all
i ≠ j.

Theorem 2 Let pi and pj be relatively prime number,
where i≠ j and 1≤ i,j ≤ n. Let p1<p2<… <pn. Then

∏∑
=

=
=

n

i
i

n

i ii piMbC
1

1
 mod)(be the smallest

positive integer such that

∏ ≠
=≡

ij jii pMpiC if) (mod and bi

satisfies the congruence) (mod1 iii pbM ≡ .

According to the Theorem 1 and 2 mentioned above,
the numbers pi’s are required to be relatively prime to

 3

each other so as to construct a constant satisfying
the congruence relations. Therefore, a prime
translation table shown in Table 2 is built to
guarantee the pis’ conditions in CRT.

To fit for our scheme, the expression of
) (mod i piC ≡ in Theorem 2 is required to be

adjusted as

))((mod iSNpiRC ≡

(1) As a result, the generation for RC is changed as
the form

∑ ∏∏
= =≠

=

n

i

n

i
i

ij
ji SNpiSNpbRC

1 1

)(mod)(,

(2)where))((mod1)(ii
ij

j SNpbSNp ≡•∏
≠

.

Come after the distinct key-pair (EL, SN)’s
featured from the particular keywords, the RC
is constructed by CRT mentioned above. Then an
addressing hashing table is built instead of the
particular set of keywords for retrieval use. On the
way of retrieval of a keyword, the MPHF is set as the
expression:
 Ht(EL,SN)=Ot(EL)+(RCt(EL) mod p(SN)),
(3)where the numbers Ot’s and RCt’s for t≥1 are key
parameters to address each keyword.

The details to generate the addressing hashing
table are summarized the following algorithms.

Algorithm 1: The basic group divisions that
associate with the heading letter HEL’s in the
particular keywords set.
Input: A set of particular keywords with the heading
letter HEL’s, say PKS.
Output: The sets of non-integers of offset Ot’s

and representative constant RCt ’s that
associate with HEL’s in a hashing t=1.

Step 1: Set the hashing time t=1, and group all the
input keywords denoted by G1

(t),
G2

(t),… Gi
(t),… , Gz

(t) with their heading letter
HELi in lexical ordering.

Step 2: Compute the initial number IN for each
processed keyword, where IN
= concatenating the pairs of (L,R(L)) for all
the vowel-letters and the
last consonant-letter within a
processed keyword. The components L’s
and R(L)’s have been defined on the
previous paragraph.

Step 3:Compute the specific number SN for the
processed keyword as SN=IN mod 29.

Step 4: Compare all the SN’s in the HELi-head group.
Mark the keywords in which the generating
key-pairs (ELi, SN)’s have the
same component SN, where ELi = HELi.

Step 5: Translate all the SN’s for each group to
their corresponding primes p(SN)’s by using
Table 2.

Step 6: Construct a representative constant for all
keywords for HELi-head group by (2),
where the formula in (1) would be
modified into two parts containing

))((mod 0)(SNpELRC i ≡ for the

p(SN)’s generated from marked keywords
and))((mod)(SNpiELRC i ≡ , i≥1 for

the unmark keywords with their
associated p(SN)’s.

Step 7: Count the total number of all unmark
keywords in HELi-head group.

Then compute Ot(ELi) as Ot(ELi)= ∑
−

=

1

1

)(
i

x

t
xG ,

where |G| denotes the cardinality of a group
set containing unmark keywords.

Step 8: Compute T(1)=∑
=

z

x
xG

1

)1(.

Step 9: Set t=t+1 and cut off the first letter HEL of
the marked keywords in each
HEL-head group to be a new
processed keywords set, say HEL-NPKS(t).

Step 10: Numerate the HEL-NPKS(t) sets as NPKS1
(t),

NPKS2
(t), … , NPKSs

(t), where s = the total
amount of the HEL-NPKS(t) sets.

Step 11: Output the sets containing the non-negative
integers offset O1(ELi)’s and RC1((ELi)’s.

Algorithm 2: The construction of an addressing
hashing table.
Input: The set HEL-NPKS(t) in the HEL-head group.
Output: The sets of non-integers of offset Ot’s

and representative constant RCt that
associate with the extracted letter EL
generated in hashing t≥2.

Step 1: Group the HEL-NPKS(t) with their head-letter
in lexical ordering denoted by SGHEL,1

(t),
SGHEL,2

(t),… , SGHEL,j
(t),… ,SGHEL,r

(t) for t≥2
and extract ELj from the head-letter of
processed keyword in SGHEL,j

(t).
Step2: Compute the initial number IN for

HEL-NPKS(t) in Step 2 of Algorithm 1.
Step 3: Compute the specific number SN as SN=IN

mod 29.
Step 4: Compare all SN’s in the ELj-head subgroup.

Mark the keywords in which the
associated key-pairs have with the same SN.

Step 5: Translate all SN’s to their corresponding
primes p(SN)’s using Table 2.

Step 6: Construct a representative constant for
ELj-head group in Step 6 of Algorithm 1.

Step 7: Let HEL-NPKS(t) be the ith set among the all
NPKS(t) sets, 1≤i≤s. Count the total number
of all unmark keywords in
ELj-head subgroup. Then O(ELj)t
is computed as

 4

O(ELj)t= ∑
−

=

1

1

)(
t

y

yT + ∑
−

=

1

)(
1

i

NPKS t
x

∑
=

r

y

t
yHELSG

1

)(
,

+ ∑
−

=

1

1

)(
,

j

y
NPKS

t
yHEL

i

SG
,

(4)where |SG| denotes the cardinality of a
subgroup of keywords set.

Step 8: Compute T(t)= ∑
=

s

NPKS t
x

)(
1

∑
=

r

y

t
yHELSG

1

)(
,

Step 9: Set t=t+1. Cut off the first letter jEL of the

marked keywords in the each
ELj-head subgroup to be a new
processed keywords HEL-NPKS(t).

Step 10: Numerate the HEL-NPKS(t) sets as NPKS1
(t),

NPKS2
(t), … , NPKSs

(t), where s = the total
amount of the HEL-NPKS(t) sets.

Step 11: Go to Step 1 to reiterate until all
HEL-NPKS(t)=∅ .

Step 12: Output Ot’s and RCt ’s associated with the
extracted letter ELj for t≥2.

After executing Algorithm 1 and 2, an
addressing hashing table is constructed in terms of
the sets of Ot’s and RCt ’s for for t≥1. Next, continue
to consider the reserved words in PASCAL again to
illustrate the setup of the addressing hashing table
according to the proposed algorithms. Inspect The
‘F’-head group of {FOR, FUNCTION, FILE}, for
instance, following the Algorithm 1 the key-pair of
(EL, SN)’s are first featured as {(F,2), (F,14),(F,18)}.
A representative constant RC1 is
then constructed based on the CRT satisfying
the congruence relations as

RC1 (F)= 1 (mod p(2)),
RC1 (F)= 2 (mod p(14)),
RC1 (F)= 3 mod (p(18)),

where p(•) is a prime translation shown in Table 2.
Consequently, RC1 (F)=1894 is summed up by using
(2). Besides, O1(F) is filled with 10 in the hashing
table since it is counted from the total number of
distinct key-pairs from the ‘A’-head group to
‘E’-head group. Then look at the marked keywords
“THEN” and “TO” in the first hashing. Due to the
(EL, SN)’s are the same, the second hashing process
is thus launched inside the ‘T’- head group.
According to the Algorithm 2, RC2(H)=108
and RC2(O)=42 are generated, respectively for the
rest keywords “HEN” and “O” when the first letter
‘T’ is cut off from the original keywords. Meanwhile,
the offset O2(H)=31 +0=31 and O2(O)=31+1=32 are
also counted out. Lastly, the addressing hashing for
reserved words in PASCAL is shown in the following
Table 3.
Having set the hashing table, the retrieval algorithm
to address a query keyword is presented as follows:

Algorithm 3: Addressing an input keyword
Input: A query keyword K with heading letter HEL
Output: The address of K translated from the

addressing hashing table
Step 1: Set the hashing time t=1.
Step 2: Feature a key-pair (EL, SN) in

HEL-head group for K by using
the Step 2 and 3 of the Algorithm 1,

 where the first component EL is the
head-letter of the processed keyword.
Step 3: Determine the computation as
 D=RCt(EL) mod p(SN),
 IF D≠0 THEN
 perform the Equation (3) in HEL-head group
and go to Step 4
 ELSE

set t=t+1 and cut off the first letter of the
processed keyword to be a new keyword, then go to
Step 2 to feature next key-pair (EL, SN).
Setp 4: Output the mapping address of K,
resulted from Ht(EL,SN).

3. Experiments and Discussions

In this Sec., we further show an example with
more keywords of VAL containing 59 reserved words
to demonstrate our approach.
Example 3.1. Consider the 59 reserved words in
VAL. Through the Algorithm 1 in our scheme, a
group table, Table 4, is generated as shown in the
following.

In Table 4, There two groups which exist the
same key-pairs have been found in ‘N’-head group
and ‘T’-head group, respectively. The RC1 (T) in
‘T’-letter group, for instance, is generated as the form
as

RC1 (T) =1 (mod p(4)),
RC1 (T) =0 (mod p(7)),
RC1 (T) = 0 (mod p(20)),

such that RC1 (T) =6035 and then to be stored into
the addressing hashing table. Examine the
marked keywords “TAG”, “THEN”, “TRUE”,
“TYPE” that need to be reprocessed by the Algorithm
2. Afterwards, the four marked keywords are further
subdivided into four subgroups, cited by
‘A’-head subgroup, ‘H’-head subgroup,
“R”-subgroup and “Y”-subgroup, inside the area of
‘T’-head group of hashing table. Subsequently, the
offsets and representative constants as O2(A)=55,
RC2(A)=80, O2 (H)=56, RC2(H)=38, O2(R)=57,
RC2(R)=68 and O2(Y)=58, RC2(Y)=38
associated with the four reprocessed keywords
are computed. Ultimately, the hashing
table construction is stopped on the second process
since all the 59 keywords have been come out 59
distinct key-pairs within the two hashing processes.
To address the validation of hashing table, consider
the keyword “TRUE” now, then the Algorithm 3 is
launched. The first key-pair (T,20) is featured, then
the O1(T) and RC1(T) are revealed to compute the
D=6035 mod p(20)=0. Clearly, it is necessary to enter
the second hashing process since D=0. Hence the
second key-pair (R,19) of ‘R’-head subgroup inside
the ‘T’-head group is obtained again. Compute D= 68

 5

mod p(19)=1, so that H2(R,19)=O2(R)+D=57+1=58
in (3) is evaluated , which is the address of “TRUE”.
The whole hashing table for reserved words in VAL
is shown as Table 5 below.

Compare to Wang et al.’s scheme [8] in which
the cyclic letter-oriented based on the displacement
addressing technique was proposed. Although a
rather large amount keywords could be processed in
their scheme, but the keywords need to divide an
adequate size of keywords set in order to reduce the
hashing times in querying a keyword. The reason is
that all the collision keywords in each hashing
process are gathered together to regenerate next
key-pairs and then refilled into the hashing table in
terms of non-negative integers. The manipulation for
the rehashed keywords is too complicated so that the
processed keywords are required to be
divided beforehand. While in our scheme, not only
the division for a larger keywords set is released, but
also the less hashing times is gained, as
observed from the result of the experiment show.
That is to say, thousands of keywords could be
directly translated into an addressing hashing table.
Without loss the generality, the stored integer in
hashing table is still large, but the most large integer
happening in our scheme is limited a value of

∏
=

28

0

)(
i

ip , where p(i) is derived from the Table 2. In

practice, these digit numbers were usually stored in
the form of character-string to avoid the truncation
errors in data storage and then
segmentalized systematically to achieve the
arithmetic operation. Accordingly, the implement of
the number-store hashing table is viable in real
applications. In our scheme, we further perform an
experiment in which there are two
thousands commonly used keywords in an ordinary
diction of English to illustrate the validity of our
algorithms. The experiment shown in Fig 1
apparently explains that the hashing times is
proportional to the set of keywords and the curve
plotted in our scheme is lower than the curve shown
in [8]. However, each keyword in our experiment is
uniformly distributed between 2 and 20 in length.
Having set up the hashing table, a simple arithmetic
modular operation is required when a keyword query
requests. Although the keywords set increase
dramatically, the hashing times are still kept growth
slowly, as observed from Fig. 1. There fore, our
scheme indeed speeds up the searching time of a
hashing keyword and improves the performance of
algorithms proposed in [8] on more large keywords
set.

4. Conclusions

In this paper, we have proposed a new
minimal perfect hashing function to implement the
fast letter-oriented string searching. A key-pair of

(EL,SN) is uniquely featured from each particular
keyword during the hashing processes. Eventually,
the hashing table in which two set of offsets
and representative constants are planted for
addressing the keyword is built to utilize in later
retrieval of a query keyword. The area of each
heading letter group is further divided into various
subgroups to accommodate the marked keywords
associated with the same the key-pair in the hashing
table construction. Afterwards, each
marked keyword appearing in the same heading letter
group is cyclically cut off the heading letter of the
rest keyword itself to gain a new key-pair for
rehashing use. Consequently, our
scheme could process a larger amount of keywords
up to thousands. It’s also apparently observed that the
hashing times executed in average is notably less
than that of [8] over the result of experiment. Besides,
the key-pair featured on each keyword in our scheme
is gained by the strategy of cyclic extraction for the
letter-oriented keyword so that the intractable
letter-selection on keyword in some other literatures
is avoided. In conclusion, a fast searching using
MPHF for a large set of keywords is efficiently
achieved in our scheme.

References
[1] C.C. Chang, “The study of an ordered minimal

perfect hashing scheme,” Comm. ACM. 27(4),
1984, 384-387.

[2] R.J. Cichelli, “Minimal perfect hash functions
made simple,” Comm. ACM. 23(1), 1980,
17-19.

[3] Z.J. Czech, G. Havas and B.S. Majewski, “An
optimal algorithm for generating minimal
perfect hash functions,” Information
Processing Letters 43(5), 1992, pp.257-264.

[4] E.A. Fox, L.S. Heath, Q.F. Chen and A.M.
Daoud, “Practical minimal perfect hash
functions for large databases,” Comm. ACM
35(1), 1992, pp. 105-121.

[5] G. Jaeschke, “reciprocal hashing: A method for
generating minimal perfect hashing
functions,” Comm. ACM 24(12), 1981, pp.
829-833.

[6] B. Jenkins, “Algorithm alley: Hash
functions,” Dr. Dobb’s J. 1997, pp.107-109, pp.
115-16.

[7] T.G. Lewis and C.R. Cook, “Hashing for
dynamic and static internal tables,” IEEE
Computers, 1988, pp. 45-46.

[8] S.J. Wang and J.K. Jan, “A displacement
addressing method for letter-oriented keys,”
The Journal of Systems and Software 46, 1999,
pp. 77-88.

 6

Table 1. Consider the group table of keyword set of PASCAL
reserved words

GroupKeywords IN SN Group Keywords IN SN

1(A) ARRAY 1040525512(O) OF 132621

 AND 103419 OR 1321823

2(B) BEGIN 21425142313(P) PACKED 20516418

3(C) CONST 235201 PROGRAM 336071319

 CASE 20413199 PROCEDURE3351749181827

4(D) DOWNTO 23635202014(R) REPEAT 2141506204

 DIV 2232221 RECOED 2143516417

 DO 23142315(S) SET 213205

5(E) END 1134316(T) *THEN *31414*7

 ELSE 114131924 *TO *23120*7

6(F) FOR 233182 TYPE 4131620

 FUNCTION 2462738141417(U) UNTIL 144251223

 FILE 22413121818(V) VAR 2031818

7(G) GOTO 2343320419(W) WITH 224815

8(I) IN 122145 WHILE 325141219

 IF 12268

The asterisk ‘*’ denotes the associated word collides with other words in
PASCAL

Table 2: The prime translation table

SNi p(SNi) SNi p(SNi) SNi p(SNi)

1 2 11 31 21 73

2 3 12 37 22 79

3 5 13 41 23 83

4 7 14 43 24 89

5 11 15 47 25 97

6 13 16 53 26 101

7 17 17 59 27 103

8 19 18 61 28 107

9 23 19 67 0 109

10 29 20 71
SNi : the specific number computed from a keyword

p(SNi): the corresponding prime of SN under the prime
translation mapping

Table 3. Address Hashing table for PASCAL
reserved words

EL(HEL)
Offset:
O1(EL) RC1(EL) EL

Offset:
O2(EL)RC1(EL)

A 0 672

B 2 84

C 3 25

D 5 28472

E 8 91

F 10 1894

G 13 8

I 14 78

K 18

L 16 44

M 17 155

N 18 4235

O 20 160065

P 22

Q 120

R 25 12

S 27 782

T 29 84 A

 H 32 108

 O 33 42

U 30 62

V 31 471

Table 4. A heading letter group table

for VAL reserved words
Group

(‘HEL’-head)
Translated

address
The key-pair

(EL,SN)’s
Keywords

1(A) 1 (A,1) ADDL
 2 (A,0) ARITHERROR
 3 (A,24) ABS
 4 (A,5) ARRAY
 11 (C,23) CONSTRUCT

4(D) 12 (D,23) DO
5(E) 13 (E,6) EXP
 14 (E,12) EMPTY
 15 (E,25) ELSEIF
 16 (E,24) ELSE
 17 (E,3) END
 18 (E,21) EVAL
 19 (E,19) ERROR

 7

6(F) 20 (F,17) FALSE
 21 (F,22) FORALL
 22 (F,14) FUNCTION
 23 (F,2) FOR

7(H) 24 (H,15) HIGH
8(I) 25 (I,8) IF
 26 (I,10) IS
 27 (I,20) ITER
 28 (I,24) INT
9(J) 29 (J,2) JOIN

10(L) 30 (L,7) LOW
 31 (L,5) LET

11(M) 32 (M,1) MAKE
 33 (M,13) MIN
 34 (M,24) MAX
 35 (M,14) MOD

36 (M,15) MISSELT

12(N)
54 *(N,11) *NEGOVER

55

*(N,11) *NIL

37

(N,27) NEGUNDER

38

(N,23) NULL

13(O)
39

(O,4) OTHERWISE

40

(O,21) ONEOF

14(P)
41

(P,16) POSOVER

42

(P,3) POSUNDER

15(R)
43

(R,2) REMH

44

(R,9) REPLACE

 45 (R,24) RETURNS

 46 (R,10) REML

 47 (R,14) REAL

 48 (R,12) RESULT

 49 (R,25) RECORD
 5 (A,4) ADDH
 6 (A,12) AT

2(B) 7 (B,23) BEGIN
 8 (B,14) BOOL
 9 (B,4) BOUND

3(C) 10 (C,26) CHAR

16(S) 50 (S,3) SIZE

17(T) 51 (T,4) TAGCASE

 56 *(T,7) *TAG

 57 *(T,7) *THEN

 58 *(T,20) *TRUE

 59 *(T,20) *TYPE

18(U) 52 (U,26) UNDEF
19(Z) 53 (Z,18) ZERODIVIDE

The marked “*” keywords denote that the SN is
the same in the ‘HEL’-head group, and then need

to rehashed at next run.

Table 5. A hashing table for VAL reserved words

EL
Offset:
O1(EL) RC1(EL) EL2 Offset:O2(EL) RC2(EL)

A 0 32195222

B 6 5979

C 9 2325

D 11 84

E 12 84918022126

F 19 335359

H 23 48

I 24 1086516

J 28 4

L 29 155

M 31 5092407
N 36 208165A
 E 53 44
 I 54 6

O 38 148

P 40 161

R 42 23978219005

S 49 6
A 55 80
H 56 38
R 57 68

T 50 6035

Z 58 38

U 51 102

Z 52 62

 8

0

1
.
2 1

.
4 1

.
5
6 1
.
7
4

2
.
2
4 2
.
3
9 2
.
5
5
2
.
8
8 3
.
0
5 3
.
2
7

0

1
.
2
6
5
1
.
3
8
9

1
.
4
1

1
.
4
8
21
.
7
2
9

1
.
7
8
3

1
.
8
5

1
.
8
1
1
.
9
0
4 2 2

.
1
4
3

2
.
1
6
2
.
2
2
.
3
0
4

2
.
3
1

2
.
3
1
9

2
.
3
5

2
.
3
9

2
.
4
3
5

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
3.8
4
4.2
4.4
4.6
4.8
5

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

keywords set

h
a
s
h
i
n
g

t
i
m
e
s

Wang et al.'s hashing scheme

Our hashing scheme

Fig.1. The experiment shows the hashing times in average between our scheme and Wang et al.’s scheme.

