FERENATAEREREREH

HBBLERAGZERESEDHEEML
An Environmental Prototype of Usage Modeling for Structured Software Systems

WenYan Chang(3830 % ¥, Jyh-Yeuan Hsiao (3% :2)*. WenKui Chang (7830 8), & BakJiun Tu (478 $5)**

*Dept. of Computer & Information Sciences, Tung Hai University, Taichung, Taiwan

**Dept. of Information Management, National Taichung Commercial Coilege, Taiwan

WE

W HREBRTEA R EAMRIN R R RS
WEE EREMRMmA 28 BRATHAHEAR
W FALHABLRBERAEK - ERFET HH
HEBILERA K R BT REEABAZZY -
PAAE $hAT (8 P BIER - BA 1B BRAR T R A IRAR -

BRI R EAENF FETLETFE
BIAESTEEIE » BT I H L5 — ey FARTE 4
Fo GRS F A PAR T - LU B F AT
FRAH HEHBE RGBT - RFARAGIHFE
AL RRES AR FZHLAGGE IR T
BP 15 B AR 16 A2 4R #1779 95 45 55+ IF T £ B4 F 69
I + B 5 I E R A LGS -
Mgk B8 EaE, St AR, RBERE

K, BT kbt
Abstract

Literatures demonstrate that statistical usage testing
has been a practical and effective tool jor software
quality certification. Before performing statistical
usage festing, a software usuge model has to be

established in advance. In this research, the building of

a Markov usage model is investigated jfor structured
software systems, which may be used for software
testing to estimate software reliability.

The presented prototype for usage modeling may not
only determine the intended usage distribution, but also
compute intended usage frequency for each node in the
model. Such information will aid software engineers
with the critical functions during system development or
in software testing in order to enhance product quality.
The most advantage of the proposed system lies the fact
it may build usage hierarchy rapidly. In case of fuzzy or
unclear requirements provided by customers, this
system is capable of adjusting the usage hierarchy
effortlessly by the built-in editing fucility. too.
Keywords: sofiware quality certification, statistical

usage testing, software usage model,
Markov chain

D-79

A. Introduction

Statistical usage testing [11] has been successfully
used for software quality certification. To perform the
usage testing, a Markov usage model [13,14] of
describing usage specifications has to be built first.
However, it is usually difficult to build completely a
Markov usage model, especially for a large and complex
system. This paper will explore the building of a
Markov usage model for the structured software system
by an environmental prototype.

By facilitating system developer, the proposed
prototype may formulate rapidly the framework of user’s
desired system structure, and then automatically record
usage distribution among the structure. In addition, the
suggested prototype possesses the capability of editing
structure. Thus, it may be applied to the developing
environment under which the requirements are usually
uncertain at the beginning.

B. Software Quality Certification

a) Statistical Usage Testing

Recent research on related literature justifies model-
based statistical usage testing [2,11,12,15] has been
justified and widely applied to software quality
certification [4,8,9].

Conceptually, statistical usage testing is a somewhat
functional testing in a statistical aspect. It focuses on the
external system behavior, not the internals of design and
implementation. It is a formal process with objectivity
and completeness in test cases selection

The rationale of statistical usage testing lies in the
fact that the test environment is statistically
representative of the real operating case, and the most
frequently used operations receive the most testing.
Thus, the failures occurred most frequently in practical
use will be found early.during the test cycle.

b) Sofiware Usage Model

A software usage model is the kernel part in a usage
testing process. Expectedly, the model is to characterize

TERE AR REH

all operational uses of a software system. An operational
use [6] is a skeleton for the intended use of the software
in an intended environment. Thus, all possible
operational uses of a sofiware system constitute a
population. If a usage sample of test cases is drawn
statistically from the usage population, performance on
this sample may then be analyzed for the evaluation of
software quality. In 1993, Whittaker suggests [13] that
software testing is rather suitable to be treated as a
stochastic process and, its usage be modeled by a finite
state, discrete parameter, time homogeneous, irreducible
Markov chain.

¢) Usage Modeling

Study of the process of building usage models from
system specifications has been an ongoing area of
research. For instance,. research [1,12] employs
mathematical programming technique to generate usage
models that satisfy a given set of software usage
constraints while optimizing desired test objectives.

Although a Markov model [14] is adequate to
manifest possible usage pattern, it is usually difficult to
specify completely all-possible transition states in a
Markov chain due to the complexity of a sofiware
system, in particular, for those of newly developed or
highly complicated systems.

This research investigates to construct an
organization chart as a system structure from software
specification. Through the established organization
chart, various users may manually simulate their future
intended use patterns. Consequently, expected usage
frequency may be computed immediately, and a
software usage model is then completely built and ready
for further quality certification.

C. System Mechanism

In essence, there are four principle parts included in
the Environmental Usage Modeler (EUM) system, as
shown in Fig. 1:

a) Organizer

To build initially a new system organization chart,
EUM will provide a tree structure with one root and two
children so that a user may easily establish his desired
chart. Alternatively, once a system organization chart
has been already built, the user loads the chart and then
modifies it as needed through the system mechanism.

Occasionally, a system organization chart may be too
complicate to be browsed as a whole on the screen.. By

choosing certain node to show only the sub-organization

chart, EUM will display its ancestor and all its children.
This feature will make user to view flexibly his chart
structure while he is editing the system organization

chart.

b) Usage Identifier

The main function of the Usage Identifier is to build
usage hierarchy chart. Like sub-organization chart, a
usage hierarchy chart is essentially a sub-chart of system
organization chart. Inside of a usage hierarchy chart,
however, it is not allowed to perform any node operation
such as addition, deletion, or modification. Instead,
usage distribution may be provided to some selected
nodes for tricking usage history.

¢) Usage Distribution Simulator
Actually usage distribution specifies one complete
path which denote possible usage occurred on these
connected nodes. For all nodes specified in the usage
distribution, EUM will automatically increment their -
pass frequency count if it is needed. Accordingly, usage
frequency may be collected immediately for all nodes.

d) Usage Profiler
To provide all usage distribution before running a
statistical usage testing, the Usage Profiler will collect
all frequency history, and maintain a usage profile that
is ready for building a usage model.

D. Data structure)
For data structure, an N-way tree structure is
employed in this research, as shown in the Fig. 2.

text child sibling parent
link link link

text: containing node information
child linke link to child node
sibling: link: link to sibling node

parent link: link to parent node

Fig. 2 Implemented tree structure
Furthermore, EUM is implemented by the JAVA
language [3,7]. Class declaration for a node in an N-way
tree is specified as in Fig.3.

E. Design issues ,
In designing the environmental system, there are
several considerations to be studied:

a) Chart layout
In general, the tree structure built by a user is not
necessary to be complete [5]. Besides, node operation

D-80

ERE/\AF R EE G

public class TreeNode

{ TreeNode sibling; //use to link its sibling

TreeNode child; //use to link its child

TreeNode parent; //use to link its parent

String key; //to denote the desired node

String note; //comment for the node

int level = 1; // use to save the level of this
node

int numberOfChildren=0;

int A // to denote node position

public TreeNode(String init_key , String init_note)
{ //constryctors

key=init_key;

note=init_note; } }

Fig. 3 Class declaration for a node

may be applied arbitrarily to any existing node.
Accordingly, the resultant tree structure will be
unbalanced and the chart layout may be in the ill
appearance. Some techniques are, thus, needed to
enhance demonstration of the various chart layouts. Two
different approaches are made use in the suggested
system.

1) Static mode

While constructing a usage structure, the number of
nodes may be increased so rapidly that the whole
structure cannot be displayed in one screen, since some
nodes may be beyond the screen boundary. With the
static mode, node size in a chart will be narrowed down
in order to show the complete snapshot of a structure
chart.

In performing the static mode, a screen is first split
horizontally into several bands, which represent
different levels. Meanwhile, each band is further sliced
vertically to many cells, like the chess lattice. Through
the adjusting mechanism for the primitive lattice, size of
all nodes may then be reflected with respect of the
number of nodes. :

On the other hand, static mode is capable of
enlarging any specified node for browsing the detailed
information, as the call graph used in Logiscope [10] by
VERILOG.

Advantages of using static mode lie from the
following facts:

(1) It provides clearly user the complete outlook of a
chart, and relationship between nodes as well,

(2) It gives high attention on nodes alone to simplify
chart presentation, without considering the scroll

D-81

for the chart.

2) Dynamic mode

As in static mode for the layout design, dynamic
mode also separates horizontally a full screen into
several levels. What is different, however, dynamic
mode keeps the size of each lattice fixed, whose space is
sufficient to contain any node. In addition, the disptayed
location of a node on the screen will be determined by
the corresponding index of the leaf node. Without
adjusting the size of a node, the screen may be scrolled
to browse further other parts of a tree organization as
the number of nodes is increasing.

b) Node location determination

Before getting the detailed information of an
interested node, its location should first be specified. On
determining the relative node position on a screen, two
different approaches are considered:

1) Iterative searching

When clicking at any point on the screen by a user,
this approach starts from the root node to check whether
the interested point is in the tree organization chart. If it
goes through to all terminal nodes, it implies that the
specified point does not match any node on the tree
structure.

2) Fitting searching

Following the leveling mechanism of chart layout,
this approach will first use the coordinate for the
clicking point and then map its Y-coordinate to the
corresponding level. Once the desired level is located,
its X- coordinate is further used to determine fitness of a
node on the tree at the same level.

For comparison, the first approach, in general, will
take a little more execution time, In particular, the worst
complexity of the first approach will be O(n) if it is a
skew tree. For the second approach, however, its worst
complexity will be less, even if all nodes are at the same
level. Accordingly, the second approach is employed in
this research for saving effort on node searching.

¢) Parent node deletion

If a parent node is deleted during chart modification,
in general there are two alternatives to handle its
children nodes:
1) To uplift children nodes

After deleting a parent node, its all children nodes
are uplified one level.
2) To delete children nodes

All children nodes are taken away followed the
parent node is deleted. '

In this research, the second alternative is made use of.
The rationale of this choice lies the observation that the
relationships between a node and its children nodes are

PEEFNFAEEEHES e

fully dependent. Hence, if a node is removed from an
organization chart in EUM, all its children nodes will
not necessarily exist any more. For instance, in any
software system with the editing function at its menu bar,
if the editing -function is removed for safety
consideration, then its accompanying subfunctions such
as copy, cul, paste, etc. are definitely meaningless and
have to be removed, too.

F. Illustration and discussion

a) lllustrated example
For demonstration, system organization chart is
constructed for an application by the proposed EUM. As
shown in Fig. 4, it includes 17 nodes, each of which is
labeled by a distinct identifier. It is noted that there is no
any correlation between the order of the labeled
identifier and building sequence for nodes.

e

Fig. 4 Complete system organization chart

Suppose that the system organization chart is too
complicate to display in one screen and we are
interested in the part tree consisting of Node-J, EUM
will present the sub-organization chart with its ancestor
nodes (A, B, E) and children nodes (P, Q), as illustrated
in Fig. 5.

On a usage hierarchy chart, a specified usage
distribution may be determined by scanning straightly a
desired usage path. As an illustration, as we go through
the nodes A->B->E->J->Q, a usage distribution is
established accordingly.

D-82

-1:4-,“;5-_7«.,‘:,54-1-,] 'x;Y.‘,.‘};
hbny

2

Fig. 5 Sub-organization chart after selecting J-node

Once all usage distributions are established, EUM
will perform computation of usage frequency, and
provide a resultant summary with a usage profile as
given in Table 1. The usage model for this illustrated
example is shown in Table 2.

A2 G5 M]3
BJ1I13|H]|]7[N|7
cC |7 1 (21012
D {2} J [3]|P |1
E|3 | KI[S5]Q]2
F |5 | L}2

Tablel.Usage profile for the illustrated example

b) Discussion

In this research, there are still the following problems
to be further investigated: '
1) Expansion on the number of nodes included

As stated, dynamic mode for displaying the chart
nodes over the screen is via fixing the node size. Thus, it
may happen difficulties for redesigning chart layout as
the number of the added nodes is bevond a limit.
2) Chart excess over the screen

Suppose that a node is inserted and its resultant node
position exceeds the screen range, the following
additional steps will be performed:

(1) To enlarge the size of all node objects,

(2) To scroll the considered chart in an adequate
position, ‘ .
(3) To redraw the whole organization chart for
better appearance.
Consequently, the processed time for chart layout will
take longer when node insertion is beyond the screen
boundary.

PEREN A EE A

B C D E F G

H 1

L M N O P

0.59 0.31 0.1

0.24 0.38 0.38

=TT OmmgoOwp

04 06

0.33 0.67

Table 2. Usage model for the illustrated example

G. Conclusion

It has been shown that statistical usage testing based
on a usage model provides a cost-effective effort over
software testing. Most importantly, the testing result
may support highly confident certification of software
reliability measures in operational use by statistical
inferences. In practice, usage modeling is the first task
to perform statistical usage testing.

This paper investigates the possibility of establishing
and modifying visually a Markov usage model for
structured software systems, For a considered software
system, the implemented modeling environment
establishes first an organization chart. Then it may
construct a usage path by specifying the practical usage
pattern over the organization chart and generate a usage
hierarchy chart immediately, which becomes a baseline
for usage modeling.

The instrument mechanism may be applied not only
at the specification stage, but also during design phase.
Based upon the accumulated usage frequency, software
designer may understand in advance which functions
will be used more frequently. So that he has to pay much
effort over these functions and the resultant software
product will be with much higher quality accordingly.

In order to make use of statistical usage testing more
practicable and applicable, further research will
continue in studying the proposed prototype for
extending the larger usage hierarchy chart to more
general cases.

. References
Chang, Wen-Kui, "A Quadratic Programming
Approach to Usage Modeling for Sofiware
Reliability Certification,” Tunghai Journal, Vol.38,
pp. 65-78, July 1997.

(1]

[2] Dyer, M., The Cleanroom Approach to Quality
Software Development, John Wiley & Sons, 1992.
[3] Flanagan, D., JAVA in a Nuishell, OReilly &

D-83

4]
3]

(6]

[7)
(8]

[9

[10]

(1]

(12]

[13]

(14]

[13]

Associates Inc., 1996.

Hamlet, D., “Are We Testing for True
Reliability?” IEEE Software, pp. 21-27, July 1992,
Horowitz, E., Sahni, S, Mehta, D., Fundamentals
of Data Structure in C++, W.H. Freeman and
Company, 1995.

Musa, 1.D., “Operational profiles in Software
Reliability Engineering,” IEEE Sofiware, March
1993, pp. 14-32,

Naughton, P., The J4VA Handbook, McGraw-Hill
Inc., 1996.

Poore, J.H. and H.D. Mills and D. Mutchler,
“Planning and Certifying Software System
Reliability,” IEEE Software, Jan. 1993, pp. 88-99.
Poore, J.H. and C.J. Trammell. Cleanroom
Software Engineering: A Reader. Blackwell
Publishers: Oxford, England, 1996.

VERILOG Inc., LOGISCOPE Reference Manual,
1993.8.

Walton, G. H., J. H. Poore and C. J. Trammell,
"Statistical Testing of Sofiware Based on a Usage
Model," Software Practice and Experience,
January 1995, vol. 25(1), pp. 97-108.

Walton, G.H., Optimizing Software Usage Models,
Ph.D. Dissertation, Department of Computer
Science, University of Tennessee, May 1995.
Whittaker, J. A. and J.H. Poore. "Markov Analysis
of Software Specifications," ACM Transactions on
Software Engineering and Methodology, January
1993, vol. 2(1), pp. 93-106.

Whittaker, J. A. and M. G. Thomason. "A Markov
Chain Model for Statistical Software Testing,"
IEEE Transactions on Software Engineering,
October 1994, 20 (10), pp. 812-824.

Wohin, C. and P. Runeson. "Certification of
Software Components," IEEE Transactions on
Software Engineering, June 1994, 20 (6), pp. 494-
499,

hEREN A EE T RS

U]

@

(&)

of

MNew structure Old structure

Build system Modify system
organization chart organization chart
Add | Del| Modify Add | Del | Modify
L
(Show) No

sub-organization chartj

Yes
Perform
chart decomposition

Build usage |
hierarchy chart

Determine
usage distribution

Compute

usage frequency

Yes
‘_—‘_(Continue ? J

No (1) Organizer
i Store usage model | (2) Usage Identifier
(3) Usage Distribution

@ Simulator

($)Usage Profiler

Fig. 1 Usage modeling process

D-84

