
SCHEMA INTEGRATION FOR OBJECT-RELATIONAL DATABASES WITH DATA VERIFICATION

Joseph Fong, Francis Pang, Anthony Fong+ and Daniel Wong

Computer Science Dept., City University of Hong Kong, Tat Chee Avenue, Hong Kong,
+Electronic Engineering Dept., City University of Hong Kong, Tat Chee Avenue, Hong Kong,

Email: {csjfong, csfpang, eefong, csdaniel}@cityu.edu.hk

Abstract

Relational Database System (RDB) has been
dominant in the industry for the last two decades.
Object Oriented database application (OODB) is
recognized as a post-relational technology that
can improve productivity. Hence, most
companies need to enhance their existing
relational database systems to support new
Object Oriented applications as and when
needed. The trend of the current industrial is to
implement an object-relational database system
(ORDB) using a relational engine with OO
features. This paper proposes a methodology to
integrate existing ORDB based on user
requirement. Data Exhaustive Search
Algorithms (DESA) are used to examine data
occurrence after data integration to provide
confirmation of the consistence and correctness
of the integrated schema. The result is a verified
methodology for schema integration for Object
Relational Database System.

Keywords: Schema Integration, Object
Relational Database, Data Exhaustive Search
Algorithms, and Verification

1. Introduction
This paper presents a schema integration
methodology to integrate Object Relational
Database Systems. The emergent of the Object-
Oriented (OO) paradigm in current software
industry prompts the application developers to
produce new database applications using OO
approach. In order to have coherence between
new OO database applications and the existing
database systems, leading database
manufacturers gradually modifying their
relational database system to support OO
features. It results in so called Object Relational
Database Management System (ORDBMS) in
the current market. Most of these ORDBMS are
power by a relational database engine with
extensions to OO interface and features [26].
When designing database using these systems,
user employ either relational view with some OO
features, or use OO view under a relational core.

The objective of this paper is to propose a
practitioner approach to integrate this kind of
ORDBMS. A simplified schema integration
technique [11, 15] is applied to the source
database schemas, either in relational or object-
oriented structure, based on user requirement.
For object schema, the semantic domains are
specified by user assertions. [15] After data
integration, the Data Exhaustive Search
Algorithms are used to verify the semantic
relationship between input schemas, the
integrated global schema and the user
requirement. The resultant is a verified schema
of the Object Relational Database System.

2. Related work
[1] described a conceptual basis for schema
integration in the sequence of pre-integration,
comparison, confirmation and integration. [2]
presented a methodology of reverse engineering
relational schema to extended entity relationship
model (EER). [24] and [18] discussed the
problem in the context of distributed and
heterogeneous databases. [20] showed how to
merge relationship in schema integration [23]
classified generic integration and translation
tasks based on their operation goals. [19] verified
the correctness of schema translation by use of
information capacity. [22] performed a survey in
distributed database systems. [5] provided a
comprehensive survey of various issues in
heterogeneous database integration, emphasized
on schema mapping and view integration for a
distributed multidatabase environment. [4] and
[3] described rules of data integration in legacy
systems and in federated database systems. [12,
10] developed a methodology for universal
database integration for new application, and
[17] verified the correctness of integrated
schema by use of information capacity. [15]
described conflict resolution and integration of
Object Schemas using corresponding assertions
among classes and attributes. The objective of
this paper is to integrate Object-Relational
database systems using an universal schema
integration rules and capture semantic
information of the result schema by an Object
Relational metadata.

We apply bottom-up approach to integrate
existing database schema into a global schema
[11], which will be evolved into a modified
global schema. We can integrate the existing
database schemas in pairs by discovering their
relationship as follows:
1. Compare the database schema,
2. Seek users’ confirmation.
3. Conflicts resolutions
4. Merge Entities/Classes and

Relationships/Associations
5. Verify the result schema by Data Exhaustive

Search Algorithms (DESA) the data
occurrences in the database

3. Schema Integration
Schema integration provides a global view of
multiple schemas. Our approach uses a bottom
up approach to integrate existing database into a
global database by pairs. The main objective is
to provide an integrated schema based on user
requirement with no loss of information. The
general algorithm is as follows:

Begin For each existing database do
 Begin If its conceptual schema does not exist
 then reconstruct its conceptual schema by
reverse engineering;
 For each pair of existing database schema
A and schema B do

begin
 Resolve semantic conflicts between

schema A and schema B;
 /*step1*/

 Merge classes/entities and
relationship relations between schema A and B;

 /*step2*/
end

 end
end

The input schemas must analysis in pairs and
resolve semantic conflicts in different areas.
Conflicts are resolved using well-define semantic
rules [11] with user supervisions.
Classes/Entities are merged by union or
abstractions like subtype, generalization,
aggregation and others. To demonstrate this
step, EER and OMT diagrams are used to
represent the conceptual schema of relational and
object oriented respectively. [7-9, 21]
We apply a method which is similar to the
assertion-based approach. We first define
corresponding assertions for DBA to specify the
semantic correspondences among component
object-oriented schemas as follows:

1) Class-equivalent – Two classes are class-
equivalent if they are semantically
equivalent. Their semantic domains are the
same. For example class Student in schema
A and class Student in schema B are class-
equivalent.

2) Class-correspondent – Two classes are
class-correspondent if they are semantically
related but not equivalent. Three kinds of
classes correspondences are identified:
class-containment, class-overlap and class-
disjointness. For example, class Woman and
class Person are class-containment. Class
Student and class Teacher are class-overlap.
Class Male and Class Female are class-
disjointness.

3) Attribute-equivalent – Two attributes are
attribute-equivalent if they are semantically
equivalent. For example, Student.name and
S-name are attribute equivalent.

4) Attribute-set-equivalent – Two attribute sets
are attribute-set-equivalent if they are
semantically equivalent. For example,
attribute set (City, Street, No) and attribute
Address are attribute-set-equivalent.

5) Attribute-set-class-equivalent – An attribute
set and a class are attribute-set-class-
equivalent if the attribute set and the class
are semantically equivalent. For example,
attribute set (blood-type) and Class Blood
are attribute-set-class-equivalent.

6) Attribute-class-set-equivalent – An attribute
and a set of classes are attribute-class-set-
equivalent if the attribute is semantically
equivalent to a division characteristic of a
class. For example, attribute Person.sex and
a set of classes (Male, Female) are attribute-
class-set-equivalent because the division
characteristic of class Person for the
subclasses is sex.

The details of each of the above steps are
demonstrated as follows. (Refer to [11] for
detail demonstration in relational schema and
[15] for Object schema)

Step 1. Identify and resolve the semantics
integrity conflicts among input schemas.
Input: Schema A and B with entities/classes and
attributes in conflicts to each other on semantics
Output: Integrated Schema Y after data
transformation

In dealing with definition related conflict like
inconsistency in keys or synonyms/homonyms in
names, user supervision is essential. For

instance, two entities may have some candidate
keys overlapping with each other but using
different key as the primary key. User has to
clarify in this kind of situation.

On the other hand, for conflicts arising from
structural differences. The goal here is to
capture as much information from the input
schemas as possible. The most conservative
approach is to capture the superset from the
schemas. For example, in dealing with
cardinality, the cardinality of the same
relationship relation in schema A is 1:1 while the
other one in Schema B is 1:n. Since a 1:n
relationship is the superset of a 1:1 relationship,
the 1:n cardinality is used for the integrated
relation. Another example is the participation
constraint. If the same relationship relation in
different schemas have different level of
participation constraints, partial participation
always override total participation in the
integrated schema. It is because total
participation is a subset of partial participation.

When dealing with data type and subtype
conflict, association/relationship relation is used
for resolution. To illustrate this, assume we have
an attribute Department of the entity School in
one schema and an entity Department in another
schema. To resolve the data type conflict, a 1:n
relationship is formed in the integrated schema to
link up these two entities.

Step 2. Merge classes/entities and
relationship relations
Input: existing schema A and B
Output: merged (integrated) schema X

Classes/Entities are merged using the union
operator if their domain is the same. Otherwise,
abstractions are used under careful user
supervision. By examining the same keys with
the same entity name in different database
schemas, we can merge the entities by union.
The integrated entity takes all the attributes from
both entities. Abstractions like generalization;
aggregation are used in merging entities/classes
in different input schemas when they fulfill the
semantic condition. The details are as follows
and summarized in Table 1.

Sub-step 2.1 Merge relationship
associations by capturing cardinality
IF (class(A1) = class (B1)) ∧ (class(A2) = class
(B2)) ∧ (cardinality(A1, A2) = 1:1) ∧

(cardinality(B1, B2) = 1:n)

THEN cardinality(A1, A2) ← 1:n;
ELSE IF (class(A1) = class(B1)) ∧ (class(A2) =
class(B2)) ∧ (cardinality(A1, A2) = 1:1
 or 1:n) ∧ (cardinality(B1, B2) = m:n)
 THEN cardinality(A1, A2) ← m:n;

Sub-step 2.2 Merge classes/entities by
Subtype Relationship
IF domain(A) ⊂ domain(B)
THEN begin Class(X1) ← Class(A)
 Class(X2) ← Class(B)
 Class(X1) isa Class(X2)
 End;

Sub-step 2.3 Merge entities/classes by
Generalization
IF ((domain(A) ∩ domain(B)) ≠ 0) ∧ ((I(A) ∩
I(B))=0)
THEN begin Class(X1) ← Class(A)
 Class(X2) ← Class(B)
 Domain(X) ← domain(A) ∩
domain(B)
 (I (X1) ∩ I(X2))=0
 end
ELSE IF ((domain(A) ∩ domain(B)) ≠ 0) ∧
((I(A) ∩ I(B)) ≠ 0)
 THEN begin Class(X1) ← Class(A)
 Class(X2) ← Class(B)
 domain(X) ← domain(A) ∩
domain(B)
 (I (X1) ∩ I(X2)) ≠ 0
 end;

Sub-step 2.4 Merge classes/entities by
Aggregation
Aggregation [25] is an abstraction in which a
relationship among objects is represented by a
higher level, aggregate object. In relational
terminology, aggregation consist of an aggregate
entity which is an association of a relationship
set with corresponding entities into a single
entity set. This aggregate entity is treated as a
single unit without concern for the details of its
internal structure. [6, 16] In the object-oriented
view, aggregation provides a convenient
mechanism for modeling the relationship
IS_PART_OF between objects. [14] By
extending the semantics of slot values, an
attribute stores either the reference of another
object or a copy of that object to make it a
composite value. An object becomes dependent
upon another if the dependent object is referred
by an attribute in the ‘parent’ object. When an
object is deleted, all dependent objects it related
to are also deleted. [13] Since the

implementations of this abstraction are different
in relational and OO model, the merging
procedure are different as well.

Relational View of Aggregation
IF relationship(B) →→ class(A) /* MVD →
means multi-value dependency */
THEN begin aggregation(X1) ← (class B1,
relationship B, class B2)
 class(X2) ← class(A)
 cardinality (X1, X2) ← 1:n
 end;

Object Oriented View of Aggregation

If Domain (Key(B1)) ⊂ Domain (Attr(A)) AND
Domain (Key(B2)) ⊂ Domain (Attr(A))

THEN begin aggregation(X1) ←
Class(A)

 Class(X2) ← Class(B1,
association, B2)

End;

Merge relationship associations by capturing cardinality
RDB
Case1 Schema A Schema B Transformed Schema A'

1 n
Entity x Entity yR

1 1
Entity x Entity yR ====> Entity x Entity yR

1 n

A1 A2 A1A1 A2A2

Case2
Schema A Schema B Transformed Schema A'

m n
Entity x Entity yR

1 1
Entity x Entity yR ====> Entity x Entity yR

m n

A1 A2 A1A1 A2A2

OODB
Case1

====>

Schema A

Attribute:
A1
A2

Classx

Attribute:
A3
A4

Classx

Schema B

Attribute:
A3
A4

Classx

Transformed Schema A'

Attribute:
A3
A4

Classx

Attribute:
A1
A2

Classx

Attribute:
A1
A2

Classx

Case2

====>

Schem a A

A ttribute:
A1
A2

Classx

A ttribute:
A3
A4

ClassY

Schem a B

A ttribute:
A3
A4

ClassxY

Transform ed Schem a A '

A ttribute:
A3
A4

C lassY

A ttribute:
A1
A2

C lass x

A ttribute:
A1
A2

Classx

Merge class/entities by subtype relationships
RDB S chem a X

X1 X2
S chem a A

A
S chem a B

B

==>E ntityx
E ntityy Entityx E ntityy

A1

A2 A3

A1 A1

A3A2

A1

OODB
Schema X

Schema A
A

Schema B
B

==>

X1

X2

A1
A2

Classx

A1
A3

Classy

A1
A3

Classx

A2

Classy

Merge classes/entities by generalization

RDB

Case 1

Case 2

E n t ity A E n t ity B

E n t ity X

E n t ity X 1 E n t ity X 2

O

O = O r o p e ra to r fo r
d is jo in t g e n e ra liz a tio n
fo r A t t r k o c c u rre n c e in

X 1 a n d X 2

= = = = = = >

S c h e m a A S c h e m a B
S c h e m a X

A

A = A n d o p e ra to r fo r
o ve r la p g e n e ra liz a t io n

= = = = = = >

S c h e m a A S c h e m a B S c h e m a X

A B X

A B

E n t ity A E n tity B
E n tity X

E n t ity
x 1

E n t ity X 2

A 3

A 4A 3

A 4

A 3

A 3 A 4

A 4

X 1 X 2

X 1

X

X 2

A k A k

A k

A kA k

A k

A k

A k

A k

A k

OODB

= = = = = = >

S c h e m a A S c h e m a B
S c h e m a X

A 3
A K

C la s s A

A 4
A K

C la s s B

= = = = = = >
S c h e m a A S c h e m a B

A 3
A K

C la s s A

A 4
A K

C la s s B

S c h e m a X

A B

A B A K

C la s s X

A 4

C la s s X 2

A 3

C la s s X 1

X

X 1 X 2

A K

C la s s X

A 4

C la s s X 2

A 3

C la s s X 1

X

X 1 X 2

Merge classes/entities by aggregation
RDB

X2

==>
1 nRA

Entity
B1

Entity
B2

R

Entity
X2

1 nEntity B1 RA
Entity B2Entity A

Schema B
B

Schema A
A

Schema X
X1

1

n

A1 A3A1

A3

A4

A4

A1 A3A1

A3

OODB Schem a X
Schem a A

A
Schem a B

B1

==>

Attribute:
A1
A2
A3

Class X

Attribute:
A2

C lass X1

A ttribute:
A3

C lass x2

A ttribute:
A1
A2
A3

Class A
Attribute:
A2

C lass B1
A ttribute:
A3

Class B2 X1

X2

B2

Table 1 Merge classes/entities and relationship relations

4. Verification of the global schema
To discover and verify the abstractions and data
semantics in the input schemas and integrated
schema. After data integration, data mining
algorithms are employed to “mine” these
abstractions from the physical data to verify the
correctness of the integrate schema based on the
user requirement. These algorithms are used to
provide verification and confirmation of schema
integration by making intelligent guesses from
the physical data in finding the abstractions. The
intention for using these algorithms assists the
user in finding the true data semantics from the
integrated schema. The result from the
algorithms may not agree with the user-
specification in some cases. For example, in
extracting the types of generalization (overlap or
disjoint) from the data, the physical data may
appear as disjoint at some particular database
states while the relationship is defined as overlap
by the user. In such case, if the user-
specification and the result from the algorithm
are not contradicted to each other, let user clarify
them. However, if the user-specification violate
the semantics in the physical data. It will be
overruled by the result from the algorithm.
Since the input schemas may be in relational
view or object oriented view, we provide the
algorithms for both views.

1) Verifying algorithm for cardinality
Relational View
Given relations and their primary keys R1,
PK(R1), ...RS, PK(RS) in a relational schema S,
we can locate its cardinality as:
Select PK(R) from R;
Let i = 1;
While not at end of instance(Pki(R)) do
Begin Select Count(FK(Rj)) = Ci from Rj where
FK(Rj)= Instance(Pki(R));
 Let i = i + 1;
End;
Let minimum(Rj) = minimum(C1,…Cn);
Let maximum(Rj) = maximum(C1,..Cn);
If Minimum(Rj) = 0
Then cardinality (R, Rj) = 1: (0, n)
Else If maximum (Rj) = 1
 Then cardinality (R, Rj) = 1: 1
 Else cardinaliy (R, Rj) = 1:n;
If cardinality (R, Rj) = n:1 and cardinality (R,
Rh) = n: 1
Then cardinaltiy (Rj, Rh) = m:n

Object Oriented View

Given two classes and their reference attributes
C1, Ref(C1), C2, Ref(C2) in an OO schema S, we
can locate its cardinality as:
For i = 1 to 2 do
begin
Select Ref(Ci), Ci from S;
max(i) = 1
While not end of instance(Ref(Ci)) do
 Begin If instance(Ref(Ci)) = NULL

then Minimun = True;
 Else If Ref(Ci) is a set reference
 max(i) = n;
 End;
End ;
If Minimum then
 Card(i) = (0, max(i));
Else
 Card(i) = max(i);
End;
End /* For loop */
Let Cardinality (C1, C2) = card(1) : card (2)

2) Verifying algorithm for disjoint
generalization

Relational View
Given a superclass relation and its primary key:
R, PK(R), referring to its subclass relations and
their primary key: Rj1, PK(Rj1), …Rjn, PK(Rjn),
their generalization can be located as:

If ISA-relationship (Rj1, R) = True and … and
ISA-relationship (Rjn, R) = True
Then Generalization (R, Rj1, …Rjn) := Disjoint;
For h := 1 to n do Select PK(Rjh) from Rjh;
For k := 1 to n do
 begin for m := 1 to n do
 begin if k < m
 then begin

 Select Count(*)=Allcount from PK(Rm)
where PK(Rm) is in PK(Rk);

 If Allcount > 0 then
 Begin
 Generalization (R, Rj1, …, Rjn) :=

Overlap;
 Exit;
 end;

 end;
 end;
end

Object Oriented View
Given a superclass and its OID: C, OID(C),
referring to its subclass and their OID: Cj1,
OID(Cj1), …Cjn, OID(Cjn), their generalization
can be located as:

If ISA-relationship (Cj1, C) = True and … and
ISA-relationship (Cjn, C) = True
Then Generalization (C, Cj1, …Cjn) := Disjoint;
For h := 1 to n do Select OID(Cjh) from Cjh;
For k := 1 to n do
 begin for m := 1 to n do

begin if k < m
 then begin

 Select Count(*)=Allcount from OID(Cm)
where OID(Cm) is in OID(Ck);

 If Allcount > 0
 then begin
 Generalization (C, Cj1, …, Cjn) :=

Overlap;
 Exit;
 end;
end;

 end;
end;

The above algorithm takes O(mn) times for two
subclasses with n-tuple and m-tuple respectively.
For vast amount of data, a more efficient
algorithm in identifying disjoint generalization is
desirable. One can sort the keys (for relational
view) or OID (for OO view) of the two sub-
relations/sub-classes using efficient sorting
algorithms like radix sort or merge sort. (Which
takes O(n) and O(n log n) respectively) Then
merge the two lists together and halt on
duplication of data. The halt in the merge
procedure indicate overlap generalization. In
worst case analysis, (i.e. overlap generalization)
the merge only takes O(max(m,n)) and the whole
process takes maximum O(max(m,n)) to
complete. (With Radix sort)

3) Verification algorithm for
aggregation

Relational View
Given an aggregate relation with its primary
keys, AR, PK(AR) referring to its component
relations with its foreign key, CR1,…,CRn,
FK(CR1),…,FK(CRn) from schema S, the
aggregation can be located as:
Let i = 1;
IF PK(AR) = FK(CRi)
 then Select FK(CRi) from S;
 While not at the end of instance(FK(CRi)) do

Begin Select Count(FK(CRi)) = Ci from
CRi where Instance(FK(CRi)) = NULL;

 End;
 Let i = i + 1;
 End;
For i = 1 to n
 IF Ci > 0

 THEN Aggregation (AR, CRi) = False;
 ELSE Aggregation (AR, CRi) = True;
 End;
Next;

Object Oriented View
Given an aggregate class with its reference
attribute pointers, AC, Ref1(AC),…,Refn(AC)
referring to its component classes with its OID,
CC1,…,CCn, OID(CC1),…, OID(CCn) from
schema S, the aggregation can be located as:
For i = 1 to n
 For j = 1 to n
 IF Refi(AC) = OID(CCj) THEN
 /* Reference attribute refer to the component
class */
 Select Refi(AC) from AC;
 While not at the end of
instance(Refi(AC)) do

Begin Select Count(Refi(AC)) = Cj
from AC where Instance(Refi(AC)) =
NULL;

 End;
 Break;
 End;
 Next;
Next;
For j = 1 to n
 IF Cj > 0
 THEN Aggregation (AR, CCj) = False;
 ELSE Aggregation (AR, CCj) = True;
 End;
Next;

5. CONCLUSION
This paper proposes a methodology to integrate
existing object-relational database schemas in
both relational and object oriented view to
facilities different application requirements. The
main objective of this methodology is to
integrate existing source schemas to fulfill user
requirement with no loss of information. A
bottom-up schema integration technique is used
to integrate existing object-relational schemas.
Data Exhaustive Search Algorithms are used to
verify the semantic correctness with regards to
the user requirement after data integration. The
next logical enhancement of this research is to
apply the algorithm to different OO modeling
standard like the ODMG and UML.

6. REFERENCE
[1] Batini, C., Lenzerini, M. and Navathe,
S. (1986) A Comparative Analysis of
Methodologies for Database System Integration,
ACM Computing Survey, Vol 18, No 4.

[2] Batini, C., Ceri, S. and Navathe,
S.(1992) Conceptual Database Design: An
Entity-Relationship Approach, The
Benjamin/Cummings Publishing Company, Inc,
p 227-243.
[3] Boudjlida, N. and Perrin, O. (1995) A
Formal Framework and a Procedural Approach
for Data Integration. In Proceedings of the
International Conference on Systems Integration,
ICSI'94, pages 476--485, São Paulo, Brazil,
August 1994. IEEE Comp. Society Press.
[4] Boudjlida, N., Bouneffa, M. A., and
Perrin, O. (1995) Data Integration in a Legacy-
Systems Migration Process. Research Report 95-
R-394, CRIN-UHP Nancy 1, January 1995
[5] Elmagarmid, A., Rusinkiewicz, M.,
Sheth, A. (1999) Management of Heterogeneous
and Autonomous Database Systems, Morgan
Kaufmann Publishers, Inc.
[6] Elmasri R. and Navathe, S.(2000)
Fundamentals of Database Systems,
Benjamin/Cummings pub.
[7] Fong, J,(1992) Methodology for schema
translation from hierarchical or network into
relational, Information and Software
Technology, p159-174, Vol 34, No 3, 1992.
[8] Fong, J. and Kwan I. (1994) A Re-
engineering Approach for Object-Oriented
Database Design Proceeding of First IFIP/SQI
International Conference on Software Quality
and Productivity pp139-147 Chapman and Hall
1994
[9] Fong, J. (1995) Mapping Extended
Entity Relationship Model to Object Modeling
Technique. SIGMOD Record 24(3): 18-22
(1995)
[10] Fong J. and Huang, S.M. (1997)
Information Systems Reenineering, Springer
1997
[11] Fong, J., Karlapalem, K., Li, Q., and
Kwan, I.,(1999) Methodology of Schema
Integration for New Database Applications: A
Practitioner’s Approach, Journal of Database
Management, Vol. 10, No. 1, pp. 3-18.
[12] Fong, J. and Huang, S. (1999b)
Architecture of a Universal Database: A Frame
Model Approach, International Journal of
Cooperative Information Systems, Vol. 8, No. 1,
pp.47-82.
[13] Gray, P.M.D., Kulkarni, K.G., and
Paton, N.W. (1992) Object-Oriented Databases:
A Semantic Data Model Approach, Prentice Hall
International, UK 1992
[14] Hughes, John G. (1991) Object-
Oriented Databases (1991) Prentice Hall
International, UK 1991

[15] Koh, J-L., Chen, Arbee (1993)
Integration of Heterogeneous Object Schemas,
on the Proceedings of 12th International
Conference on the ER Approach Arlington,
Texas USA, December 1993 Springer-Verlag
[16] Korth, H. and Silberschatz,
A.(1997)Database System Concepts (3rd
edition), McGraw-Hill.
[17] Kwan, I. and Fong, J.,(1999) Schema
integration methodology and its verification by
use of information capacity, Information
Systems, Vol 24, No 5, pp. 355-376.
[18] McLoed, D. and Heimbigner, D.(1980)
A Federated Architecture for Database Systems,
Proceedings of the AFIPS National Computer
Conference, vol 39, AFIPS Press, Arlington,
VA.
[19] R.J.Miller, Y.E.Ioannidis, and R.
Ramakrishnan (1993) The use of Information
capacity in schema integration and translation,
Proceedings of the 19th International Conference
on Very Large Data Base, Dublin, Ireland, pp.
120-133, Morgan Kaufmann.
[20] Navathe, S., Sashidhar, T., and Elmasri,
R. (1984) Relationship merging in schema
integration. Proceedings of the 10th International
Conference on Very Large DataBase, Singapore,
pp. 27-90, Morgan Kaufmann.
[21] Narasimhan, B., Navathe, S. and
Jayaraman, S. (1993) On Mapping ER and
Relational Models into OO Schemas,
Proceedings of the 12th International Conference
on the ER Approach, pp402-413, Springer-
Verlag
[22] Özsu, M. and Valduriez, P. (1991)
Principles of Distributed Database Systems,
Prentice-Hall International Edition, pp.428-430.
[23] Rosenthal, A. and Reiner, D., (1987)
Theoretically sound transformations for practical
database design. Proceedings of the International
Conference on the Entity-Relationship
Approach, New York, pp. 115-131.
[24] Sheth A. and Larson, J.(1990)Federated
Database Systems for Managing Distributed
Heterogeneous, and Autonomous Databases,
ACM Computing Survey, Vol 22, No 3.
[25] Smith, J.M., and Smith, D.C.P. (1977)
Database Abstractions: Aggregation and
Generalization, ACM Trans. On Database
Systems 2, No. 2
[26] UNISQL, (1999)
http://www.unisql.com/kcompub/new/en_sqlove
r.htm

	Joseph Fong, Francis Pang, Anthony Fong+ and Daniel Wong
	Computer Science Dept., City University of Hong Kong, Tat Chee Avenue, Hong Kong,
	A
	Abstract
	1.	Introduction
	Related work
	
	Sub-step 2.2 	Merge classes/entities by Subtype Relationship
	end;
	Sub-step 2.4 	Merge classes/entities by Aggregation

