Proceedings of International Conference
on Gomputer Architecture

An Efficient Data and Computation Decomposition Technique
for Nested Loops on NUMA Multiprocessor Systems”

Guan-Joe Lai, Haw-Jaw Lee and Cheng Chen
Institute of Computer Science and Information Engineering
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

Abstract

This paper presents an automatic computation/data
decomposition technique for nested loops on NUMA(Non-
Uniform Memory Access) systems. In NUMA systems,
the remote memory access time is longer than the local
one, and compuiation/data decomposition affects the
amount of remote accesses incurred by parallel process-
ing. Therefore, the system performance is dependent on
how to decompose computation/data onto parallel pro-
cessors. Here, we propose a modified locality algorithn
to improve the one in [6] for the case when the decompo-
sition is- not communication-free. In addition, a new
performance estimating method is also presented. The
whole method has been implemented on SUIF [8].
Experimental results demonstrate the superiority of our
proposed algorithm over that in previous literature.

1. Introduction

In NUMA systems, remote memory access time is
longer than local one. ~ Thus, minimizing communication
by increasing the data locality is important [2-7].
Mapping computation onto processors is called the
computation decomposition [2, 3, 6]; allocating data onto
memory modules is called the data decomposition [1, 5,
6]. Thus, finding the optimal decomposition of programs
for increasing parallelism and decreasing communication,
is a key issue in parallel compilers [6, &].

There are many related works about this problem
[1-3,6,7]. The computation/data decomposition problems
are NP-cofnplete [3-5]; therefore, only heuristics were
proposed. In this paper, a relax algorithm is proposed for
antomatically finding computation/data decomposition of
nested loops on NUMA systems. Qur work was based
on [6]. First, the program is divided into clusters. Each
cluster includes several loop nests. Loop nesis within
the same cluster have the same decomposition. Data re-
distribution only occurs between clusters. The proposed
algorithm decides computation/data decomposition in
clusters for loop nests and data respectively. It uses data
access references to form the data locality constraints as a

system of homogeneous linear equations. The system of
equations can be solved by using Gaussian elimination
method. When the solution is non-trivial, the decompo-
sition is communication-free. However, when there is
only the trivial solution, we relax the constraints in
decreasing order of the dependence weight. Afigr
relaxing constraints, the pipeline decomposition could be
found and the computation could be executed in pipeline
fashion. For the case that the decomposition is not
communication-free, a modified locality algorithm is
proposed to decompose program computation/data. We
first compute the dependence weight, and then relaxes the
data locality constraints according the dependence weight
in decreasing order for finding better pipeline execution.
We have implemented the proposed algorithm in SUTF [8]
and evaluated by our simulator [9]. Experimental resulis
demonsirate the superiority of our proposed algorithm
over that in previous literature.

The rest of this paper is organized as follows.
Section 2 describes the proposed algorithin. Section 3
shows simulation environment and experimental resulis.
Concluding remarks and future work are given finally.

2. The proposed algorithm

Our method finds the computation decomposition
for loop nests. In loop nests, the loop bounds and array
subscripts are affine functions of the loop indices and
symbolic constants. The number of loop iterations is
assumed to be much larger than the number of processors.
The data decomposition is for array structures. Only the
hyperplane partition is considered here, i.e., only the first-
order of the decomposition. Here, we'do not address the
issues such as block size and load balancing.

We have implemented the proposed algorithm in
SUIF, as shown in Fig. 1. The benchmarks are pre-
processed by SUIF front-end processor and the common
optimization analysis, then decomposed by our proposed
algorithm and transferred into parallel codes.

2.1 The comstruction of communication graphs
We use the communication graph CG = (V, E) to

* This paper is supported by National Science Council under contract number: NSC85-2221-E-009-037

160

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

model programs and represent the relation between the and a scalar offset f., such that the iteration
clusters. The nodes in the CG correspond to loop nests.

A cluster includes several loop nests. Two nodes in the
CG are connected by an edge if they reference the same
data array. For each node, there is a value associated p=C-i" + f, =cprip+ey¥ipteter®iy + f, (D

with it to' represent the execution time. We use the Definition 2 For each element a=(a,,a,,....,a,) of
computation/data decomposition and the number of times
this node executes to estimate the execution time. For
each edge, there is an associated value to represent the

i =(ij,yyeeers i) of the loop nest is mapped to virtual
processor p using:

an n-dimensional array, the data decomposition of the
array is defined by a vector d=(d,,d,,..... ,d,) and a

communication time needed to redistribute the data array. scalar offset f;, such that the data element
Estimating the execution/communication time (the values da=(a;,ay,....,a,) of the array is mapped to virtual
of node and edge) is done by a cost estimation function processor p using:

described in subsection 2.3. The critical path length of a
CG is the sum of the costs of the nodes and edges along
the critical path. The proposed algorithm is aimed to
label the arrays and the loop nests with decomposition
such that the critical path length of CG is minimal, i.e.,
the execution time of the program is shortest.

p=d-a" +f;=dxa;+dyxay+....+d,*a, + f; (2)
No communication will occur when the data is local to
the processor that references the data. This relation
between the computation and data decomposition can be
represented in Theorem 1.

Theorem 1 [6] Let (c,,f,) be the computation

| SUIF Froni-End Processing l

decomposition of loop nest i, and (3(,, fua) be the data
decomposition of array A. Let F, be an array access

T ‘
| Standard Uptimization Analysis I

:
.

Gl ¢ Gmmunication Graph b function for array A in loop nest i, then the reference is
FE e piony Toreach =3 local to the processor if and only if

; wmm — T | &y (Upigseensit) + fog =y Fylipsigsennens i) + fgy (3)
; =it S 2l B The relations between computation and data decom-
i I rVierge riodes which conrecied By position are caused by the data references. When the
¢ | lunexamined edge from priority list.| | iteration and the data elements accessed by the iteration
‘ Eggdingcum'entoptlmal § are mapped onio the same processor, all the memory
: [l lcomputation/data decomposition byl | : - accessed can be fulfilled in. the local memory.
t ||| modified locality algorithm Otherwise, there will be remote data access.
ol Fvaloating communication graph's) | | A trivial solution for Eq. (3) is &,=d, =0 and
: critical path length Sos = faa =0 if it maps all elements onto one processor.
b4) .
et nodes along the edge examined) | There is no communication if it executes the program
Pl Evaluating Giiticel path Tengih by sequentially. However, our target machine is MP
|| - the cost estifhation function and : system, so our objective is to find the non-trivial
5 updating the priority list : decomposition such that the total execution time is
| . : minimized for the whole program.
: When F, is affine function, i.c.,
4 Wlerge the nodes along this edge | Fy(ipsiggeensi)= [(prigyensit) +g N ()]

‘ : where fis a constant matrix and g is a constant vector, Eq.

(3) can be rewritten as :

' Parallel Code Generation | : Lo L \T
Figure 1 Flowchart of the proposed algorithm. €C1rCamnms@) Upslgoeees) + Sy)

=(d},dyperrsd))-(f Cipsigyn i) +)+ f
2.2 Modified locality algorithm (Exiond: ';l: (é (1'5 ? lﬁh fg])] Ja :
First we introduce the formal definitions of the xtending the Eq. (5), we get the followings:

computation and data decomposition [6]. Cr¥itCyRha e i+ f =
Definition 1 For each iteration 7 =(j,b,.....i,) of a (dp* f1y +do* fog ot dy* oy %1
loop nest of depth k, the computation decomposition of Hdp* fiz + dy* fogetd,® [0)4
the loop nest is defined by a vecior ¢ =(¢[,¢9,....,¢1) Fe e

Hdp* [+ dy* fopeetdy fy Fiy

161

Proceedings of International Conference
on Computer Architecture

+(dpe gy +dy* gy tdy* 8+ fy (6)
where f; is the (i,j)th element of matrix £ The index

i; 'is an independent variable in Eq. (6) which can take a
range of values between its lower and upper loop bounds.
The coefficients of i, on both sides of Eq. (6) should be

equal. This also applied to other index variables.
Hence, we get the set of homogeneous linear equations:
¢y = (dy* fiy + dy* foytdy*) =0
ey —(dy* fiz +dy* [rrFdy* f2) =0
e —(dy* fp + do* oot dy* g) =0
fo-dp*g +dyr g tdy*g)-fa=0 (1)
If there are more than .one data reference, the
system of homogeneous linear equation is constituted by
union of all the equations formed by all the data
references. We call the system of equations as data
locality constraints [6]. The system of homogeneous
linear equations can be solved by using the Gaussian
elimination method. There are two kinds of solution
when solving the system of equations. That is, non-
trivial solution and trivial solution.
Case I: non-trivial solution
The iteration and the data elements accessed are
mapped onto the same processor. Each processor ac-
cesses data from its local memory. It doesn’t need any
data from remote memories. There is no data communi-
cation between the processors. We can call this kind of
decomposition as communication-free decomposition.

Example 1 for (i=0; i<N; i++)
for(j= 0; j<N; j++)
Afil(j1= ALil-1]+ 10;
The reference A[i][j] causes the following constraint
equations:

ci_dl =0,
Cj""dz"—"o,
fc‘fd=0-

Similarly, the reference A[i][j-1] causes the
following constraint equations:
C;— d 17 0)
f ¢t dZ - f d= 0.

Unionizing this two system of constraint equations,
we get the following constraint equations:

ci_dl =0,

Cj—'dz =0,

fc'_fd:O’
fc+d2—fa'=0'

162

We get one solution by using the Gaussian
elimination method; the computation decomposition is

(c;,c.,-)=(],0), f.=0 and the data decomposition is

(d,,d>))=(10), f;=0. When we diswribute the loop
nest and the data using this decomposition, there will be
no communication between the processors, and the
processor can simultaneously execuie the program, as
shown in the following example.

forall (1= 0; i<N; it++)
for(j= 0; j<N; j++)
Afi]{j1= Afi]-1]+ 10;
Case II: trivial solution

This is the case that we must avoid. Let us see an
example that can only find the irivial solution.

Example 2 for (i=0;i<N;i++)
for(j= 0; j<N; j++)
A[i+11[3}= A[il(j-11+ A[i][j]+ 10;

There are three data references: A[i][jl, A[i][j-1]
and A[i+1][j]. Each reference forms a system of
constraint equations. Therefore we get the following
constraint equations:

¢;—d; =0,
C‘ i~ d 2= 0 N

fe=Fa=0,
Je—di—-1i=0,
fo+dy—fy=0.
We can only get the trivial solution by using the
Gaussian elimination method: (c,.,cj)=(0,0), f.=0

and (d,,d,)=(0,0), f;=0. This is because that two
data references Afi][jl] and A[i+1][j] have data
dependence, as well as another two data references A[i][j-
1] and A[i+1][j]. Thus, we should map all data and
program onto the same processor to guarantee no com-
munication. But this trivial solution is comtradict to our
objective. We should try to relax some constraints so
that we can find the non-trivial solution. The non-trivial
solution found in this case is not the same with case L
In case I, the non-trivial solution means communication-
free decomposition. In case II, the non-trivial solution
means pipeline decomposition. Although the data and
the program are disiributed onto each processor, each
processor not only accesses the data in its Jocal memory,
but also it needs the data from remote memories. There
will be some data communications and synchronization
between different processors during execution. We can
execute the program in pipeline fashion. It is better than
that mapping all data and program in one processor and
execute the program sequentially.

So the problem is that how to choose constraints to
relax for solving the Eq.(7), if only the trivial solution can
be found. Here we introduce the dependence weight to
decide the constraint relaxing order. Before the formal
definition of dependence weight, we see an'example first.
Example 3 for (i=0;i<N; i++)

for(j= 0; j<N; j++)
Afjllil= A[IG-11+ AD]G-21- Af- 1106

Considering the data reference’s constraints, we get
the following system of equations:

C i ad 1= 0 5
c;i—d, =0,
Je—Fa=0,
f; + dl - f d= 0 y
Je et dZ -/ d= 0,
Jfe+2d, - f7=0.

We can find the trivial solution only. The iteration
space of example 3 is shown in Fig. 2(A). The arrow
means data dependence. There are two references
related to the second dimension of array A, A[j][i-1] and
A[jlli-2]. Because A[j](i] is written for each iteration,
there are two different data dependence vectors in the i-
axis, as shown in Fig. 2(A). For the first dimension of
array A, there is only one reference, A[j-1][i], and there is
one data dependence vector in the j-axis. In the iteration
space, when two nodes have data dependence relation, it
will have data communication after distributing two
" nodes into two processors.

We combine two dependence vectors in the i-axis,
as shown in Fig. 2(B). The bold arrow means that it has
more communication volume than thin one. Therefore,
when we partition the iteration space in column-major,
there will be less communication volume than partition in
row-major way. Fig. 2(C) is the result of column-major
partition. The node in the gray part is disiributed into
the same processor, so all the data references in the i-axis
become local memory access. Now, the formal
definition of the dependence weight is iniroduced.

Defimition 3 The loop dependence weight is the degree

that a loop affects data locality constraints. It is related

to the number of loop-carried dependence with the loop

index and the number of execution times of the iteration.

The dependence weight can be defined as follows.
Dependence weight for loop L =

> the number of L's loop-carried dependence
the number of L'siteration

We can say that the dependence weight means the
volume of communication related to the loop. Thus, if
we keep the data locality constraints caused by the loop
with high dependence weight, and relax the consiraints
caused by the loop with small dependence weight first,

163

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

we can find the decomposition with less remote data
access. In NUMA system, remote memory access time
is longer than local one. We must decrease the number
of remote daia access to avoid the overhead of daia
communication. When we determine the partition, we
can count the number of data accesses, and group most of
the data accesses to the same part, let them all be
distributed to the same processor’s local memory.

Local
meimory access

Remote
memory access

(€)

Fig.2 Iteration space of example 3.

As shown in example 3, the loop i’s dependence
weight is 2*N, and the loop j’s dependence weight is N,
Then we choose to relax the loop with small dependence
weight first, i.e., the loop j. The relaxation ignores these
loop-carried dependencies by the following techniques.
For example, the reference A[j-1][i], the loop j’s
computation decomposition equation is c;j—d;=0. In

this equation, there can be only one computation
decomposition variable, ¢;, The others are all data
decomposition variables. In this case, only d, has a non-
zero coefficient, meaning that the first dimension of A is
bounded to the decomposition of loop j. Then, we look
at the last equation raised by this reference, which
involves the ofisets, namely f.+d,-f,=0. In the
equation, if the coefficient of d, is not zero, then the
relaxation changes it to zero. The effect of this is to,
while keeping the relation between the ¢; and d,
disengage the relation of d, with the offsets, which is
considered less important compared to other loops.

Proceedings of International Conference
on Computer Architecture

After all the relaxations have been done for the equations,
the new system of equations is the following:
¢j— d, =0,
Ci— d 2= 0 ’
f c ™ f d~ 0 H
f et dZ - f d= 0,
Je+2dy,—f4=0.
Solve it by using Gaussian elimination method, we
can find the decomposition shown in Fig. 2(C).
When the loop we relax is in the inner loop of-the
loop nests, we should perform loop interchange to move
it to the outer loop to reduce the communication overhead,

if loop interchange is legal. The steps of the modified
locality algorithm are described in the following.

Modified locality algorithm
Input: A cluster of loop nests
Output: Computation and data decomposition of each
loop nest and data in this cluster
Begin
Make a union of all the constraints of Eq. (7) for all data
references in the cluster.
Solve it by using the Gaussian elimination method.
If a non-trivial solution exists
{ finding a communication-free decomposition }
else
{ Compute the dependence weight of each loop in the
cluster.
While non-trivial solution still not found
{ relax the constraint according to the dependence
weight in decreasing order, and modify the system
of equations.
Resolve the system of equations by using the Gau-
ssian elimination method.
If a non-trivial solution exists
{ finding a pipeline decomposition }
3

h
End.

2.3 The cost estimation function

The cost estimation function is used to determine
the priority in the proposed algorithm. In the following,
the symbols used in the cost estimation function are
iniroduced at first.

T: The total data access time.

T,: The local data access time of one data element.

T,: The remote data access time of one data element.

In the following, we first consider the 2-
dimensional array case and then the N-dimensional array.
(1) The 2-dimensional array case

Suppose there is a NxN 2-dimensional array A. B,

164

and B, are the block size of the first and second
dimension of array A respectively. We can classify the
decomposition into the following four cases.
Case 1: The data accessed by the computation decom-
position is the same as the data decomposition, and. the
data dependence is within the partition, as shown in Fig. 3.
This is the case of communication-free decomposi-
tion. Each processor can access the data needed in iis
local memory. So the total data access time can be
represented in the following:
T=N*T,*B,

(A-1)

& S

a 4

a
(B). The data decomposition

2
(A).The data decomposition accessed
by the computation decomposition

Figure 3.

Case ‘2: The data accessed by the computation
decomposition is the same as the data decomposition, and
the data dependence crosses partitions, as shown in Fig. 4.

i

B,

E: 1) a

b

i
(A).The data decomposition accessed
by the computation decomposition

Figure 4.

~f
2

(B). The data decomposition

The processor can access most of the data needed in
its local memory. But the data dependencies are cross
boundary between two of neighboring partitions, and
each processor needs to access the data in the remote
memory.. The system executes the program and
transfers the data in pipeline, so we can represent the total
data access time in the following form:

T =(B *N*T, +N*T,)+(—g/——1)*(B] $B,*T; + By *Tr)
1
(A-2)

Here, we divide the data communication into %
1

pipelines, the execution time of each pipeline is
(B,*N*T,+N*T,). The block size of each pipeline

stage is B, *B,, each takes communication time
(By*By*T) + By *Tr).
Case 3: The data accessed by the computation decom-
position is not the same as the data decomposition; the
data dependence is within a partition, as shown in Fig. 5.
Each processor can access only B, *B, daia
elements in its local memory, most of the
(B,*N — B, *B,) elements need to access in the remote
memory. So the total data access time can be
represented in the following:
T=B*B*T)+(B,*N—B,;*B,)*Tr

A B2 3

(A-3)

& a

N a
(A).The data decomposition accessed
by the computation decomposition

Figure 5.

Case 4: The data accessed by the computation decom-
position is not the same as the data decomposition; the
data dependence is cross the partition, as shown in Fig. 6.

& 4

a 3y

-0} . a

(A).The data decomposition accessed (B). The data decomposition

by the computation decomposition
Figure 6.

Bach processor can access only B;*B, data
elements in its local memory, most of the
(B, *N - B, *B,) elements need to access in the remote
memory. The data dependencies are cross the partition,
so the total data access time can be represented in the
following form.

= B * G +(B "N =B T+ (-)*(B,* B, T).
1

(A-4)
(2) The WN-dimensional Array
The calculation of the data access time of the N-
dimensional array is similar to the 2-dimensional one.
We can derive the following formula by extending from

(B). The data decomposition

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

(A-1) to (A-4) directly and easily.

Case 1: The data accessed by the computation
decomposition is the same as the data decomposition, and
the data dependence is within the partition.

T=(N"'+*T,+ N"'*T))*B, (B-1)
Case 2: The data accessed by the computation

decomposition is the same as the data decomposition, and
the data dependence is cross the partition.

T=(B*N"'*T,+ N"'*T))

N n n (B-z)
+(—=D*(B*([1B)* T, +([] B)*Tr)
Bf i=2 i=2
Case 3: The data accessed by the computation

decomposition is not the same as the data decomposition,t

and the data dependence is within the partition.

T=B,*B,*N" > *T, +(B, *N"" - B * B, *N"?)*Tr
(B-3)

Case 4: The data accessed by the computation

decomposition is not the same as the data decomposition,

and the data dependence is cross the partition.

T=B} *BZ*T; +(BI *N“Bl *Bz)*Tr
N n
+(E‘-1)*(B/*(H31)*7))‘
] i=2

2.4 The whole algorithm

The proposed algorithm is aimed to elifinate the
largest amount of communication, and then merge the
nodes having the greatest edge values imto the same
cluster. If all nodes in CG are merged into one cluster
finally, there is a static decomposition for the program.
Otherwise, the CG may have more than one cluster, each
data and loop nests within the cluster are labeled with
their decomposition, and data communication will occur
between the clusiers. That is, there is a dynamic
decomposition for the program. The steps of this
algorithm are as follows:

®-4)

The Decomposition Algorithimn
Input: A program and its communication graph
Output: A collection of clusters, each cluster is labeled
with computation and data decomposition.
Begin
Initializing computation and data decomposition for each
node in CG by the modified locality algorithim.
Construct the priority list by evaluating the cost
estimation function for each node in CG.
While there is any un-examined edge
{ Merge the nodes along the unexamined edge with
maximal priority in the CG.
Finding the current optimal computation/daia de-
composition by medified locality algorithm.
Evaluating the communication graph’s critical path

165

Proceedings of International Conference
on Computer Architecture

length by cost estimation function and updating the
priority list.

If the critical path length is shorter than that of pre-
vious step

{ Merge the nodes along this edge. }

H
End

This algorithin is a greedy approach, it never back
tracks the decision of each step. Therefore, the time
complexity is polynomial. Assume that m is the number
of data references in a cluster, 1 is the number of iterations
and a is the number of arrays. Since there are at most m
consiraints to be relaxed, at most O(1+a) variables and
O(m*1) equations. Therefore, the time complexity of the
modified locality algorithm is O(m*(m*)’(1+a)) =
O(m’F(1+a)). This complexity is reasonable, because in
[6] corresponding complexity is O(m’k’), where m is the
number of total data references in the cluster, and k is the
number of loop indices and arrays in the cluster. Conse-
quently, the time complexity of proposed algorithm is
O(em’I’(1+a)), where e is the number of edges in the CG.

3. Performance evaluations

We have implemented the proposed algorithms in
SUIF [8]. The performance is evaluated by our simula-
tion environment [9], which has been implemented in the
front-end part of the MINT simulator. The progress of
our performance evaluation is shown in Fig. 7.

The benchmarks used here are the following:

1. Five-Point Stencil: Calculate the average value of
five points, it usually used in the image processing.

2. ADI Integration: Solving the partial differential
equations.

3. Vpenta: One of the kernel in nasa7, a program in
the SPEC92 floating-point benchmark suite. It
simultaneously inverts three pentadiagonal matrices.

4. MxM: One of the kernel in nasa7, the
multiplication of two matrices.

IRIX/SGI SUN/SPARC

e —
| Pre-processor E__rm ~ l

i Lin;c_r_"ﬁi;___ﬁnm =

 Simulation
Environment

Figure 7 Simulation environment.

Each benchmark is compiled to the parallel code of

different number of processors: 1, 2, 4, 8 and 16. We
gather the execution time and network traffic from
executing the above benchmarks based on our method
compared with that of [6]. Basically, we use the
following evaluation criteria.
Improvement of Execution time =
Ning’s Execution time - Our method's Execution time
Ning’s Execution time
Improvement of Network Traffic =
Ning’s Network Traffic - Our method’s Network Traffic
Ning’s Network Traffic

Because the data arrays are disiributed onto
different processors, the network iraffic is increasing
when the number of processors is increasing. Fig. 8 is
the improvement of Five-Point Stencil, the network traffic
decreases about 29%, and the execution time improve
about 10% in average. Fig. 9 is the improvement of
ADI, the network traffic decreases about 17%, and the
execution time improve about 7.9% in average. Fig. 10
is the improvement of Vpenta, the network traffic
decreases about 10.9%, and the execution time improve
about 7.9% in average. Fig. 11 is the improvement of
MxM, the network traffic decreases about 6.5%, and the
execution time improve about 7.1% in average. Our
method can efficiently decreasing the network traffic than
that of [6]. According to the experimental results, we
can say that, seleciively relaxing the data locality
constraints to decrease the network traffic can improve
the system performance.

4 Concluding remarks

In this paper, we have presented the method of
automatically decompose computation/data for loop nests
in programs on NUMA systems. The proposed
algorithm could balance the criteria between parallelism
exploitation and locality exiraction. Using the function
of cost estimation, we could relax the data locality
constraints with less communication volume, reduce the
network traffic, and then improve the systern performance.
Experimental results show that the proposed algorithm
could improve the execution time about 8.5% in average
compared to that of [6].

References

[1] B.Bixby, K.Kennedy, and U.Kremer, “Automatic data
layout using 0-1 interger programming”, Proceeding of
the International Conference on Parallel Architectures
and Compilation Techniques(PACT), pp. 111-122,
Montreal, Cannada, August 1994,)

[2] C.H.Huang, and P.Sadayappan, “Communication-Free
Hyperplane Partitioning of Nested Loops”, Languages
and Compilers for Parallel Computing, pp. 186-200,

166

Springer-Verlag, 1992.

[3] J.M.Andérson and M.S.Lam, “Global optimizations
for parallelism and locality on scalable parallel
machine”, in Proc. of the SIGPLAN‘93 Conference on
Program Language Design and Implementation, pp.
112-125, Albuquerque, NM, June 1993.

[4] U.Kremer, “NP-Compleieness of dynamic mapping”.
In Proceddings of the Forth Workshop on Compilers
for Parallel Computers, Delft, The Netherland, 1991.

[5] J. Li and M.Chen, “Index domain alignment:
minimizing cost of cross-reference between distributed
arrays”. In Proceedings of the 3rd Symposium on the
Frontiers of Massively Parallel Computation, College
Parl, Maryland, October 1990.

[6] Q.Ning, V.V.Dongen and G:R.Gao, “Automatic data
and computation decomposition for distributed memory
machines”. In Proceedings of the 28" Annual Hawaii
Int. Conference on System Sciences, pp. 103-112, 1995.

[71 J.Ramanujam, and P.Sadayappan, “Compile-Time
Techmiques for Data Distribution in Distributed
Memory Machines”, IEEE Trans. Parallel and
Distributed Systems, vol.2, pp. 472-282, Oct. 1991.

[8] Stanford SUIF Compiler Group, SUIF: A parallelizing
& optimizing research compiler, Tech. Rep. CSL-TR-
94-620, Stanford University, May 1994.

[9] Su, Jen-Pin, “A Study on Memory Subsystem Design

for Multiprocessor System and Implementation of Iis

Simulation and Evaluation Environment,” Thesis, CSIE,

NCTU, 1996.

Exection Time
Improement

4 16

Number of processors,
0.
(=3
g g0
= &0
E 30
gty
SE0 M e

MNumber of processors
Figure 8 Improvements of Five-Point Stencil

167

Joint Conference of 1996 International Combﬂter Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Execution Time
Improvement
oo Lo

T2 4 8 16
Number of processors

Network Traffic
Improvement

T2 4 8
Number of processors
Figure 9 Improvements of ADI

QL
E
=
=]
2
3
- 1 2 4 1
Number of processors
2 .
g 3
= §
%8
o
o —
4 1 2 4 8 16
Number of processor
Figure 10 Improvement of Vpenta

[

E

=

=

g >

M 1 2 4 8 16
Number of processors

B

=

=

Q

z - 1 2 4 8 16
Number of processors

Figure 11 Improvementi of MxM

