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Abstract
Wiener proved that in RSA, the secret
exponent d can be discovered if d < N4 and
N34 < ¢ < N, where e is the public exponent and
N is the modulus. However, he also presented
an open problem that whether there exists an
attack on RSA when d is short and e > N. In

this paper, we improve Wiener s method to solve
the case that d < N'# and N4 < ¢ < N2.

Furthermore, we show that the secret exponent d.

1/4
and

can be easily recovered when d <
(3 t)1/ 2

Nt-174 < ¢ < Nt where tis a small integer.
Ieywords: RSA , continued fraction

1. Introduction

Since RSA was presented by Rivest et al. [6],
many various attacks on it have been made.
Though no attack can completely crack RSA,
there are many restrictions on prime factors p, q,
the public exponent e, and the secret exponent d
of RSA. [3, 5, 8] An interesting one on RSA,
which was developed by Wiener [7], resulted
in a restriction on the secret exponent d.

Wiener’s attack, using the continued fraction,
can recover the secret exponent d on the
condition that d < N4 and N34 < e < N,

However, when e > N, Wiener’s attack is in vain
even if d is short. It is not surprising, therefore,
that it is acceptable to choose small secret
exponent for reducing the computation required

from smart card in server-aided computation
scheme. [2]

In this paper, we improve Wiener’s method
such that the secret exponent d can be recovered
if d<N/and N74<e<N2 Furthermore,

Nl/ 4 .
whend < - - and Nt-1/4 <e <Nt where tis
'(3t)1/ 2
a small integer, the secret exponent d can also be
found.
This paper is organized as follows. In

Section 2, we review Wiener’s method. Section
3 describes our proposed scheme. The last
section gives some discussions and conclusions.

2. Wiener’s method

According to the RSA system, the public
exponent e and the secret exponent d have the
following relationship

ed =l (mod/lcem (p-1,q-1)), 2.DH
where Lc.m. (a, b) means the least common
multiple of aand b. There must exist an integer
K such that

ed=Klem (p-1,q-1)+1. 2.2)
Equation (2.2) can be rewritten as
ed= %(p-l,q-l)+1 2.3)
k
= g(p-l,q-l)-lrl, 2.4)

where G=gcd (p-1,q-1), g -k and g.c.d.
g

(k, g = 1. Here gcd (a, b) denotes the
greatest common divisor of a and b. Dividing
both sides of Equation (2.4) by dpq, we have
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e _ 5((13-1)(q-1))Jr RS

pq dg  pq dpq
.8
p+q-1->
L S
dg Pq
prql-£

= 5(1 - §), where §= k (2:3)
dg pq

Since (1+ K ) is far smaller than pq, we know &
g

+ e .
~ P q. Assume that -—- has a continued
pq q
) 1 .
fraction form ag+ B T where a; is a
do
al 1
"t —

an
positive integer, 0 <i <n. For simplicity, the
above continued fraction can be represented as
the notation [ay; a,, ..., a,]. On the other hand,

given the continued fraction [ag; ay, ..., ay], we

e .
can reconstruct — to be ;—“ by recursively
Pq n

computing r; and s; by

1'0 = ao . 50 = 1,
r=ag@ +1lsp=a , and
nEarg thg, §T 8 TS,
fori=2,3,..,n (2.6)
Let [ay; a;, ..., 3;] be the ith convergent of the
continued fraction [ao; ap, an]. It can be
easily seen that
e ips
= < [ag; ay, .., 3, if i is-0dd,
Pq

e

[2g; ap, .-y 3] <= <[ag; ay, ..., 1],
Pq

if i is even.

Because k > £ , which is resulted from
dg  pq

Equation (2.5), c;(g can be probably found by
using Equation (2.6) to construct the rational
" which is equal to

number

[ag; a1, ..., aj+1], if i is even, and
[ag; ay, ..., 3{], if i is odd. 2.7

. r
According to [7], the constructed number — can
S

be equal to LS if
dg
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kdg < %
=8
2

2.8)

. . T
As soon as we guess a certain rational number 3
we have to check whether or not LIEN equivalent
s
k .
to & For simplicity, assume that ed > pq.
g
Consequently, from Equation (2.4), we have k >
g. Next, multiplying both sides of Equation
(2.4) by g, we have
edg=k(p-1)q-1)+g. (2.9)
Therefore, we can obtain (p - 1)(q - 1) by
calculating I_edg/k_l, where I__] is the floor

operator. If |_edg/ k_| is zero, then the guesses of

k and dg are not correct. Otherwise, we can

p+q

— b
5 Y

pq - (-1)(g-1) +1
2

discover calculating

270 If the value is an integer,

then we compute
P-4,2 pPtq.2
3 = (57 -pa-

If the guess of ((p - q)/2)? is perfect square, we
know that the original guess of k and dg is
correct. From Equation (2.9), we can obtain g
by calculating the expression edg mod k.
Therefore, the secret exponent d can be
recovered by dividing dg by g. Besides, prime
factors p and q can be revealed by using (p +
q)/2 and (p - q)/2.

Now, let us discuss the restriction on the secret’

+
key d. Since & =~ PiJ_q , in Equation (2.8), we
q

+
use prq to substitute for &, we have

kdg < 23 (2.10)

Generally, one can expect g to be short, and k <
dg. Inequality (2.10) reveals that

kdg < d2< ,,3ﬂ -
~(p+
S+
This implies that
d< N4,
From Equation (2.2), e has to be larger than N34
as a result of ed > N. Therefore, we conclude
that the secret exponent d can be recovered if d <
N4 and N3/4 <e <N.

~ N2,
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3. OQur method

This section first describes how to recover the
secret exponent d if d < N1/4 and N74 < ¢ < N2,
Then, we extend our method to discover the

1/4
secret exponent d if d < - and Nt-14 <o <

N, where t is a small integer.
Assume that the public exponent e is large and
the secret exponent d is small such that
N <e <N2and
ed=K(.cm. (p-1,g-1))* + 1 3.1
, where K is a small integer. From Equation
(3.1), we have

N

ed= sz ((p-1)(g-1))2 + 1

k
= g((p-l)(q-l))2 +1, (3.2)
where G = gcd (p-1, g-1), K2 = X and
G g
ged(k, gy = 1. Dividing both sides of

Equation (3.2) by dp2q?2, we have
e _ k ((P:}_)(i']_)_)z + __1___.

pral, o oprala
q

= K ogPtely, el
Pq

dg
1

dp’q?

+q-1)2+8
k 5P (P, q ) k.
g (-2 )+ 55 )
g Pq P q

l
—_~
1]
to
D
-

(3.3)

t g
(p+q-1)°+5
+q-
where 6 = (pwq 1)_ -

- Because
pa © 2pig?

(prq-1>+2 ol
5 5°= is much smaller than P78 and

2p7q Pq

p+q

2 N
Comparing Equation (3.3) with Equation

(2.5), we can view 20 as §. Therefore, from

Inequality (2.8), if

(p + q) is large, O can be regarded as

kdg < - = -, G4

we discover dE by calculating the continued
g

fraction of —% like Wiener’s method does.
pq

On guessing a certain rational number r by
s
using Expression (2.6), we have to check

whether © s equal to k or not. For
s dg
simplicity, we assume that ed > N2, As a result,
we have k > g from Equation (3.2).
Multiplying both sides of Equation (3.2) by g,
we have
edg =k((p-1)q-1))* +g (3.3)

Thus, we can compute (p-1)(g-1) =

\/Ledg/ kJ JIf \/ I_edg/ k_l is an integer, then we
P*tq
2 by

Pq - (p-D(@-D) +1
5 :

discover calculating

Next, we calculate

(-P-é 92 by (_I_J___“;_?l ) - pq. If the guess of

((p - q)/2)* is perfect square, we know that the
original guess of k and dg is correct. From
Equation (3.5), we can obtain g by calculating
the expression edg mod k. The secret exponent d,
therefore, can be recovered by dividing dg by g.

In general, one can expect g to be short, and
k<dg. Inequality (3.4) reveals that

kdg < d2 < Pa ~ N2,

3(p*+q)

This implies that

d <Ni/4
According to Equation (3.1), we know that ¢ > .
N7/ because d < N4 and ed > N2.

For the sake of clarity, as shown in Table 1,
we can recover the secret exponent d = 7 using

the continued fraction of % .
N
Now, let us consider another case. Assume
that the public exponent e is large and the secret
exponent d is small such that
Nt1 < e <Nt and
ed=K(lcm. (p-1,g-1))t+1 (3.6)

, where K and t are small integers. From
Equation (3.6), we have
K
ed= (@ D)+ 1
_ k ¢ :
= g((p-l)(q-l)) +1, G.D
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—, and
g

gcd(k, g = 1. Dividing both sides of the

above equation by dplqt, we obtain
e _ k ((p-l)(q-l))t Lo

where G = ged (p-1,g-1), g =

p'qt dg pq dp'q"
- Kty o, Grab,
dg Pq 1:)tqt
= ;g(l-tG), (3.8)
p+g-l (p+q-1)t+§
where 6= (& S-)+.. - e
Pq tpq
L Pral opta
Pq Pq

Comparing Equation (3.8) with Equation

(2.5), we can regard t6 as 8. Therefore,
according to Inequality (2.8), if
kdg < ! , 3.9)

th
2

we discover by calculating the continued

- like Wiener’s method does.
p'q'

fraction of

. . . r

On guessing a certain rational number - by
s

using Expression (2.6), we have to verify

whether is equal to or not. For

simplicity, we assume that ed > Nt
Consequently, we have k > g from Equation
(3.7).  Then, multiplying both sides of Equation
(3.7) by g, we have
edg =k((p-1(g-1)' + g. (3.10)
Therefore, we can compute (p-1)g-1) =
1 1

(Ledg/k t. If (| edg/k |yt is not an integer,
then the guesses of k and dg are not correct.
ptq
— b

a y

Otherwise, we can discover

pq - (p-1(g-1) +1
) .

computing If the value is

an integer, then calculate (R%ﬂ )2 by the

following formula:
-q.2 tq.2
(p q) _ (P q) )

2 2
If the guess of ((p - q)/2)? is a square number,
the original k and dg is found. From Equation

pq.
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(3.10), we can obtain g by calculating the
exp_ression edg mod k. Therefore, the secret
exponent d can be discovered by dividing dg by
g.

Generally, one can expect g to be small, and
k<dg. From Inequality (3.9), we have

1/2
kdg<d2< P4 4 N3t .

Zi(p+

5P+
This implies that

1/4
N
R (3.11)
According to Equation (3.6), we know that e >
1/4

Nt-1/4 because d < N—”Z and ed > Nt,
3t)

On the other hand, because we expect g to
be small, from Equation (3.7), we have
Gt<d.

Then, we have
N1/4
(3t )1 /2
because of Inequality (3.11). From Inequality
(3.12), we have a restriction on t. For example,
if the modulus N has 512 bits and G = 2 then we
have t < 84. Therefore, we conclude that t is

small.

Gt< (3.12)

4. Discussions and conclusions

Facing the case that the public exponent e
satisfying Nt1/4 < e <Nt | where t is an integer,
we may recover the short secret exponent d by

using the continued fraction of However,

€
N

guessing the correct - , we have to check its

correctness by
1

(Ledg/k )t. According to [4], we know that
there is a unique positive real number v such that
vt = | edg/k |. Here we just check whether or

calculating the expression

not v is an integer. Therefore, we can compute v
in polynomial time by using Newton-Raphson
method.[1]

The original Wiener’s method cannot
recover the secret exponent if d is short and e >
N.  However, our proposed method can
discover the secret exponent d by calculating the

continued fraction of f% ifd <N and N74
N
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< e < N2. Furthermore, we also recover the 4.
1/4
secret exponent d when d < - - and Nt-1/4
1/2
(3t)
< e <Nt where t is a small integer. 5.
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Table 1
N= (587x503)=295261, e = 15453065283
Calculated Quantity How It is Derived i=0 =1 i=2 i=3 i=4
3 continued fraction of 0 5 1 1 1
e
N2
r_i =lan: a1, ...a: ' .9 _l, .l .l -.3.'_,
5 [ag; ay. 3] See Expression (2.6) T 5 6 11 17
the guess of Kk [ag; ay, ..-ag+1] (i even) 1 1 2 2 5
dg lags ay, ...a;] (i odd) 1 5 1 1 28
the guess of edg edg 15453065283 77265326415 | 169983718113 | 169983718113 | 432685827924
the guess of ledg/ k] 12431036 | 27796641 | 29153363 | 291533.63 294172
((p-1)(g-1))
the guess of (p+q)/2 (pg-(p-1)(g-1)+1)/2 545
the guess ;f ((p+q)/2)2-pq 1764
(@-0)/2) =(42)2
the guess of g (edg mod k) . 4
secret exponent d dg/g 7
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