Proceedings of International Conference
on Cryptology and Information Security

A Java Security Model Based on
Information Flow Control*

Chih-Yuh Chang, Chin-Laung Lei and Wen-Sheng Juang

Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan, R.0.C.

Abstract

In this paper, we propose a new Java security model
based on information flow control to enhance the system
security. Moreover, we also simplify the management of
the security of Java environments and reduce the chance
of falling into traps caused by careless operations. Our
proposed security model provides a more secure and user-
friendly Java environment for naive network users and
greatly reduces the load of network administrators.

1 Introduction

Due to the continuing and fast progress of internet,
network users expect more and more advanced network
services. They quest for more powerful services than
the traditional ones such as TELNET, FTP, GOPHER,
etc. Hence, CERN proposed a new architecture, the
World Wide Web (WWW), to provide network users a
new solution. WWW not only combines almost all
existing services but also provides a new distributed
multimedia environment for Internet. Network users
can use it to browse multimedia documents on line or
off-line. Moreover, WWW could be extended by a
standard interface, CGI (Common Gateway Interface),
for programmers. Any one can code external functions
with his favorite programming language to extend the
capabilities of WWW. However, CGI has some
inherent limitations within its architecture and is quite
difficult for ordinary network users.

In 1995, Sun Microsystems announced the Java and
the associated HotJava Web browser. Java has the
potential to enhance the capability of WWW and more
generally mobile code technology, and it augments the
present WWW capabilities to transmit static information
with new capabilities to transmit programs, called applets,

* This research is supported in part by the National Science
Council of the Republic of China under grant NCS-86-2221-E-
002-014.

176

in a portable environment. Since Java is designed to be
transportable across networks and executed in the
browser, security is extremely important. At present,
access control list (ACL) is the common method to
protect users’ system resource in the Java environments.

Since all permitted operations of system resources can
be recorded into ACL, alterable options of security
consideration are quite complicated. Although system
administrators can tune the details of ACL to fit their
security policy completely, they would have a hard time
in doing it. Typical network users will easily fall into
some traps of evil hackers. ACL is not secure enough,
too. It can be attacked by the Trojan Horse program.
Hence, we propose a new security mechanism based on
the information flow control to provide a simpler, more
secure and more user-friendly Java environment.

The schemes of the information flow control are con-
cerned with the flow of information from one class to
another. The operations of system resources are permit-
ted if the flow of information is allowed. There are
three typical information flow control models, the BLP
model, the Biba model, and the combined model. Each
model has some of the desired security properties. Our
scheme is based on the combined model, which
combines the first two models and satisfies the properties
of confidentiality and integrity. For a real Java
environment, we design a set of classes for the possible
types of applets, a set of classes for the four types of
system resources, and a set of rules to control the flow of
information.

Although information flow control is more secure and
easier-to-manage than ACL, the flexibility of adding or
deleting a permitted operation in ACL is lacking in infor-
mation flow control. In additon, the security of
information flow control would be too complex to
analyze if there are too many classes. Hence, we use
ACL to control some system resources, such as the file
system, that are hard to control by using information flow
conirol. Information flow conirol and ACL form two
layers of protecting mechanisms in our proposed model.

This paper is organized as follows. In section 2, pre-
vious work on information flow control and the current
Java security environment are reviewed. Our new Java
security model based on the lattice model is described in
section 3. Then, we compare the security of our model
with that of the current Java approach in section 4. Fi-
nally, concluding remarks are given in section 5.

2 Background

Java is a language developed at SunLabs [8]. The
programming language and environment are designed to
solve problems in modern programming practice. It
originates as part of a research project to develop
advanced software for a wide variety of networked
devices and embedded systems. The goal is to develop
a small, reliable, portable, distributed, and real-time
operating environment. Since the Java language
compiled code is designed to be transportable across
networks, we must watch out for the same threats caused
by copying programs to different computers. Three
traditional threats are considered: Trojan horses, viruses,
and denial-of-service attacks [5]. To prevent these
threats, a Java system must provide security mechanisms
to address various security concerns. In the current
design, the security architecture of Java is separated into
three layers to verify and monitor the instructions of Java
program.

The first layer, compile-time checking, is bound up
with fundamental features of Java. Its security
mechanisms are derived from the Java language
specification. The Java language and the compiler
constitute the first line of Java security. They are
precisely specified, and are not configurable. The
second layer, bytecode checking, is a run-time checking.
A trustworthy compiler ensures that Java source code
does not violate the safety rules, but someone could alter
the compiler to produce code that violates them. So,
before executing any code fragment, the runtime system
is subjected it to a series of tests. The third layer,
access right checking, is also a run-time checking. The
major difference between the second layer and the third
layer is the configurability for users. There exisis a
security manager to monitor all access permission of
system resource. For security concerns, the security
manager denies any access request of system resource by
default unless the user explicitly changes it. Since users
can configure what appleis can and cannot do, it would
be a hard job for users o set the complicated
configuration appropriately not io mention optimally.
Thus, a good scheme for the security manager is
necessary to loosen the security administration loading
and enhance the system security.

177

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

There are two major approaches for controlling
accesses to system resources: the access matrix model
and the information flow control. The access mairix
model is the fundamental scheme to control access, and
information flow conirol can be considered as an
extension of the access matrix model with more security.

In the access matrix model, the access rights of each
user to each resource are defined as entries in a matrix.
The most important feature of the access matrix
approach is that accesses are controlled by classification
of users and resources. Only the rights of users to
access resource are checked. The basic disadvantage of
the access matrix approach is its vulnerability to attack
by Trojan Horse programs. Although the access matrix
is simple, its direct implementation would be very
inefficient and expensive since it is usually sparse.
Thus, the following two variant methods are usually used
in actually implementations: access control lists, and
capabilities. Current Java security scheme uses access
control lists.

On the other hand, the approaches of information flow
control are concerned with the flow of information from
one class to another. In a system, information actually
flows from one object to another. An object can be in-
formally defined as a container of information. The
flow of information is usually controlled by assigning
every object a security class, also called a security label.
Information can flow from object X to object Y if and
only if information can flow from security class of object
X to security class of object Y.

The security for information flow control deals with
three main goals: Confidentiality is to ensure that privacy
information should not be accessed by anyone without
such a right. Integrity is to ensure that information is
not changed. Neither the system, which stores and
transmits data, nor unauthorized users should be able to
corrupt that data. Availability is to ensure that
authorized users can make effective. use of a computer
system.

There are several some models of information flow
control. The Lattice model defines the information
flow policy and axioms by Denning [1, 2]. Bell and
LaPadula represented the security kernel as a finite state
machine, and the security rules define allowable
transitions from one secure state to the next. They
defined a model commonly bearing their name, and we
call it BLP model in short. The BLP model satisfies the
property of confidentiality by its security rules.
Confidentiality considerations motivated the mandatory
controls in the BLP model, while the Biba model
proposed that similar conirols could be formulated for
integrity. The basic concept in the Biba model is that
low-integrity information should not be allowed to flow

Proceedings of International Conference
on Cryptology and Information Security

to high-integrity objects. In the usual formulation of the
Biba model, high integrity is placed toward the top of the
lattice of security classes, and low integrity at the bottom.
With this formulation, the permitted flow of information
is from top to botiom, directly opposite to that of the
BLP model. It is often suggested that the BLP and Biba
models could be combined. Thus, both confidentiality
and integrity are considered. Unfortunately, none of the
existing models can deal with the problems of
availability. Our proposed scheme is based on the
combined model to satisfy both confidentiality and
integrity which current Java security scheme lacks.

3 The proposed Java security model

Since the cwrent Java security mechanism uses access
control lists, the configuration for system security is
rather complicated for users. Moreover, typical
network users are prone to fall into some traps of evil
hackers. To provide a simpler, more secure and more
user-friendly Java environment, our model is based on
information flow control enhanced by access control lists.
We classify users into three types: administrators,
developers, and common users. A Java program will be
assigned to a default subject depending on the type of
users and the environment. All system resources,
treated as objects, are divided into four major parts: the
file system, the network connections, the sysiem
information, and the executable system programs. We
also design rules for different types of system resources
to deal with all potential security operations.

Whenever an applet requires an object that it cannot
access, the user would be prompted by a dialog box
popping up for deciding whether or not to allow the
applet to alter to a higher security class. The users can
disable this feature, in that case, an applet will not be
able to access any object which it is not entitled to.
Thus, with our approach, users can maintain the security
of their systems easily and could refer to the suggestions
and warnings displayed with pop-up dialogs. These
snggestions or warnings could be generated by analyzing
the difference between any two classes in our model for
the system.

3.1 The set of subjects and objects

Users can be separated into three types according to
the attribute of their work:
¢ Administrators, who maintain the system
workable and secure, know how tio manage
system security and need the permissions to
modify the system.

178

¢ Developers, who code applications, need the per-
missions to design and test their programs.

o Common users, who execute the programs for
their goals, just need the permissions to run
programs in the secure environment.

The set of subjects is used by users or Java programs
including applets and standalone applications. The set
is described below:

e SA: System Administrator. This subject is for
the super users who manage the whole computer
or for the trustworthy Java programs that perform
the job of maintaining the system.

e JS: Java Standalone application. By default,
Java standalone applications are assigned to this
subject.

e JA: Java Administrator. This subject is for the
managers who maintain the Java related files in-
cluding executive programs, class library,
configurations, or for the Java programs that
automatically monitor and update the Java
environment.

¢ DL: applet Developer that loads applets from
Local file system. By default, the applets
written by Java developers and loaded from local
file system will be assigned to this subject.

e DN: applet Developer that loads applets from
Network. The difference between DL and DN is
that DL is for the applets loaded from local file
system, and DN is for the applets loaded from
untrustworthy network.

¢ BL: applet Browser that loads applets from Local
file sysiem. For common users, the applets are
invoked from inside the web browser and are
loaded from local file system.

e BN: applet Browser that loads applets from Net-
work. If the applets are invoked from inside the
web browser by common users and are loaded
from untrustworthy network, they will be assigned
to this subject.

¢ TA: Interactive Applet. When a trustworthy
applet whose subject is BL or BN requires more
network access right, users can upgrade the applet
to this class.

e LA: Local Applet. When a trustworthy applet
whose subject is BN requires some secret system
information, users can upgrade the-applet to this
class.

We also partition all system resources into four major
parts:

s Pile system: The typical permissions, read, write,
and modify, can be easily monitored by all the
model of information flow control. In our model,
access to a file in the system proceeds as follows.

(a) 1If the file is created by a subject, it can only
be accessed by the subjects according to the
original rules of the combined model.

(b) If the file is not created, it can only be ac-
cessed by the subjects according to the
access control list.

Network connection: Since sensitive information

may be leaked out to a remote host, the

permission to connect with other networks can be
controlled by the rules of information flow
control.

System information: Some system information

may be useful for breaking into the system and

should be kept secret by the rules of information
flow control.

Executable system programs: The permission to

execute the system programs is controlled by the

rules of information flow control, and the details
are recorded into the access conirol list.

The set of objects is described as follows:

Files that are created by a subject. Such a file is
assigned a class and permitted to access by the
rules of the combined model. This object is
hidden with each subject.

FR: File system Read ACL. The access control
list maintains the information about what files and
directories can be read by subjects.

FW: File system Write ACL. The access control
list maintains the information about what files and
directories can be read by subjects.

FJ: File directory for Java. The directories and
files are related to Java environment.

FD: File Delete using file.delete(). The
permission to use the Java class method
file.delete().

NL: Network permission to connect Local client.
The permission to connect the host which load
applets.

NR: Network permission to connect Remote host,
The permission to connect the host that is not
used by users.

System information that should be Secret. The
system information may cause danger and should
be keep secret.

SP: System information that can be Public. The
system information without any potential threats
can be kept public.

EA: Executable program ACL. The access
control list maintains the information about what
system program can be executed.

LOG: LOG file. The sysiem log file records
every important event in system.

179

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

3.2 The rules of our model

The diagram of our lattice model is shown in figure 1.
The leiter S denotes a security class of the subject, and
the letter O denotes a security class of the object. The
highest security classes are SA and. LOG, so a system
administrator can handle the whole system. The lowest
security is BN2 that is a branch of the subject BN. It
should be the safest state in the system, because it cannot
touch any system resource.

S:SA
0: LOG

Figure 1: The proposed model

The procedures of information access in the
traditional combined model are only reading from and
writing to the storage, such as file system. While in a
Java environment, we have to deal with more types of
system resources including the network connection, the
system information, and the executable system programs.
Thus, we must expand the procedures to operate on all
the four kinds of system resources. The rules of our
model are as follows:

(1) Subject s can write object LOG only if S(LOG)=S(s).
¢ Since LOG is in the highest security class,
S(LOG)25(s) for each subject se SC. Thus, all
activities must be recorded into LOG.
(2) Subject s has the access right to object o only if S(s)
25(0).
¢ The access right for FR is reading files. A
subject that gains this object can read from the
files and directories listed in the access control
list.

® The access right for FW is writing files. A

Proceedings of International Conference
on Cryptology and Information Security

subject that gains this object can write to the files
and directories listed in the access conirol list.

o The access right for LOG is reading system log
file. Since only subject SA has the same
security level as LOG, SA is the unique subject
that can read the record of system events in the
log file. '

o The access right for FJ is writing Java related files.

In our model, only two kind administrator
classes—SA and JA have this right to maintain
the Java environment.

o The access right for FD is deleting files by using
file.delete(). Since the process of deleting is a
very dangerous action, only trustworthy Java
standalone applications (JS), SA and JA can per-
form this operation.

e The access right for NL and NR is connecting
host. NL is to connect back to itself, and NR is
to connect with outside world through network.
So the security class of NR is higher than that of
NL.

e The access right for SS and SP is getting system

" information. The system information in SP is
harmless, so all subjects except BN2 can access
it. :

¢ The access right for EA is executing programs.
The subject that gains this object can execute the
system programs listed in the access control list.

(3) Subject s can modify object o only if S(s)=5(0).

e Since SA and LOG are the highest security class,

only SA can modify LOG. Similarly, JA is the
- unique subject that can modify FJ (files for Java).

3.3 Examples

In this section, we give two examples to illustrate how
the proposed model works in a real Java environment.
Example 1 exhibits the situation where users can lower
the complexity of administration by using our model, and
one can feel the user-friendliness in our design.
Example 2 demonstrates that Java environment can be
more secure by adopting our model since the information
flow conirol can protect the system from unauthorized
accesses.

Example 1: Alex wants to enjoy the Java world and
executes a Java-embedded WWW browser. Two labels
will be recorded. One label is assigned to BL for the
applets loaded from the local file system, and another is
assigned to BN1 for the applets loaded from the network.
Suddenly, he finds an interesting game applet that
provides multiple players with adventures in a puzzle,
such as MUD. A dialog box pops up to allow the user
to decide whether or not to allow that specific access,

180

because, an attempi is made by the applet to connect to an
outside host and to write temporary files info the file
system. Now, Alex can consider whether to upgrade
the security class of the applet from BN1 to TA1 with the
referential information that is displayed within the dialog
box. If Alex trusts the applet or wants to take s risk to
play it, he can choose yes to continue playing.
Otherwise, he can choose no to begin another Java
journey. Without our model, Alex must alter the
security options one by one, and does not know what
risks he may take. Even worse, he may loosen too
much options to fall into a trap without even knowing it.
Example 2: Consider the following scenario:

¢ Alice executes an applet A to simulate a virtual
machine, and A; requests Alice to retrieve some
secret system information for it. Afrer A, can
access the secret, it not only works more perfecily,
but also saves the secret into a Specified file.

s Later, Alice executes another applet A, to play a
network bridge. Of course, A, must request the
permission of network connection to
communicate with other players. Afier A; can
connect to the remote hosts, it not only
communicates with the bridge players, but also
searches the specified file and send the secret
back to the applets programmers who writes A,
and Az.

This example demonstrates that the access conirol list
is vulnerable to Trojan Horse attack. The Trojan Horse
programs can get sensitive data by means but store or
send to unauthorized users. With our approach,
although A; can be permiited from BN1 to LA to access
the secret information and store it into the file system.
A, which is just upgraded from BN1 to IAl, cannot
access the specified file whose class is the same as LA.

As discussed in the above two examples, we can point
out what the advantages of our model are. Our model
not only prevents the sensitive information from being
send to the unauthorized subjects, but reduces the
complexity of the administration.

4 Security analysis

Since Java is intended for distributed environments,
we can consider its security from this aspect. The
discussions are divided into three parts: access control,
communication security, and authentication. "The major
difference between our approach and the current one is
that the current access control scheme is totally based on
the access control list method which is not secure enough
and is rather complex to maintain, while we establish our
access control scheme based on information flow conirol,
and reduce the complexity of modeling a system by

reducing the number of classes with the access control
list. To explain the superiority of our model, we first
discuss the difference between access control list and
information flow control, then we explain why our
approach provides a more secure and easy-io-
administrating Java environment.

4.1 The security analysis of distributed systems

Distributed systems must support a secure
environment for users to compute and communicate.
The importance of security in distributed systems grows
as more and more sensitive information is stored and
processed in computers, and transferred over networks.
This implies the need for access control, communication
security, and authentication.

Protecting system resources from unauthorized
accesses is an important issue in distributed systems. In
the current Java environments, the security mechanisms
are based on the access control list, a variant of the
access control matrix. The major disadvantage of the
access control matrix is its vulnerability to the Trojan
Horse attacks. Information flow control that our model
based on can be demonstrated that no confinement
problem exists, and is not susceptible to Trojan Horse
attacks. Thus, our model provides a more secure
environment. We will compare them in detail in
sections 4.2 and 4.3,

In general, any sensitive information across networks
should be keep secret. In a Java environment, there is
no sensitive information in the Java code iransported
over networks. Even though two applets want to share
a secure channel, it is the duty of applet programmers.
If applets should not be able to access some sensitive
information in a system, they cannot exchange it across
networks with secure or non-secure channels. Thus, it
cannot affect the system security.

Authentication is to make sure that a message is from

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

the correct sender, and is received without being modi-
fied. In the design of a Java environment, we can use
any well-known signature schemes to achieve authentica-
tion. For example, administrators can update the Java
related classes signed by MDS5 to prevent forgery or
modification. This part of security is based on the
security of signature schemes.

As mentioned above, our model replaces access con-
trol list with information flow control for access control.
That is the key point why our model is more secure. To
explain the advantages of our model, we first compare
the two access control ‘approaches, access matrix model
and information flow control.

4.2 Comparisons between access matrix model and
information flow control

The access matrix model provides a basic framework
for protection based on the abstraction of operating
system structures. The simplest and most natural repre-
sentation is access majrix whose rows represent subjects,
columns represent objects, and each entry consists of a
set of access rights. A subject s can operate on an
object o if and only if the access rights that appear in the
entry contains the operation to be performed.

The direct implementation of access matrix model
would be very inefficient and expensive since it is usu-
ally sparse. There are two popular implementation
methods: access control lists and capabilities. The
access control list approach which current Java environ-
ment bases on decomposes the access matrix by columns
into several lists. Each objects has a list which records
what operations by subjects are permitted. Similarly,
capabilities decompose the access matrix by rows.
Since the major improvement of them both focuses to
solving the sparse problem, the access control list inher-
its almost the advantages and disadvantages from the
access matrix model.

Access matrix model

Information flow control

Access control type Discretionary Non-discretionary
Confinement problem exist non-exist
Security less secure more secure
Major advantage Flexible to add or delete objects, sub- Monitoring the flow of information
jects, and operations strictly and clearly

Major disadvantages 1.

Complex to analyze security 1.
2. Vulnerable to Trojan Horse attack

Hard to add operations and the class
of objects, and subjects .
Becoming complex with too many
states and flow paths

= e
. k4
g

Table 1.

The Comparisons between access mairix model

and information flow conirol

181

Proceedings of International Conference
on Cryptology and Information Security

Access control | Information flow Our approach
list conirol
Confinement problem exist non-exist non-exist
Vulnerable to Trojan Horse attack yes no no
Hard to monitor the flow of information yes no no
strictly and clearly
The same default permission for different yes no no
class
Complex to analyze security yes no depending on the operating
system
Security less secure more secure Most secure
Complex with too many states and flow no yes no (reducing the number by
paths access control list)

Table 2. The Comparisons between our approach
and the current Java approach

With the access matrix model, access control list, or
capabilities, it is very clear that it is secure if trustworthy
subjects are involved. However, untrustworthy subjects
might cause some problems that cannot be solved by
using them. For example, The threat, Trojan Horse,
may cause access matrix model the confidential problems
by copying secret objects, integrity problems by modify-
ing files, and availability problems by deleting data.
Since the access matrix model is vulnerable to attacks
from Trojan Horse programs, the confinement problem
that authorized subject can release sensitive objects to
other unauthorized subjects exists in the access matrix
model. Thus, access matrix model is not the best solu-
tion for access control,

Information flow control is an extension of the access
matrix model to impose classifications on both subjects
and objects. Because of the classification, unauthorized
subjects would not be able to corrupt that data. Thus,
there is no confinement problem by using information
flow control. Table 1 summarizes the comparisons be-
tween access matrix model and information flow control.

Discretionary systems allow a subject to access an ob-
ject at the discretion of the owner of the object. This

means that each user can specify his own security options.

Since objects, subjects, and operations can oe easily
inserted into or deleted from the matrix, it is easy and
flexible to model a real system. However, it :s complex
to analyze the system security by scattering matrix, and is
valnerable to Trojan Horse attacks.

Non-discretionary systems allow a subject to access
an object with the classifications of the object and the
subject. This implies mandatory security rules are
imposed on all users. Even if a Trojan Horse program
can access privacy data, the data cannot be iransferred
out of the boundary enforced by the rules. Since ihe

182

information flow control can monitor the flow of infor-
mation strictly and clearly by the rules, it becomes a
more secure approach. However, if there are too many
states and flow paths, the system security will be com-
plex and hard to analyze, too.

4.3 Comparisons between our approach and the
current Java approach

Our approach is based on information flow control as
the main architecture. To avoid the major disadvantage
of the information flow control mentioned in the
previous section, our approach incorporates the access
conirol list to reduce the number of states or classes.
Table 2 compared between our approach and current
approach:

We discuss them into two parts as follows:

(1) Security

Since our approach is based on the information flow
control, a subject cannot leak any secure information to
other unauthorized subjects. Hence, our approach also
solves the confinement problem in the approach of
access control list.

Due to the resolution of the confinement problem, our
approach is more secure than the approach of access
control list. In addition to the scheme of the informa-
tion flow control, we resirict the access right with the
access control list. For example, to read a file, the
subject needs to check not only such an information flow
is permitted, but also the right to access the directory
where the file is must be allowed in the access control list,
Hence, our approach is more secure than that of informa-
tion flow conirol, too.

To prevent the number of classes from growing rap-
idly, we adopt the access control lists into our model to

handle some system resources, such as file system and
executable system programs. Thus, the drawback that
is hard to analyze the security of the access conirol list
would affect the security analysis for our model. For
example, One authorized applet may save some secret in
the files that are not protected by the operating sysiem to
unauthorized users who can read it in a non-Java envi-
ronment. The problem can be solved by embedding the
same security mechanism into the operai’ng system.
According to the announcement from Sun Microsystems
Inc., almost all the operating system vendors have
licensed and will embed Java into their operating systems
in the near future.

As discussed above, our approach provides a more se-
cure Java environment than any other existing ap-
proaches.

(2) Simplification

One of our main goals is to loosen the workload of ad-
ministration. Since wrong administration would cause
serious security problem in the system. Simplification
is to provide not only a moré user-friendly and easier
environment for users, but also a potential direction to
enhance system security.

In the current approach, users must alter all the re-
stricted security options one by one to release system re-
source for appleis. In our approach, users could just
alter the security level from ome class to another to
release system resource for applets. In addition, users
could get some suggestions or warnings to decide
whether to alter the class of the applet or not when the
applet requires more access right. Hence, our model
simplifies the operations of system security for users and
reduces the chance to fall into a trap without detection.

5 Conclusion

In this paper, we propose a new security model based
on the information flow .control to make the Java
distributed environment more secure, and to simplify the
operations of system security to provide a user-friendly
interface. For typical users, they would like to have a
more secure manager (0 loosen up with the simplified
administration. For Java developers, they could enjoy
the system resources that they need to code without
worrying to leak any information to unauthorized users.
For system administrators, it makes their jobs easier that
all users in the system can work in a more secure
environment. Qur proposed model is the first one to
achieve all these features.

References

183

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

[11 R. S. Sandhu, ‘Lattice-Based Access Control
Models,” IEEE Computers, Vol. 26, No. 11, 1993,
pp. 9-19.

[2] D. E. Denning, “A Lattice Model of Secure
Information Flow,” Comm. ACM, Vol. 19, No. 3,
May 1976, pp. 236-243. _

[3] R.S. Sandhu, “The Typed Access Matrix Model,”
Proc. IEEE Symp. Security and Privacy, 1992, pp.
12-136.

[4] 7J. A. Gougen and J. Meseguer, “Security Policies and
Security Models,” Proc. IEEE Symp. Security and
Privacy, 1982, pp.-11-20.

[5] P. Terry, S. Wiseman, “A New Security Policy
Model,” Proc. IEEE Symp. Security and Privacy,
1989, pp. 215-228.

[6] A. Goscinski, Distributed Operating Systems The
Logical Design, Addison-Wesley Press, 1991.)

[7] D. Dean, E. W. Felten, D. S. Wallach, “Java
Security: From HotJava to Netscape and Beyond,”
Proc. IBEE Symp. Security and Privacy, May 1996.

[8] “The Java Language Environment: A White Papers,”
Sun Microsystems Inc. (http://java.sun.com/
whitepaper/javawhitepaper_1.html)

[9]1 “Security Features of Java and HotJava,” OSF
(http://www.osf.org/mall/web/SW-java/ security.htm)

[10] “Frequently Asked Quesetions - Applet Security,”
Sun Microsystems Inc. (http://java.sun.com/java.sun.
com/sfaq/) :

[11] “Overview of Java and HotJava,” OSF (htip:/
www.osf.org/mall/web/SW-java/intro.htm)

[12] D. Dean and D. S. Wallach, “Security Flaws in the
HotJava Web Browser,” November 3, 1995,
(fip://fip.cs.princeton.edw/reports/1995/50 1.ps.Z)

[13] “HotJava: The Security Story,” Sun Microsystems
Inc. (http://java.sun.comy/1.0alpha3/doc/security/
security.html)

[14] “The Java Language Specifications,” Sun Microsys-
tems Inc. (hitp://java.sun.com/TDK-beta/psfiles/
javaspec.ps)

[15] F. Yellin, “Low Level Security in Java,” WWW4
Conference, December, 1995. (hitp://www.w3.org/
pub/Conferences/WWW4/Papers/197/40.html)

[16] J. A. Bank, “Java Security,” MIT, 1995. (hitp:/
swissnet.ai. mit.edu/~jbank/javapapet/javapaper.html)

[17] “CERT Advisory: Weakness in Java Bytecode Veri-
fier,” CERT, March 29, 1996. (fip://info.cert.
org/publcert._advisories/CA-96.07 java_bytecode_
verifier)

{18] “Safe Internet Programming Research”, Computer
Science of department, Princeton University. (hitp:/
www.cd.princeton.edw/sip/)

