Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Analytical Study of Performance Evaluation for x86 Instructions to Micro-ops
Decoder

Rung-Bin Lin and Chi-Ming Tsai
Department of Computer Engineering and Science
Yuan-Ze Institute of Technology
135 Yuan-Tung Road, Nei-Li, Chung-Li, 320, Taiwan, R.O.C.

Abstract

Several of the recent Intel x86/compatible
microprocessor designs employ a special
decoder which translates the x86 instructions
into RISC-like micro-operations. The decoder
consists of several translators of different
complexity. Each translator can convert the x86

instructions inio their corresponding micro-

operations. This paper proposes an analytical
method that evaluates the performance of a
variety of decoder architectures.

1. Introduction

The designing of the next generation Intel
x86 microprocessor is burdened with the
backward compatibility to its predecessors. The
CISC such as the Pentium microprocessor
requires its control circuit to decode instructions
of different length and to generate complex
timing signals to conirol the flow of data. An
attempt to increase the performance by
including the state-of-the-art micro-architectures
would lead to tremendously complex hardware
implementations. On the other hand, the
decoding of RISC instructions and generating of
timing signals are simpler than the CISC. The
designers of a RISC-based machine can afford
to include as many performance-enhanced
micro-architectures as possible. In the light of
this fact, the Intel‘'s P6, AMD’s k5 and
NexGen‘s Nx686 proceéssors. all employ the

113

same line of thought that translates the x86
instructions into their corresponding micro-
operations by a special decoder. Thus, the
execution of x86 instructions is fulfilled by
performing their corresponding micro-
operations. The micro-operations generated by
the decoder are named differently by the
vendors. Micro-ops will be used throughout in
this paper to denote all kinds of micro-
operations. The decoder usually consists of
several translators that convert the x86
instructions into micro-ops. Those instructions
that can not be handled by the translators are
passed over to the microinstruction sequencer.
The Intel p6 decoder [1-5] comnsists of two
simple and one complex translators. The simple
translator converts an x86 instruction into one
micro-op. The complex translator converts the
%86 instructions into one to four micro-ops. The
instructions that must be translated into more
than four micro-ops are translated by the micro-
sequencer. The decoder can translate at most
three x86 instructions and produces at most six
micro-ops per cycle. The NexGen‘s Nx686 [6]
decoder architecture consists of two translators
of the same kind. These two translators are able
to convert two x86 instructions in parallel if
these two instructions respectively can be
translated into one or two micro-ops. If either of
the two instructions must be converted inio
more than two micro-ops, only the first
instruction is translated. The two translators can
generate up to four micro-ops per cycle. The
AMD*®s k5 [7, 8] decoder architecture consists

Proceedings of International Conference
on Computer Architecture

of four translators of the same kind. The
translator in k5 is named ROP. The ROP
converters can translate the x86 instructions into
one, two, or three micro-ops. Each ROP
converter produces a micro-op. The micro-
sequencer is used to translate the instructions
that must be translated into four or more micro-
ops. The four ROP converters together can
translate up to four x86 instructions.

The effectiveness of a decoder is measured
by the number of x86 instructions translated and
the number of micro-ops generated per cycle. In
this paper we propose an analytical method to
evaluate the performance of the decoder
architectures. Section 2 defines an abstract
model for the decoder architecture. Section 3
shows how Markov chains are employed to
evaluate the decoder‘s performance. Some
decoder architectures are investigated in section
4, The last section draws some conclusions.

2. Abstract Model of Decoder

Architectures

First, an abstract model of a more general
decoder architecture is derived from the Intel’s
p6 decoder architecture. The abstract model
shown in figure 1 consists of three types of
translators and a micro-sequencer. More types
can be included. We will use D(S(ZX), G(U,Y),

C(K,Z)) to denote the abstract model of-the
decoder, where S, G and C are the three types of
translators. Since every decoder has one micro-
sequencer, the micro-sequencer is not denoted in
the abstract model. The numbers of type S, C,
and G translators are respectively equal to 1, J,
and K. The type S translator can convert an x86
instruction into one to X micro-ops. The type G
translator can convert an x86 instruction into
one to Y micro-ops, and the type C translator
can convert an x86 instruction into one to Z
micro-ops. The following assumptions are made
for the abstract decoder model(fig. 1):

1. The number of x86 instructions sent to the
decoder is at most equal to [+J+K per cycle
and a translator can translaie only one x86
instruction per cycle.

2. The instructions sent to the decoder must be
in the order as they are in the cache.

3. Without loss of generality, it is assumed 0 <
X<Y<Z

4. If an instruction can be translated by an
available type S translator, it should not be
translated by the type G or C translator; if
an instruction can be translated by an
available type G translator, it should nof be
translated by the type C translator; if an
instruction can be

Instruction Cache
Decoder
] K)

o o Microcode
1 1 2 ; 2 Instruction
type S type G type C Sequencer

translator translator translator (MIS)

1~X 1~Y 1~2Z > Z

micro-ops
v 7

Micro-ops
v g

Micro-ops
v v

micro-ops
v K 2

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Hipwe L Abstract modal of a dacoder erchiissiire.

translated by an available type C translator, it
should not be translated by the micro-
sequencer. If an instruction can not be
translated by an available type C translator, it
will be passed over to the micro-sequencer. If
an instruction can be translated by any of the
three type translators, but none of them are
available, the instruction will be left
untranslated.

5. Let < lnstl, Instz,

instruction sequence, where M=I[+J+K. if
Insty , Re{2,...,M}, is the first instruction that

can not be {iranslated by any available
translator. The instructions Insip Insty, |, ...,

wry Insty, > be an

Inst,, are not translated. In this case, the

number of x86 instructions translated is equal
to R-1. If R is equal to I, Inst, is sent to the

micro-sequencer for translation and the
number of x86 instructions translated is equal
to /.

6. If <Inst, Inst, ..., Inst,, > is not the first

instruction sequence and the number of
instructions translated in the previous
instruction sequence is R, R&{1,2,..., M}, then
the first M-R instructions in the current
sequence are just those instructions Insip, |,

Instg, o ..., Inst ;, of the previously instruction

sequence, and the last R instructions are
fetched in order from the instruction cache.
Otherwise, the instructions of the first
mstruction sequence are fetched from the
cache.

The above assumptions imply some
hardware implementation complexity. For
example, the assumption 4 is based on the
provision of capability of precoding instructions
prior to storing the instructions into the cache.
The cache should also provide storage capacity
to save the precoding information. This
hardware implementation may influence the
delay on the critical paths. We assume the

115

designing of the machine’s micro architecture
has already taken this into account to minimize
the delay on the critical paths.

Because we are only concerned with
whether an x86 instruction can be translated by
a translator, a number x will be used to denote
an x86 instruction that must be translated into x
micro-ops. For example, the instruction
sequence < 3, 2, 2 > denotes the x86
instructions will be translated into a sequence, of
3 micro-ops, 2 micro-ops, 2 micro-ops.
However, if an x86 instruction must be
converted by the micro-sequencer, it will be
denoted by max(X, ¥, Z) +1.

Based on the abstract model, a particular
decoder architecture can be comstructed by
assigning values to I, J, K, X, ¥, and Z. For
example, if I=2, J=0, K=1, X=1, Y=2, and Z= 4,
this particular decoder has two type S translators,
no type G translator and one type C translator.
The type S translator can only convert an x86
instruction into one micro-op. The type C
translator can convert an %86 instruction jnto
one to four micro-ops. Those x86 instructions
that must be converted into more than four
micro-ops are translated by the micro-sequencer.
At most three x86 instructions can be translated
and at most six micro-ops are generated per
cycle. This particular decoder is equivalent to
the Intel‘s P6 decoder. Since there are only three
translators, an instruction sequence is denoted
by < Inst p Inst, Inst; >, where Inst, €

{1,2,3,4,5}), 1<h < M=I+J+K=3. If Inst, <4,
the x86 instruction represented by Inst, should
be translated into. fnst, micro-ops. If Inst, = 5,

the x86 instruction should be translated inio
more than four micro-ops.
An Insth in < Inst), Inst,, ..., Inst), > is

said to be effectively mapped if it can be
translated by an available translator. If the first
instruction Inst, is iranslated by the micro-

sequencer, it is also ireated as an effectively

Proceedings of International Conference
on Computer Architecture

mapped instruction. For each instruction
sequence, the decoder should always find out
the largest number of effectively mapped
instructions.

Example 1: Suppose the Intel‘s p6 decoder
D21, G@©2), C(,4) is considered.
According to the above assumptions, the
number of effectively mapped instructions for
the instruction sequences <1, 2, 1 >, <1, 4,
3 > <3 5 3 >and <35 2 4 > is
respectively equal to 3, 2, 1, and 1.

3. Markov Chain
Performance Evaluation

Approach to

Assume the occurrence- of a certain
instruction sequence depends on the instruction
mix measured in terms of the number of micro-
ops to which an x86 instruction should be
translated. If N denotes the smallest number of
micro-ops that can be generated by the micro-
sequencer, the instruction mix is defined as a
probability vector <y, ¥, ..., ¥y > suchthat

any given x86 instruction would be translated
into » micro-ops with probability y, for » < N. If

r = N, the given x86 instruction would be
translated into at least N micro-ops. Let S(D) =
{5, 85 .., s} be the set of different instruction

sequences < Inst, Inst, .., Inst,, > for a

decoder D, where the value of n = N s
determined by M, the number of translators and
N, the number of micro-ops generated by the

most complex translator. For the Intel‘s p6
decoder, N =5, M = 3, n = 125 and S(p6) = {s,,

So it 5125}.

Let x X, X5 . . ., X, be the instruction

sequences sent to the decoder D, where x,& S(D)

for 0 < i< k denotes the instruction sequence
processed by the decoder at time instant i. Then,
the average number of x86 instructions
translated by the decoder for the duration of £+

116

i EM(x,)
clock cycles is equal to -IiOT, where EM(x,)

is the number of effectively mapped instructions
for the instruction sequence x, For a long-run

process, we are interested in evaluating the

S EM(x)

expected value of pmH’T, i.e. to compute
o +

4
> EM(x,)
E(tim=0—).
(i =)
The instruction sequences x, x, X, . . .,

sent to the decoder can be treated as a sequence
of X, X ;» Xy . .. random variables that form a

discrete-time Markov chain [9] MC(V, P), where
V={v, v, ..., v} is the finite set of states. The
transitions among states satisfy the Markov
property, ie., P W, i+l =P(Xk+1=vt(k+1) |
sz":(k)' Xl_c-lzvt(k-l)’ SRR XJ:vt(I)’ on"t(w) =
PrX 1=V 1) | X=Vyy) » Where v, €V and 1(i)
is a function that gives the state number at time
instant i, 0< ;< k+1. The Markov property
implies that the transition from ome state to

another depends only on the current state and its
input. P o), k1) is called one step transition

probability from state Vi 10 Vi p) At time k. If

the instruction mix is not changed with time, the
one step ftransition probability will be.
independent of k. Thus we can write (k) = i,
t(k+1) =j, and Pi’j = Pr()(k+]=vj | X,=v,) for all
k 2 0. The matrix P=||P, _j|| is called state

transition probability matrix. According to the
assumption 6 made for a decoder, the state
transition probability between v; and v; is
defined as Vinst,, Yins - Vinst, » where R is the

Yirer
number of effectively mapped instructions for
the state v;. The instructions insty.g, inStyR+ 1, ..,
insty, are newly fetched from the cache and
serve as the (M-R)-th to the M-th instructions of
the state v;. It is clear that the state v,

corresponds to the instruction sequence s; and
vice versa. Thus, state and instruction sequence

will be used interchangeable unless specified
otherwise.

The initial probability vector of the Markov
chain can be easily obtained once the instruction
mix is given. For a given state < Inst), Inst,, ...,

Inst,, >, its initial probability is equal to
Vinst Vinst, - - - Yinst, - It can be shown that if none

of the y, in the vector < y,, y,, .., Yy > is zero, all
of the states in the Markov chain communicate.
If some of the y,‘s are equal to zero, the
instruction sequences that consist of instructions
denoted by the number » won't happen at all, i.e.
the initial probability of these sequences is equal
to zero. Thus, the states of the Markov chain can
be classified into two categories. The first
category consists of the instruction sequences
that do not contain any instruction which would
be converted into » micro-ops. The rest of
instruction sequences constitute the second
category. It can be shown that all the states in
the first category form a communicable subclass,
while all the states in the second category are
transient and no transitions from the states in the
first category to these states are possible. Only
the states in the first category have non-zero
steady state probability. The steady state
probabilities of those staies in the second
category are equal to zero. To find the steady
state probability distribution P, of a time-
mvariant, discrefe state and discrete time
Markov chain, one can solve the equation Py =
P, ¢ P, where e denotes the inner product of
mairix operation. In fact, Pw is one of the
eigenvectors of the transition probability matrix
P.Let P ~(0) = (P;(0), P(0), . . ., P,(0) denote
the initial state probability and the P, (k) =
(P,(%), Pyk), . .., P, (k) be the state probability

at time k. According to the theories of Markov
chain[9], if all the states v, of a Markov chain

communicate and are aperiodic, the Markov
chain has a steady state probability disiribution

Puc = }Cl_r& Pudk)=(R,PB,...,B). Then, the

117

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

average number of x86 instructions translated is

4
YEM(x)
equal to E(im=———)=Y A (v)02, where
R ‘(—_(_1 o !

EM(x,) and EM('vj) are respectively the number

of effectively mapped instructions for
instruction sequence x; and state v of the

Markov chain.

The Markov chain can be further simified
by bringing the equivalent states into the same
class. Any two states are said to be equivalent if
they have the same number of -effectively
mapped instructions, and have the same input
and output transition pairs. Two states are said
to have the same input and output transitions if
their output transitions are all the same for any
given input. The states in the same class will be
treated as a single state. Thus, the number of
states can be reduced considerably and the
computation of the steady state probability
distribution is easier. The Markov chain with
reduced number of states will be called a
reduced-state Markov chain. For a reduced-state

- Markov chain, the initial probability of a certain

class is simply the sum of initial probability of
the sates in the same class prior to state
reduction. The state transition probability of a
certain class to the rest of the classes is also the
sum of the transition probability of the states in
the same class to the rest of the classes prior to
state reduction. All the states of the reduced-
state Markov chain communicate if all the states
of the original Markov chain communicate. It
can be shown that if none of the y, of the vector
< y1, ¥a .., Yy > is zero, all of the states in the
reduced-state Markov chain communicate. In
case some of the y,‘s are equal to zero, this
situation is just the same as the original Markov
chain. Thus the steady state probability
distribution of the reduced-state Markov chain
can be computed just the same as the original
Markov chain.

The number of x86 instruction translated
by a decoder per cycle is one of the important
measures of the performance for an x86

Proceedings of International Conference
on Computer Architecture

compatible microprocessor. Beside this measure,
the average number of micro-ops generated per
cycle is also an important indicator. The average
number of micro-ops generated must be
comparable to the number of micro-ops that can
be consumed by the execution units. The
proposed method can also be employed to
compute the average number of micro-ops
generated per cycle. What we need to do is to
modify the definition of the equivalent states.
Two states are said to be equivalent if they
generate the same number of micro-ops and
have the same input and output transition pairs.
Thus, the state reduction can be performed to
simify the original Markov chain into a reduced-
state Markov chain. The steady state probability
distribution of the reduced-state Markov chain
can be computed as usual. However, associated
with each state is the probability that the number
of micro-ops would be generated by the decoder
at that state. Let m be the number of states for
the reduced-state Markov chain and OP(v,) be

the number of micro-ops generated at state i.
Then, the average number of micro-ops

generated per cycle is equal to 3 0p(v,)e £ , where

P, 1s the steady state probability of state 7.

4. Applications of the Proposed Method

More decoder architectures can be studied
by setting the values of 7, J, K, X, ¥, and Z for
the abstract decoder model D(S(IX),
G, Y),C(K,Z)). Consider the cases (I). D(S(2,1),
G(0.2), C(1,4), (D). D(S(1,1), G(1,2),C(1,3)),
D). DS, 1), G@3,2), C(0,3)), AV). D(S(0,1),
G(2,2), C(0,3)), (V). D(S(1,1), G(©0,2), C(2,3))
and (V). D(5(0,1), G(1,2), C(2,3)). Cases
(I), (I), and (IIT) all have three translators and at
most can generate 6 micro-ops per cycle. Cases
(IV), (V) and (VI) can respectively generate up
to 4, 7 and & micro-ops per cycle.

Table 1 shows the performance figures
obtained by the proposed method. The first

column of each case gives the average number
of x86 instructions translated per cycle (called
measure 1), the second column provides the
average number of micro-ops generated per
cycle (called measure 2), while the third column
gives

Inst. Mix (%) Case |
80, 10,05,2.5,2.5 2.656 3.652 3.320
75,15,05,2.5,2.5 2.562 3.651 3.331
70, 15,10,2.5,2.5 2.447 3.731 3.426
65,20,10,7.5,2.5 2.316 3.753 3.481
60, 20, 10, 05, 05 2.123 3.714 3.184
55,15, 15, 10, 05 1.994 3.889 3.390
50, 40, 05,2.5,2.5 1.892 3.170 2.933
45, 40, 05, 05, 05 1,741 3.222 2.786
40, 35, 15, 05, 05 1.624 3.248 2.842
35, 35, 20, 05, 05 1.516 3.183 2.804
25,25,25,15,10 1.321 3.434 2.773
Average 2.017 3.508 3.131
Inst. Mix (%) Case Il
80, 10, 05, 05 2.600 3510 2.990
75,15, 05, 05 2.596 3.634 3.115
70, 15, 10, 05 2.564 3.846 3.330
65, 20, 10, 05 2.555 3.960 3.449
60, 20, 10, 10 2.267 3.854 2.947
55,15, 15,15 2.010 3.819 2.613
50, 40, 05, 05 2.518 4.155 3.651
45, 40, 10, 05 2.464 4313 3.820
40, 35, 15,10 2.159 4210 3.346
35, 35,20, 10 2.085 4274 3.440
25,25,25,25 1.568 3919 2.352
Average 2.308 3954 3.187
Inst. Mix (%) . Case Il Case [V
80, 10, 10 2314 | 3.009| 2314 1.743 | 2.266 | 1.743
75,15, 10 2314 [3124 243 [11.743 | 2.353 | 1.83
70,15, 15 2.082 | 3.018) 2.082] 1.641 | 2.739 | 1.641
65,20, 15 2.08213.122) 2186} 1.641 | 2.461 | 1.723
60, 20, 20 1.895 | 3.031(1.894{ 1.552 | 2.483 | 1.552
55, 15,30 1.614 | 2.824 | 1.372}] 1.405 | 2.459 | 1.194
50, 40, 10 2.314 | 3.703] 3.009| 1.743 | 2.789 | 2.266
45,40, 15 2.082 | 3.539] 2.602|f 1.641 | 2.789 | 2.05
40, 35, 25 1.741 1 32211 1.9151 1.474 } 2.726 | 1.621
35, 35,30 1.614 | 3.147| 1.695{| 1.405 | 2.74 | 1.475
25,25,50 1.273 | 2.864 | 0.955(1 1.200 | 2.7 0.9
Average 1.939 | 3.146 | 2312 1.563 | 2.591 | 1.636
Inst. Mix (%) Case V Case VI
80, 10, 05, 05 2.608 | 3.521 | 2.999 {1 2.611 | 3.524 | 3.002
75, 15, 05, 05 2.604 | 3.645 | 3.125 1 2.611 | 3.655 | 3.133
70, 15, 10, 05 2.600 | 3.895 | 3.376]| 2.610 | 3.915 | 3.393
65,20, 10, 05 2.587 1 4.009 | 3.492 || 2.610 | 4.045 | 3.523
60, 20, 10, 10 2.293 | 3.899 | 2.981 {1 2.314] 3.933 | 3.008
55, 15,15, 15 2.063 3919|2681 [[2.079 | 395 |2.703

50,40,05,05 .] 2.525] 4.166 | 3.661 { 2.610 | 4.307 | 3.785

45, 40, 10, 05 2.491 | 4.359 | 3.861 || 2.610 | 4.567 | 4.045

40, 35,15, 10 2210 4.31 |3.426(12.312 | 4.508 | 3.583

. 35,35,20,10 2.174 | 4.457 | 3.588 |1 2.308 | 4.732 | 3.809

25,25,25,25 1.661 | 4.153 | 2492 }11.732 | 4.33 | 2.598

Average 2347] 4.03 |3.244 |1 2.401 | 4.133 } 3.326

Tabia 1 Porformancs messiro of dacaders

the average number of micro-ops generated by
translators per cycle (called measure 3).
Measure 3 does not include the micro-ops
generated by the micro-sequencer and is used to
evaluate the performance of the translators in a
decoder. We define the translating efficiency of
the translators as the average number of micro-
ops generated by the translators per cycle (i.e.,
measure 3) divided by the maximal number of
micro-ops that would be generated by the
translators per cycle. Thus, the translating
efficiency for all the cases are respectively 0.522,
0.531, 0.385, 0.409, 0.463 and 0.416.

Since the complexity and hardware cost of
each translator are not known to the public, we
will assume the amount of hardware used to
generate one micro-op is the same for all the
translators. Those machines that have the same
peak number of micro-ops generated per cycle
will be said to have the same hardware design
complexity. Thus Cases (I), (I), and (III) have
the same hardware complexity. On this basis,
Case (II) studied in [10] has the best
performance among the three cases in terms of
all the measures and the translating efficiency.
Note, two different micro-architectures may
have different micro-ops. Cares must be taken
for performance comparisons between two
different micro-architecture.

Case (I) which represents the Intel's p6
decoder also demonstrates excellent
performance. Especially, measure 2 is quite
stable and all the entries are greater than 3. This
is an excellent maich to the 3-issue capability of
the p6 execuiion units. Measure 3 and the
translating efficiency are also quite good. Note
that the average number of x86 instructions

119

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

translated per cycle in Case (I) is monotonically
decreased, while it is not true for the other cases.

Case (IV) has two type G translators, which
is quite similar to the NexGen‘s Nx686. It is
clear that the number of micro-ops generated
and the number of x86 instructions translated
are only sufficient for a superscalr processor
with two issues per cycle.

Case (V) and (VI) demonstrate that for two
different decoder architectures D; and D, if

D, covers D, then the performance of decoder
D, will not be worse than decoder D,. Thus
decoder D, can be.excluded from investigation

if the minimum decoder performance must be as
good as decoder D,'s. Decoder D, is said to

cover decoder D, if every translator of D, can
be covered by a distinct translator of D, A

translator T, is covered by a translator T, if

W(T)SW(T,), where the function IV denotes the

maximal number of micro-ops that can be
generated by a translator.

5. Conclusions

In this paper we proposed an analytical
method based on Markov chain to evaluate the
performance of the decoder that tramslates the
x86 instructions into their equivalent micro-
operations. The average number of x86
instructions translated and the number of the
micro-ops generated per cycle can be accurately
and effectively measured. In our studies, the
performance of decoder architectures for the
Intel‘'s p6’s and NexGen’s Nx686 is quite
matched to their superscalar capability.

References:

[1] S. Pupley, and J. Clyman, "P6: The Next Siep," PC
Magazine, September 12, 1995, pp. 102-118.

[2] T. R. Halfhill, "Intel's P6," BYTE, April 1995, pp. 42-
58.

[3] N. Stam, "Inside the P6," PC Magazine, September 12,

1995, pp. 118-137.

[4] L. Gwennap, "Intel's P6 Uses Decoupled Superscalar

Proceedings of International Conference
on Computer Architecture

Design: Next Generation of x86 Intergrates L2 Cache
in Packcge with CPU," Microprocessor Report,
February 16, 1995, pp. 9-15.

[51D. B. Papworth, “Tuning the Pentium Pro
Microarchitecture,” IEEE Micro; Apr 1996, pp. 8-14.

[6] L. Gwennap,"Nx686 Goes Toe-to-Toe with Pentium
Pro: NexGen Rolls Out First Competitor to Intel's
High-End Chip,"Microprocessor Report, Vol. 9, No.
14, October 23, 1995, pp. 1-10.

[7] D. Christie, “Developing the AMD-KS5 Architecture,”
IEEE Micro, Apr 1996, pp. 16-26.

[8] M. Slater, "AMD's K5 Designed to Outrun Pentium:
Four-Issues Out-of-Oredr Processor Is Firsi Member
of K86 Family," Microprocessor Report, Vol. 8, No.
14, October 24, 1994, pp. 1-11.

[9] W. Feller, "An Introduction to Probability Theory and
Its Applications," John Wiley & Sons, Inc., 1968.

[10] W. B. Jian, "A Method of Improving Translating
Performance in the CISC/RISC Hybrids," Master

Thesis, Department of Computer Science and
Information Engineering, National Chiao-Tung
University, Taiwan, R.O.C., 1996.

120

