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Abstract

The concept of zero-knowledge interactive proof
(ZKIP) scheme was first proposed by Goldwasser,
Micali and Rackoff in 1985. Since then many
practical ZKIP schemes have been proposed. One
common feature among all these schemes is that
the security of the schemes is based on factoring
or discrete logarithms. In 1991, Simmons pro-
poses an alternative practical ZKIP scheme whose
security is based on subset sum problem. How-
ever, there is a vei:y strong assumption existed in
the scheme, i.e., Simmons’s scheme would be se-
cure under the assumption that an indistinguish-
able box is existed. Unfortunately, nobody, in-
cluding Simmons, can tell us how to implement
the indistinguishable box until now. In this pa-
per, we propose a method to implement the in-
distinguishable box and then two concrete ZKIP
protocols whose security is based on knapsack
problem are proposed. It is shown that the pro-
posed indistinguishable box is very simple, flexi-
ble and secure in the applications of ZKIP proto-

cols.
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1 Introduction

In 1985, the concept of zero-knowledge interac-
tive proof (ZKIP) scheme was first proposed by
Goldwasser, Micali and Rackoff [6]. A ZKIP pro-
tocol is a protocol such that prover P can con-
vince verifier V about the validity of the secret
(or'witness). P knows while V learns nothing
(zero knowledge) about P’s secret after the pro-
tocol is completed. Goldwasser et al. pointed out
that a ZKIP scheme must satisfy the following

conditions.

1. Completeness: If P and V are honest and
follow the protocol, then there is a very large
probability that V believes P with the secret.

2. Soundness: If P is dishonest and V is hon-
est in the protocol, then there is very 1arge
probability that V does not believe P with

the secret.

3. Witness hiding: P cannot reveal any infor-
mation about his/her secret to V, ie., V is
not able to learn anything from P even if P

1s honest.

Since then, many ZKIP schemes have been
developed by using different mathematical as-
sumptions, e.g., discrete logarithms or factor-

ing. Among them, Fiat and Shamir [5] proposed
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the first provably and practical secure identifi-
cation and signature scheme (the well-known FS
scheme) whose security is based on the difficulty
of computing square roots modulo a composite n
when the factorization of n is unknown. A faster
ZKIP scheme whose security is also based on the
difficulty of factorization problem is developed by
Guillow and Quisquster [7]. Here, their scheme is
called GQ scheme. GQ scheme is faster than FS
schemne by a factor of three in the computation
required. Therefore, GQ scheme is more suitable

for the applications of smart cards.

Independently, another practical ZKIP scheme
based on the discrete logarithms problem had also
been developed by Chaum et al. [2]. Chaum et
al. presented an improved identification scheme
[3] based on some generalizations of discrete log-
arithms problem, e.g., multiple discrete loga-
rithms, relaxed discrete logarithms and simulta-
neous discrete logarithms. Later, an identifica-
tion scheme based on the concept of ZKIP and
ElGamal scheme [4] was developed by Beth [1].
It is also claimed that th‘e. scheme was also suit-

able for the applications of the smart cards.

Recently, Simmons [10] proposed a new ZKIP
scheme whose security is based on another cryp-
tographic assumption, i.e., the subset sum prob-
lem (or knapsack problem). However, Simmons
gave nothing about how to implement his ZKIP
scheme since there needs an indistinguishable box
satisfying homomorphism under addition opera-
tions in his ZKIP protocol. In this paper, we
will propose two methods to implement the indis-
tinguishable box satisfying homomorphism under
addition operations, and use the proposed boxes

to implement the Simmons’s ZKIP scheme.

The rest of the paper is organized as follows. In
Section 2, we first review the Simmons’s scheme
briefly. In Section 3, a concrete implementation

of Simmons’s ZKIP scheme is proposed. The se-
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curity analysis of the proposed ZKIP is also in-

cluded. An another effective ZKIP scheme whose

 security is also based on the knapsack problem

is also proposed in Section 4. Finally, we make

some conclusions in Section 5.

2 Review of Simmons’s

Scheme

Before presenting our implementation, we will
give a brief description on the Simmons’s scheme
[10] in this section.

2.1 The Subset Sum Problem

Firstly, we introduce the subset sum problem (or
knapsack problem) before we discussed the Sim-
mons’s scheme. In general, subset sum problem
can be defined as follows:[8]

Given a set of values, Uy, Uz, -+, U,, S and
then compute 1, z2, -+, Tn, x; € {0,1} for all

1 <7 < n, such that

S = Ui+ zUs+- -+ 2,U,.

It is well-known that the knapsack problem
is an NP-complete problem, ie., given U =
{U1,Us,---,Up} and S, it
ally infeasible for anyone to compute X =
vzn}, ¢; € {0,1} for all 1 < 7 < n,

is computation-

{z1,23,
such that S = X - U.

2.2 The Simmons’s Scheme

Given a public sequence A = {ay,a2---,a,},
has X =
{z1,22,---, 2} with weight W(X) = % such
that P’s public key S satisfying S = ), zja; =
X-A. Let g be an indistinguishable box satisfying
g(X-AR)y=X -g(A k) =3, zig(a;, k), where k

is a random number. Let Q be the set of permu-

assume P (the prover) secret

tation of n elements. Obviously, the cardinality



of the set £2-is n!. Simmons’s ZKIP protocol can
be described as follows.
Simmons’s ZKIP protocol

Repeat the following steps ¢ times.

1. P randomly chooses a permutation # € Q
and a random integer k, then P finds A/ =
{9(ai, k)|a; € A}.

2. P sends w(A’) and S5’ = g¢(S,k) to V (the

verifier).

3. V asks P to do the following two things by
b=0orb=1.

© When 6 = 0 : P sends & to V, and V
checks whether g(a;, k) € n(A’) for all
a; € A and ¢g(S, k) = 5’ are satisfied or

not.

¢ When b = 1: P sends 7(X) to V, and
V check whether n(X) - 7(A') = ' is

satisfied or not.

If the condition is hold for all ¢ times, then V
accepts that P is honest, 1.e., P knows the secret
X. Otherwise, P is an impostor. The probability
that V accepts P who is an impostor is at most
2~

3 The Implementation of
Simmons’s ZKIP Scheme

Although Simmons had shown that his scheme is
a ZKIP scheme in [10]. However, the security of
the Simmons’s scheme is based on the assumption
Unfortu-

nately, nobody including Simmons can tell us how

that the indistinguishable box exists.

to implement the indistinguishable box, i.e., the
function g such that g(X - A, k) = Y, zig(a;, k)
and we cannot distinguish a; from g(a;, k) when
A = {ay,a2-,a,} is given and k is unknown.
Here we try to propose two concrete implemen-

tations of indistinguishable box such that above
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conditions are satisfied. The first proposed func-
tion is that g(a;, k) = (a;k mod p) mod ¢, where
p and ¢ are primes with 2n bits and n bits, re-
spectively, a; (1 < ¢ < n) are public integers with
n bits and k& is a random integer with 2n bits. Us-
ing the indistinguishable box, we will implement

Simmons’s ZKIP scheme as follows.

3.1 The new scheme

Let |y| denote the number of bit of an integer y, 2
denote the set of permutation of n elements and
g(, ) be the function as defined above, i.e., the
indistinguishable box needed in the Simmons’s
ZKIP protocol.

quence A = {aj,as, -

In this scheme, a random se-
an}, a; € (1,27),1 <
t < n, is known by all users. In addition, a prime
g whose length is n is public to all users. Note
that it is computationally infeasible to find the
subset sum problem in A since the sequence A
does not need any assumption, e.g., superincreas-
ing sequence needed in Merkle-Hellman scheme
[9]. ‘Let p be a prime such that |p| = 2|¢| =
2|maz{a;}| = 2n, k be a random integer such
that £ € {1,2,---,p— 1}. Now, we describe our
concrete ZKIP protocol as follows.

Suppose P has his secret X = {z1, 22, -, 2},
where z; € {0,1} for all 7, and P has his public
information S = E?:l z;a;. P wants to prove to

V that he knows the secret X.

Protocol 1: Repeat the following steps # times.

1. P computes r; = (a;k mod p) mod ¢ for all i

~,Tn) = {7";_,7‘:2,"',7’:1},

where k and p are random integers as defined

and R = w(ry,ra, -

above and # € Q. P also calculates Z =
(Sk mod p) mod g.

2. Psends Rand Z to V.

3. V gives P a challenge with b=0or b = 1.
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4. P sends parameters k and p to V,if b = 0.
Otherwise, P sends X! = w(z1, 22, ,%,) =

(z},z5, -, z,) to V.

5. If b = 0, V checks whether (a;k mod p) mod
g € R for all { and Z = (Sk mod p) mod
If all of them are hold, then V

can confirm that P knows exact information,

¢ or not.

otherwise P is a trickster.

Ifb=1, then V computes X' - R L Z 4+ ¢q,
where 0 < ¢ < & — 1. If it is satisfied , then
V can be convinced that P knows the secret
X = {z1, 22,

is a swindler.

-+, &y} exactly. Otherwise, P

In Lemma 1, we will explain how V can be con-
vinced that P knows the secret X.
Lemma 1: If P and V follow Protocol 1, then V
always accepts the proof is valid.
Proof: Now, we divide Protocol 1 into two parts
to discuss the correctness of Protocol 1 with re-

spect tob=0or b= 1.

e In the case of b= 0:
When P replies the correct £ and p to V, then

it is obviously

(aik mod p) modg € R
and Z = (Sk mod p) mod g.

(1)
)
If both Eq.(1) and Eq.(2) are hold, then V

can confirm that P knows exact information.

for all 7,

Otherwise, P is a trickster.

e In the case of b=1:
After V receives X’ from P, the V will com-
pute

X R = u(e,z2,--

n
= E T;r;
i=1
n

= Z z;[(a;k mod p) mod q]

i=1

',SL’n)"IT(Tl,T'z,"‘,Tn)
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(Z a;z;k mod p) mod q + cq
i=1

_ 2
Z 4+ cq, where ¢ = [&==1—](3)

Since r; < gand z; € {0,1} forall 1 < i< n,
we have 0 < ¢ < wi(X) = %, where wt(X)
is the weight of X. If Eq.(3) holds, then V
can be convinced that P knows the secret
X = {z1,2s, -

is a swindler. 8

-, &, } exactly. Otherwise, P

Now, we use Example 1 to explain Protocol 1
more clearly.
Example 1: Let X = {1,1,0,1,0,0}, A =
{39,17,32,41,28,50}, p = 61 and ¢ = 7. Now,
we follow these information to finish the Protocol

1.

Step 1. P chooses k = 5 and 7 = (135246).
Then, P computes r1 = 5, ro = 3, r3 =
3, 4 = 1, 75 = 4, r¢ = 6. Therefore,
R = {6,4,53,3,1}, S = 97 and Z =

(97 x 5 mod 61) mod 7 = 2.

Step 2. P sends R = {6,4,5,3,3,1} and Z = 2
to V.

Step 3. Psends £k = 5, p =6l and ¢ = 7 to
V when b = 0. Otherwise, P answers X/ =
{0,0,1,1,0,1} and ¢ =7 to V.

Step 4. If b = 0, V checks (39 x 5 mod 61) mod
7 =15, (17 x 5mod6l)mod 7 = 3, (32 x
5 mod 61) mod 7 = 3, (41 x 5 mod 61) mod
7 =1, (28 x 5mod 61) mod 7 = 4, (50 x
5 mod 61) mod 7 = 6. It can be checked that
allr; € Rand (97x 5mod 1) mod 7=2=
Z.
If b =1, then V computes

XE = (01011111071)‘(674:51373:1)

5+34+1=9=2+1x7,

Where0§621§%—1:2. If all of them

are satisfied, then V accepts P’s proof.



3.2 Security of Protocol 1

The security of our scheme is based on the fol-
lowing two problems. One is that knapsack prob-
lem must be NP-complete problem and the other
is that the function g must be an indistinguish-
able box. The former is true since we let A =
{a1,as, -+, a,} be arandom sequence, i.e., A has
no any assumption like superincreasing structure
[9]. The later ought to be true since given R =
w(r1,72, -+, 7n), where r; = (a;k mod p) mod ¢,
finding the corresponding a; seem to be infeasi-
ble without knowing £ and p. We have imple-
mented the low-density attack proposed by La-
grias and Odlyzko [8] for breaking any low-density
knapsack problem, e.g., Merkle-Hellman knap-
sack public key cryptosystem [9] in our labora-
tory. However, it is shown that it cannot be used
to attack Protocol 1 successfully. Thus, we have
the following conjecture.
Conjecture: Let R = n(ry,re, - -,7,), where
r; = (a;k mod p) mod ¢, a; € A ,where A, 7, k,p,
and ¢ are defined as in our scheme. Then given
R and g, it is infeasible to find the corresponding
a; when k and p are unknown.

Although the conjecture which can resist low-
density attack does not imply it 1s secure. How-
ever, as far as we know, there is no obvious weak-
ness in this conjecture. Based on above conjec-
ture, we give the following theorem to analyze the
security of our scheme.

Theorem 1:

(a). If P knows X, then V is always able to con-
firm P’s identity.

(b). If P does not know the secret X, then the
probability that V will accept P’s identity in

this protocol is at most 27¢.

(¢). V cannot learn anything from P after Pro-

tocol 1 is finished even if P is honest.
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Proof:

(a). It follows from Lemma 1 directly.

(b). Similar to the proof given by Simmons, if P
does not know the secret X then at each time
in Step 4 of Protocol 1, P cannot answer V
with the exact information if P cannot guess
the status of b correctly. Hence, the proba-
bility that P passes each round in Protocol
1 1s at most % if V is honest. Since Protocol
1 contains t independent rounds, the prob-
ability that P passes Protocol 1 is at most
2t

(c). If P is honest, then V cannot learn any infor-

mation about the secret X from P regardless

of the status of b.

e In the case of b =0
V will receive parameters £ and p from
P, then V can get the information about
permutation 7 from Eq.(1). However, 7
is a random permutation which is inde-
pendent of X. Since V does not know
7(X), thus, V knows nothing about X

from parameters k, p and q.

e In the caseof b=1:
V knows X' = n(z1, 22, -, 2,). How-
ever, since V does not know the permu-
tation m unless V can solve the subset
sum problem from A and S or R, ¢ and
Z. Thus, V knows nothing about X ex-
cept |X'| = |X| = %

sum problem in A and R is infeasible.

if solving subset

But, |X| = % is known by V in advance.

Hence, the witness hiding is hold.

Therefore, V is not able to learn anything

from P even if P is honest. 2
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4 ZKIP Scheme Based on
Subset Sum  Problem
With Multiplicative

Property

In above section, we have proposed a new ZKIP
protocol based on subset sum problem by using
different modulus to implement the distinguish-
able box in Simmons’s scheme [10]. Here, an-
other ZKIP scheme will be developed which is
also based on the same cryptographic assump-
tion with multiplicative property to replace the
function of using the different modulus. The sec-
ond scheme proposed in this paper uses the multi-
plicative property to realize the indistinguishable
box needed in Simmons’s scheme. Therefore, this
new scheme is not only achieving the same secu-
rity as Simmons’s scheme but also being a prac-

tical and flexible scheme.

4.1 Notations and Setting Up
Phase
Let p1, p2, - -, Pn and p be large primes known by

all users in the system such that p > p; for all ¢
and Q be the set of permutation of n elements. P
computes M = [];_, p{* mod p as his public key
,za}, 2 € {0,1} for all 1,
is his secret. It is assumed that P’s public key M

where X = {21, 22, -

is authenticated by V in advance.

Protocol 2: Repeat the following steps ¢ times.

1. P randomly selects an integer r € Z,\{0}
and computes ¢; = pf mod p, M’ = M" mod
pforall 1 <4 < n, and then P sends Q =

{41, 45 -, ¢} = 7(q1,4q2, - -, ¢n) and M’ to
V.

2. V gives P a challenge with b=0o0r b = 1.

3. P sends some required elements to V which

depends on the status of b.
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e If b =10, then P answers r to V.

eIf b = 1, then P replies X' =
{z},25, -,z } = 7(®1,20,- -, 2,) toO
V.

4. If b= 0, V checks whether p] mod p € Q for
alll1 <7< n,and M" mod p = M’ or not. If
they are satisfied, then V accepts P’s proof.
If 8 = 1, V checks whether M’ <
H?zl(;r(qi))"('“) mod p or not. If it is sat-
isfied, then V accepts P’s proof.

Now, we use Lemma 2 to show the complete-

ness of Protocol 2.

Lemma 2: If P and V are honest and follow the

protocol, then V will always accept the proof is
valid.
Proof: Now, we divided Protocol 2 into two

classes to discuss with respect to b =0 or b = 1.

(i). P sends r to V when the challenge is ”b = 0”.

It is obvious that

M™ modp=M'

and p: mOdp € W(Qh‘lﬂ: o '1Qn)

If Eq.(4) and Eq.(5) are hold, then V can
corroborate that P knows the secret exactly,

otherwise V assumes that P is an impostor.

(ii). If b = 1, then V will receive the informa-
tion X' = m(z1, 29, -+, z,) from P and it is

obvious that

Q% = T[l(n(a:)") mod p
i=1
= gt g modp
z M (6)

If Eq.(6) hold, then V makes certain that P

knows the secret, otherwise P is a cheater. B

We use Example 2 to further illustrate Protocol
2.

for all 7. (5)



Example 2: Let p1 = 5,pa = 7,p3 = 11,p4
13,ps = 17,p6 = 19 and p 101. I X
{1,1,0,1,0,0}, then M = 5 x 7 x 13 = 51 mod

101. Now, the Protocol 2 runs as follows.

Step 1. P chooses 7 = 3 and m = (135246).
Then, P computes (q1,92,93,494,¢s5,96)=
(24,40,18,76,65,92), Q = {92,65, 24, 40, 18,
76}, M’ =51° mod 101 = 38 and then sends
Qand M'to V.

Step 2. P sends r = 3 to V when b = 0. Other-

wise, P answers X’ = {0,0,1,1,0,1} to V.

Step 3. If b = 0, V checks (5% mod 101) = 24,
(7% mod 101) = 40, (112 mod 101) = 18,
(133 mod 101) = 76, (17% mod 101) = 65,
(19° mod 101) = 92 are € R and (51 mod
101) = 38.

If b =1, then V computes

QXL = 2440 x 76 mod 101

38.

I~ 1l

If all of them are satisfied, then V accepts
P’s proof.

4.2 Security of Protocol 2

The security of protocol 2 is based on the follow-

ing problem.

Problem 1: Given primes py,p2,---,p, and p
and an integer M satisfying
n
M= pr‘ mod p, (7
i=1

where z; € {0,1} forall 1 < i < n. Find X =
(z1,2,: -, 2z,) such that Eq.(7) is hold.

Let a be a primitive root modulo p. If discrete
logarithm problem over GF(p) is feasible, then

there exist integers ay,as,- - -, a, and s such that

Di
and M =

a“modp, foralll1<i<n,

a’® mod p.

97

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Then Eq.(7) can be rewritten as

n
M = o :pr‘ mod p
i=1

n
= H adics 3% mod p.

=1

(8)

Thus, Problem 1 can be described as that given
integers aj,as,---,a, and its subset sum s, find
X = (21,23, -+,2,) such that s = 3" a;z;.
Obviously, it is a subset sum problem if discrete
logarithm problem over GF(p) is feasible.

We propose two possible attacks on protocol 2.
Both of them can not attack protocol 2 success-
fully.

Attack 1: An impostor P’ chooses r and = ran-
domly, then he computes Q and M’ to follow the
protocol 2. If the challenge given from Vis b =0,
then P’ passes the protocol this time. However, if
b =1, then P’ faces with Problem 1, i.e., given Q
and M’ finding X’ such that g& = M' mod p.

Attack 2: An impostor P’ randomly chooses Q,
X', and M' such that g& = M’ mod p is sat-
isfied. If the challenge is b = 1, then P’ passes
the protocol this time. However, if b = 0, then P’
have to find an integer r such that p;mod peQ
forall 1 <i<nand M' = M" mod p. We con-
Jjecture that this problem should be harder than
solving discrete logarithm problem over GF (p).

Based on above discussions, we have the follow-
ing theorem. Its proof is similar to the proof of

Theorem 1 and we omit it here,

Theorem 2:

(a). If P is honest, then V is able to confirm P

knows the secret.

(b). If P does not know the secret set, then any
cheating by P in Protocol 2 will be detected
by V with probability at least 1 — 2-¢.

(c). Visnot able to grasp any information about

X from P even if P is honest.
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5 Conclusion

In this paper, we have proposed two methods
to implement the indistinguishable box needed
in the Simmons scheme. Using the proposed in-
distinguishable box, we give two concrete imple-
mentations of Simmons’s ZKIP scheme whose se-
curity is based on subset sum problem. To our
best knowledge, there is no such an indistinguish-
able box to be proposed until now. Same as the
method proposed by Fiat and Shamir [5], it is
easy to modify the identification schemes pro-
posed in the paper to digital signature schemes.

However, we do not intend to discuss it here.
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