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Abstract

In this paper, we define an equivalence relation
on the group of all permutations over the finite field
GF(2") and show each equivalence class has common
cryptographic properties. And, we classify all ezpo-
nent permutations over GF(27) and GF(2%). Then,
three applications of our results are described. We
suggest a method for designing nx2n S(ubstitution)-
bozes by the concatenation of two exponent permuta-
tions over GF(2") and study the differential and lin-
ear resistance of them. And we can easily indicate
that the conjecture of Beth in Eurocrypt’93 is wrong,
and discuss the security of S-boz in LOKI encryption
algorithm.

1 Introduction

Usually, the total security of block ciphers could
be strengthened by iteration of substitution and per-
mutation functions in their internal structure. The
main necessary conditions for strong permutations
are high nonlinearity, high algebraic degree, and re-
sistance against the differential analysis [4] and the
linear cryptanalysis [11] in a cryptographic sense. A
special type of exponent permutations with high non-
linearity, high algebraic degree, and good property
against differential and linear cryptanalysis was pro-
posed in [13].

In this paper, we define an equivalence relation on
the group of all permutations over finite field GF(27).
And we prove that if we restrict the equivalence class
on the group of all exponent permutations, the re-
stricted set 1s equal to the residue set modulo cyclic
group <z?> on the group of all exponent permu-
tations, and show that each equivalence class has
common cryptographic properties. Then, we classify
all exponent permutations over GF(27) and GF(28)
by computer search. As the application of our re-
sults, we propose the design method of nx2n S-boxes
by concatenation of two exponent permutations over
GF(2") and analyse their cryptographic properties.
And through our classifications, we find a counterex-
ample of the conjecture of Beth in Eurocrypt’93 2]
and we clarify the cryptographic strength of S-boxes
used in LOKI encryption algorithm [5, 6].

2 Classification of exponent Permuta-

tions over GF(2")

Denote by P, the set of all permutations over the
finite field GF(2"). A polynomial z¢ over GF(2")
1s a permutation if and only if ged(e, 2"—1)=1, and
we call such a polynomial an exponent permutation
over GF(2"). The set of all exponent permuta-
tions over GF(2") is denoted by £P,,={z®| ged(e, 2" —
1)=1,z € GF(2")}, For permutations f(z) and g(z)
over GF(2"), the composite permutation h(z) =
f(xgog(m) is defined by h(z) = f(g(z)) mod (2*" —2).
Under this operation o, P, is a group, and £P, is
an abelian subgroup of P,. For z°,z% € £P,,
z = z° if and only if e; = ey mod (27 —1). The
following theorem is one of the basic in the finite field
theory.

Theorem 1 [10] The set of automorphisms over
GF(2") fizing any elements in GF(2) is a subgroup
of the automorphism group over GF(2™), and is equal
to the cyclic group generated by Frobenius automor-
phism. That 1s,

G(GF(2")/GF(2)) = < z* > .

where G(GF(2")/GF(2)) means the set of all au-
tomorphisms over GF(2") fizing any elements in

GF(2).

Corollary 1 The set of all linear permutations in
EPr is the cyclic subgroup < 22> C £EP,,.

Now, we define a relation on the set of permutations
over GF(2").
Definition 1 For

P =(p1,-,pn), @ = (1, ", qn) € P, we define
a relation on P, as follows :

P~Q if there exists an nxn non-singular mairiz
A satisfying P=L, o Q,

where Ly is a linear transformation of a matriz A.

In a view of component functions, the above relation

can be written as follows :

P~Q if there exists a non-singular matric A=(a;;)
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EGL,(GF(2)) such that p; Z?:I aijg;j,
1<i<n, where p; and q; are component
functions of P and @), respectively.

Lemma 1 The relation defined in definition 1 is an
equivelence relation.

Since the relation defined on definition 1 is an equiv-
alence relation, P, = Upep, P, where P = {Q €

P, | P~ Q}, and P,/ ~={P | P € P,}. Natu-
rally, we can define a set £EP,/ ~ by EP,/ ~= {z¢N
EPn |2° € EPL}. For 281 NEP,, 22NEP, € EP,/ ~,
define an operation % on EP, [ ~ as (z°1NEP, )x(z%2N
EPp) =z%1 0252 NEP,. Then, * is a well-defined op-
eration, for £P, is an abelian group. Hence, £P,/ ~
is a group.

Theorem 2 Let 2° € EP,. Then Z6NEP, =< 22 >

z°.

Proof. By Corollary 1, < 2? > z¢ C 2° N EP,.
Conversely, for y € ©® N EP,, there exist a non-
singular matriz A and an integer i such that y =
Lioz® andy = z'. By Corollary 1, for some k,
Ly =z'¢=z2* Hence, the converse is also true.

(]

By theorem 2, it is clear that £P,/ ~ = &P,/ <
22> and | EPn/ ~| = £2=1 where ¢ is an Euler
function.

Now, we consider the cryptographic properties of
exponent permutations over the finite field GF(2").
Using the cryptographic properties and the equiva-
lence relation defined in definition 1, we can classify
exponent permutations over GF(2"). First, we prove
that exponent permutations in an equivalence class
have same non-linearity and same algebraic degree.

Lemma 2 Let P(z) = z° be an ezponent permuta-
tion over GF(2"). Then ‘

1. the algebraic degree of any linear combinations of
component functions of P(x) is wi(e).

2. the non-linearity of any linear combinations of
component functions of P(z) has the same value.

Proof. The proof of 1 is well-known [7]. Since P(z) =
z° is a permutation and ged(e, 2" —1) = 1, there exist
11,2 € Z such that t1e +¢2(2" — 1) = 1. Therefore,
for any z € GF(2"),

T = :Dl — ($2"—1)t2(we)t1 = (me)tl — P(:l!)tl.

Let p;(x) be any linear combination of component
functions of P(z). Then, for some a; € GF(2"), the
Jollowing equations hold [10] :

= Tr(e;P(z))
Tr(P(as) P(z))
Tr(P(ei'z)).

pi(z)
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Therefore, if we define A; : GF(2") — GF(2") as
Ai(z) = a?‘a:, the non-linearity does not change, for
pi=TroPoA;, and A; is a inear function. Hence,

NPk = NTroP~
(]

Since the algebraic degrees and non-linearities of
any linear combination p;(z) of component func-
tions of P(z) are equivalent, we denote deg(P(z)) =
deg(pi(z)) and Np = N,,. By Theorem 2 and Lemma
2, the following is easily obtained.

Theorem 3 For P,Q € EP, and P ~ @, we have
1. Np = NQ,
2. deg(P) = deg(Q). -

Let P be a permutation with n input variables which
we want to cryptanalysis. If we use the differential
cryptanalysis method [4], we will need non-empty sets

Dp(a,b) = {x € GF(2)"|P(z ® a) ® P(x) = b},

where a # 0. The efficiency of differential cryptanal-
ysis based upon a set Dp(a, b) is measured by its car-

dinality
ép(a,b) = #Dp(a,b)

Similarly, if we use the linear cryptanalysis method
[11], we will take advantage of sets

Lp(a,b)={z € GF(2)"|(a-z)® (b P(z)) = 0},

where b # 0. The efficiency of linear cryptanalysis
that uses the set Lp(a,b) is measured by the discrep-
ancy between the cardinality of Lp(a,b) and the av-
erage cardinality

’\P(a’ b) = #LP(a) b) - 2n-—1 .

Hence the resistance of permutation P can be mea-
sured by :

Ap=maXexo, 6p(a,b) for differential cryptanalysis,
Ap=max, pz0 |Ap(a,b)| for linear cryptanalysis.

The lower these values are, the more resistant the per-
mutation P will be against the. corresponding crypt-
analysis method. If Ap = §, then P is said to be
differentially §-uniform. If Ap is minimal, P is differ-
ential resistant. By the same way, if Ap is minimal,
P is linear resistant [8]. By [13], [17] and Theorem 3,
we can obtain the following major results.

Theorem 4 For P,Q € £P, with P ~ @, the fol-
lowings are hold

1. Ap=Ayg,
2. Ap = Ag.
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Table 1: The known results of algebraic degree of P, Ap and Ap, where P=z® in GF(2")

P deg(P) | Ap Ap conditions
g2+l 2 2 | 2731 | s=ged(n, k)
2 is odd
()t [ 2l | 2 | 2% | ged(n,k)=1
n is odd
! ‘n—1 2 >27 | nisodd
z~! n—1 4 >27 | niseven

Table 2: Exponent permutations over GF(27)

class | algebraic degree | non-inearity | A | A Exponent
P1 2 56 2 8 3 6 12 24 48 66 96
P2 2 56 2 8 5 10 20 33 40 66 80
P3 2 56 2 8 9 17 18 34 36 68 72
P4 3 44 6 |20 7 14 28 56 67 97 112
P5 3 56 2 8 (11 22 44 49 69 8 98
P6 3 56 2 8113 26 35 52 70 81 104
P7 3 44 4 (20119 25 38 50 73 76 100
P8 3 44 6 [20) 21 37 41 42 74 82 84
P9 4 56 2 8 (1156 30 71 99 113 120 160
P10 4 56 2 8 |23 46. 57 75 91 101 114
P11 4 56 2 8 ||27 51 54 77 89 102 108
P12 4 56 2 8 (|29 39 58 78 83 105 116
P13 4 56 2 8 |43 45 53 8 8 90 106
P14 5 44 6 12031 62 79 103 115 121 124
P15 5 44 4 12047 61 87 94 107 117 122
P16 5 44 6 12055 59 91 93 109 110 118
P17 6 54 2 |10 63 95 111 119 123 125 126
P18 1 0 128 | 64 1 2 4 8§ 16 32 64

So, we have the result that exponent permutations in
an equivalence class have same Ap and Ap.

In [13], for a special type of exponent permutation
P = z¢ in GF(2"), the algebraic degree of P, Ap
and Ap are well-verified. We summarize the results
in table 1.

Now, we classify the exponent permutations over
GF(27) and GF(2®) by the equivalence relation de-
fined in definition 1. The table 2, we describe the
results of classification of the exponent permutations
over GF(27%. In table 2, the classes (P1, P13), (P2,
P11), (P3, P9), (P4, P16), (P5, P6), (P7, P15), (P8,
P14), and (P10, P12) have inverse function of each
others, and exponent permutations in the class P17
are equivalent to z~!, and the permutations in the
class P18 are linear. Among exponent permutations
over GF(27), exponent permutations in the classes
P9, P10, P11, P12, P13 are the best, and linear and
differential resistant.

And, the table 3, we describe the results of clas-
sification of the exponent permutations over GF(28).
In table 3, the classes (P1, P5), (P2, P7), (P3, P12),
§P4, P11), (P6, P13), and (P10, P14) have inverse

. function of each others, and the permutations in the
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classes P8 and P9 have inverse function in each class,
and the exponent permutations in the class P15 are
equivalent to z~!, and the permutations in the class
P16 are linear. Among exponent permutations over
GF(28), exponent permutations in the class P15 are
the best.

3 Applications

In this section, three applications of the results in
the previous section are described.

3.1 Design of nx2n S-boxes

As the first application, we propose a design
method for nx2n S-boxes by the concatenation of
two exponent permutations over GF(2"), and anal-
yse the differential resistance and linear resistance of
them. And, we simulate both Ag and Ag, where S is
an 8x16 S-box which has a concatenated form of two
exponent permutations over GF(28).

For an nxm S-box S, Az > max(2,2"~™). It was
shown in [12] that for n > m the minimum differen-
tial uniformity 2”~™ is reached if and only if n > 2m
and n is even. Such S-boxes are called perfect non-
linear and they are the same as the bent functions



Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Table 3: Exponent permutations over GF(28)

class | algebraic degree | non-hinearity | A A Exponent
PI 3 96 6 32 7 14 28 56 112 13T 193 224
P2 3 96 10 | 32 11 22 44 88 97 133 176 194
P3 3 96 16 | 32 13 26 52 67 104 134 161 208
P4 3 104 16 | 24 19 38 49 76 98 137 152 196
P5 3 96 6 32 37 41 73 T4 82 146 148 164
P6 4 96 16 | 32 23 46 92 184 113 139 197 226
PT 4 96 10 | 32 29 58 71 116 142 163 209 232
P8 4 80 30 | 48 43 8 89 101 149 172 178 202
P9 4 96 16 | 32 53 77 83 106 154 166 169 212
P10 5 112 16 | 16 31 62 124 143 199 227 241 248
P11 5 104 16 | 24 47 94 121 151 188 203 229 242
P12 5 96 12 | 32 59 103 118 157 179 206 217 236
P13 5 96 16 | 32 61 79 122 158 167 211 233 244
P14 5 112 16 | 16 91 107 109 173 181 182 214 218
P15 7 112 4 | 16 || 127 191 223 239 247 251 253 254
P16 1 0 256 | 128 1 2 4 8 16 32 64 128

[14]. Any S-box with n > m has more input vec-
tors than output vectors. This necessarily means that
there will be at least one case where two or more in-
puts are mapped to the same output i.e., where one
or more input XORs have an output XOR of zero.
The weakness with having such an S-box is that such
cases have a fixed, non-negligible probability of oc-
currence which may be exploited in a characteristic
and used in differential cryptanalysis. This would be
true for any DES-like cryptosystem. In fact, in [3],
it could be generalized to show that bent function-
based S-boxes would have a weakness for any n > m.
In particular, in 3], it has observed that if 6:x4 bent
function-based S-boxes were to be used in DES [15],
then DES could be broken using approximately 23°
chosen plaintext pairs. This is because such S-boxes
would have equiprobable §g(a,b), meaning that “the
input XORs which modify only private input bits of
. the S-boxes may cause zero output XOR with non-
negligible probability” [1]. If n < m, this avenue of
attack is typically not available because each input
can be mapped to a unique output. In fact, the way
to use injective S-boxes such that the number of out-
put bits of the S-box is sufficiently larger than the
number of input bits reduces 6g(a,b) of the S-box.
Some proposed block ciphers, such as CAST [1] and
Blowfish [16], take advantage of this property.

And, in [18], the size of As was theoretically es-
timated, where S is a randomly selected injective S-
boxes. And, by a simulation, it was compared theoret-
ical estimate with simulation results for 8 xm injective
S-boxes, when m > 8.

By the concatenation of two exponent permuta-
tions Pi and Pj over GF(2™), we can obtain an nx2n
S-box, i.e., S(z) = (Pi(x), Pj(z)). Clearly, such an
S-box is injective. The following theorem 1s the use-
ful tool to analyse differential resistance and linear
resistance of such S-boxes.

Theorem 5 [14] Given a functions F : 25 —s 7T
with cordinate functions f1,...,fm and @ functions
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9:28 — 7y, we set F = (fi,--s fm,9). Then
L Ap>Ap>iAp
2. Ap > max(Ap,Ay) > Ap

By theorem 5, the nx2n S-boxes S = (Pi, Pj) ob-
tained by the concatenation of two exponent permu-
tations Pi and Pj have Ag less than or equal to Ap;,
and Ag greater than or equal to the maximum value
of Ap; and Ap;.

Now, we compute Ag and Ag for all 8 x16 S-boxes
which constructed by the concatenation of two expo-
nent permutations over GF(28). First of all, we prove
following theorem.

Theorem 6 Let P1,P2,Q1,Q2 € £P,,, with P1 ~
P2, Q1 ~ Q2 and S1 = (P1,Q1), 52 = (P2,Q2).
Then the followings are hold

1. Asi = Ags
2. As1 = As2
Proof. Since, by definition 1, there exist non-singular

matrices A, B € GL,(GF(2)) such that P1 = Ao P2

and Q1 = Bo Q2. Leta € 28, B = (B, P2) € Z3"
Then

§Sl(a) IB)

#{=|(P1,Q1)(2)® (P1,Q1)(z & ) = (1, 52)}

= #{z|(P1(z)®Pl(zda)), (Q1(z)dQ1(zda)) =
(B1, B2)}

= #{z|(P2(z)®P2(z0a)), (Q2(z)0Q2(zda)) =
(A(Br), B(B2))}

= bs2(A(B1), B(p2))

So, Ag1 = Agy. And by the definition 1, As; = Ags.
O
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Table 4: Ag of all 816 S-boxes constructed by concatenation of two exponent permutations over GF(28)

Py P, P35 Py Ps Ps Pr Pg Ps Pio Piu Prias Pig Pia Pis FPis
P16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
P24 10 4 4 4 4 4 4 4 4 4 4 4 4 4 10
P34 4 12 4 4 4 4 4 12 4 4 12 4 4 4 12
P4l 4 4 4 16 4 16 4 4 16 16 16 4 16 16 4 16
P54 4 4 4 6 4 4 4 4 4 4 4 4 4 4 6
P64 4 4 16 4 16 4 4 16 16 16 4 16 16 4 16
P74 4 4 4 4 4 10 4 4 4 4 4 4 4 4 10
P8l 4 4 4 4 4 4 4 30 4 4 4 4 4 4 4 30
P9| 4 4 12 16 4 16 4 4 16 16 16 12 16 16 4 16

P10 4 4 4 16 4 16 4 4 16 16 16 4 16 16 4 16
Pl1114 4 4 16 4 16 4 4 16 16 16 4 16 16 4 16
Pi2|14 4 12 4 4 4 4 4 12 4 4 12 4 4 4 12
P1314 4 4 16 4 16 4 4 16 16 16 4 16 16 4 16
Pl4| 4 4 4 16 4 16 4 4 16 16 16 4 16 16 4 16
P4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Pi6| 6 10 12 16 6 16 10 30 16 16 16 12 16 16 4 256

Table 5: A of all 8x16 S-boxes constructed by concatenation of two exponent permutations over GF(2%)

P Py P3s Py Ps FPs Py

Py

Py Pig P11 Pis P13z Piy Pis Pig

128 40
40 128
32 32
32 32
32 32
48 32
32 32
48 48
32 32
48 32
32 32
32 48
36 48
40 48 32 48 32 40 48
32 32 48 40 48 48 48
128 128 128 128 128 128 128

32
32
128
48
40
36
32
48
56
48
40
56
32

32
32
48
128
40
48
32
48
48
64
48
43
40

32
32
40
40
128
32
32
48
32
32
32
36
48

48
32
36
48
32
128
32
48
40
32
48
32
48

32
32
32
32
32
32
128
48
32
48
40
32
32

13
48
48
48
48
48
48
128
48
48
48
48
48
48
48
128

32
32
56
48
32
40
32
48
128
40
48
56
32

48
32
48
64
32
32
48
48
40
128
40
40
48
32 64
48 32
128 128

32
32
40
48
32
48
40
48
48
40

32 36 40 32
48 48 48 32
56 32 32 48
48 40 48 40
36 48 32 48
32 48 40 48
32 32 48 48
48 48 48 48
56 32 32 48
40 48 64 32
128 48 48 64 48
48 128 32 32 40
48 32 128 40 32
64 32 40 128 48
48 40 32 48 128
128 128 128 128 128

128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128

By theorem 6, we can simply compute Ag and Ag
for 8x16 S-boxes S = (P4, Pj), where Pi and Pj are
in other equivalence classes. By computer search, we
obtain all Ag and Ag for all 8x16 S-boxes which con-
structed by all exponent permutations over GF(2%).
We describe the simulation results in table 4 and 5.
In table 4 and 5, each entry means Ag and Ag, re-
spectively, where S = (Pi, Pj), i is a row entry and j
is a column entry. Among these, the best 8x16 S-box
is S = (P15, P15).
3.2 TFalsity of Beth’s Conjecture

In Eurocrypt’93 [2], Beth conjectured as follows :
Conjecture: Assume that n and 2" — 1 are two
primes, then for each 2 < i < n — 1, an equation

Y2 el = (Y +1),7#0,1

has at most two solutions other than 1 in GF(27).

Furthermore, he insisted that, any permutation of the

form 22" ! with 2 < m < n — 1 is differential resis-
tant, if his conjecture is true.

If n isequal to 7, then n and 2" —1 are prime. But, for
m = 3, a permutation 2" ~! = 27 does not have mini-
mum differential resistance(P4 in table 2). Hence, the
conjecture of Beth is not true. Already, in [9], Feng
and Liu have indicated that the conjecture of Beth
is wrong by finding three solutions other than 1 in

GF(2™).
3.3 S-Box of LOKI Encryption Algo-
rithm
The security of LOKI [6, 5] mostly depends on ex-

ponent permutation 23! over GF(2%). But, in table 3,
exponent permutation in the class P15 is better than

23! in the aspect of algebraic degree and differential
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cryptanalysis, though z®! has same linear resistivity
as permutations in the class P15. Even if our result
is good for alternative S-box of LOKI, total security
of LOKI replaced its S-Box with permutations in the
class P15 must be carefully considered, and it needs
to study its strength against linear cryptanalysis and
differential cryptanalysis.

4 Conclusions

In this paper, we defined an equivalence relation on
the group of exponent permutations over GF(2"), and
proved the exponent permutations in the same equiv-
alence class have the same cryptographic properties.
We classified exponent permutations over GF(27) and
GF(2%) with cryptographic properties according to
the equivalence relation. For applications of classifi-
cation of exponent permutations, we designed nx2n
S-boxes by concatenating two exponent permutations
and analysed their differential and linear character-
istics. Also, we found counter example to indicate
that the conjecture of Beth is wrong and found better
permutations compared with S-Boxes used in LOKI
encryption algorithm.
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