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Abstract

Migratory-sharing objects are the data structures
manipulated by only a single processor at any given
time [1].  This type of accesses will incur many cache
misses which can be reduced by the merge of the
invalidation/update requests and the cache misses. P.

 Stenstrom et al. proposed a mechanism to optimize the
migratory-sharing accesses jfor the cemral directory
coherence protocols [2]. However, their mechanism
can not support the linked-based directory protocols.
Therefore, in this paper, we proposed a technique to
reduce the overhead of migratory-sharing accesses for
the linked-based directory protocols in some degree.
Our mechanism can be implemented in various write
policies, including the write-invalidate, write-update,
and the write-competitive policies. Based on a
program-driven simulation environment and a set of
benchmarks, we have evaluated the performances for
{he various write policies. As a result, it can be
shown that our method can effectively reduce the
overhead of the migratory-sharing accesses.

1. Introduction

Gupta and Weber classified data struciures based
on the invalidation - patiern they exhibit [1].
According to their definition, data structures
manipulated by only a single processor at any given
time are called migratory objects. Typically, such
sharing occurs when a data structure is modified
within a critical section. - Because the modification of
migratory objects usually executes the tight Read-
Modify-Write operation, P. Stenstrom et al.,[2-3] has
formally ‘defined the access patiern of migratory

blocks by the following"rqgular expresqion.
< RARYH(WDHRVYWRIR)*F(WHRJW))*...(1)

where Ri and Wi represent a read access and a
write access, respectively, by processor i, **’ denotes
zero or more occurrences of the preceding siring, and
‘|’ denotes the logical OR-operation.

P. Stensitom et al. proposed a mechanism for
reducing the overhead of accessing the migratory-
sharing memory block for the central directory
protocols [2]. They use hardware to detect the
migratory-sharing memory block by recording the
access pattern of each block and finding those blocks
matching the pattern in the regular expression (1).
After a migratory-sharing block has been detected, the
read access to the block is replaced by a Read-
exclusive one to prevent from the need of invalidation
or update incurred by the subsequent write access.
However, when the migratory-sharing memory block
is detected as non-migratory-sharing one, it will be
transferred to the ordinary one.

Their detection mechanism relies on that the home
directory can receive all the global read/write requesis;
that is, all global accesses have to interrogate the home
directory. The central-directory structure meets the
above requirement. However, the linked direciory
structure [5][6] has no such property. In the SCI
coherence protocol [5], for instance, before the head
node of the dirty sharing list executes a write access, it
has no need to inierrogaie the home directory because
it can invalidate or update other cache copies through
pointers .in the dirty sharing list. Therefore, we
propose a method for the linked-based directory
protocols to reduce the overhead of the migratory-
sharing memory block.

We first divide the shared memory accesses into
four classes which will read/write the migratory/non-
migratory sharing memory block, respectively. We
label the shared memory accesses in the compile time,
and use the information to determine which memory
blocks are migratory-sharing in the run time. Then
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we handle the accesses differently according to théir
types to reduce the subsequently explicit
invalidation/updaie request. The feature of our
method is that it can be implemented in the protocols
with different write policies, including write-invalidate,
write-update, and write-competitive policies. So far,
we have evaluated the advantages of our method by a
program-driven simulator and the results show that the
overhead of the migratory-sharing accesses cambe
effectively reduced.

The organization of the rest of the paper is as
follows. Section 2 introduces the overview of our
method and Section 3 describes the detailed
implementation. In Section 4, we present our
simulation environment and the evaluation resuls.
Section 5 concludes the paper.

2. Concepts and principles of our method

Our proposed method is for the linked-based
directory protocols to reduce the overhead of
migratory-sharing accesses for the shared memory
blocks, and then improve the system performance.
Because of the special access pattern of the migratory-
sharing access, we can use the Read-exclusive access
to avoid the need of subsequently explicit
invalidation/update request. The number of global
write requests is thus reduced. To prevent from the
higher complexity of detecting the migratory-sharing
memory blocks and to implement the method in the
linked-based directory protocols, we detect the
migratory-sharing memory blocks by using the labels
of memory accesses to provide the information. We
describe it as follows.

First, we use compiler to label the migratory-
sharing memory blocks. Then, the memory
subsystem uses it to identify the migratory-sharing
memory blocks. The handling of the migratory-
sharing blocks is different from that of the ordinary
accesses.  In addition, the miss handling of the
migratory-sharing accesses depends on the following
types of the accesses:

(1) Migratory-sharing read accesses: This kind of
accesses is typically the read accesses in the tight
Read-Modify-Write operations. Therefore, when the
read accesses the migraiory-sharing memory block,
we use the read-exclusive handling method to
guaraniee the local cache hit for the subsequent write
access. Because the invalidation or the update
request incurred by the write access is avoided, the
delay time for the write is reduced.

(2) Non-migratory-sharing read accesses: Those
read accesses not belonging to the type (1) are called
non-migratory-sharing read accesses. This kind of
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read accesses will access the migratory-sharing
memory block because in the block there are non-
migratory-sharing memory words. To keep thé
migratory-sharing accesses not be interfered by the
non-migratory-sharing read accesses, we adopt the
Read and Self-invalidate method. That is, the
memory block is read to local cache and the local
cache controller will invalidate the block itself later,
and the read operation will not affect the
corresponding shared-memory block state and the
states of other caches.

(3) Migratory-sharing write accesses: This type of
accesses are those writes in the tight Read-Modify-
Write operations. - Migratory-sharing write accesses
usually hit the cache because the previous migratory-
sharing read access will guarantee the existence of the
memory block in the local cache. The exception is
that the memory block is replaced and writes back to
the home memory when other non-migratory-sharing
accesses reference the block. We handle this kind of
accesses by the Write-invalidate method.

(4) Non-migratory-sharing write accesses: The
write accesses not belonging to the type (3) are called
non-migratory-sharing write accesses. Similar to the
type (3), we handle these writes by the Write-
Invalidate method.

To prevent the non-migratory sharing accesses
from interfering the handling of the migratory-sharing
memory block, we use the Read and Self-Invalidate
method as mentioned in the above (2) to handle the
non-migratory-sharing read accesses. There are two
alternatives here:

(1) Uncached policy: The migratory-sharing
memory block is not cached in the local cache.

(2) Stale cached policy: Use the mechanism of
delayed consistency [Dubo 91]. Cache the memory
block in the local cache but set it to the stale state.
When encountering an acquire synchronization access,
flush all the stale blocks to prevent from reading the
stale data. This policy can eliminate the read miss
incurred by the uncached policy.

Based on the above concepts and principles, in the
next section, we will describe the detailed design
procedure of our method under the release consistency
model [7] for the doubly-linked directory cache
protocols with three write policies, including write-
invalidate, write-update, and write-competitive [8]
policies.

3. Design procedures
The whole design procedures include the following

three paris: (1) Categorization and labeling, (2)
Maintenance, and (3) Handling. We will describe the
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more details in the following subsections.

3.1 Categorization and labeling

For convenience, we use the categorization of -

shared-memory accesses in the release consistency
model [7] to describe how the compiler labels
different memory accesses. As shown in Figure 1,
Gharachorllo et al. divide the shared-memory accesses
into acquire accesses, release accesses, ordinary reads
and ordinary writes; in. addition, the italic words
represent the access types we need [7]. We
categorize the shared accesses (not including the
synchro-nization accesses) into four classes, including
Migratory-Sharing Read (MS-Read), Migratory-
Sharing Write (MS-Write), Non-Migratory-Sharing
Read (NMS-Read), and Non-Migratory-Sharing Write
(NMS-Write). Typically, the sh-ared accesses with
the MS-Read label indicate the read accesses in the
tight Read-Modify-Write operations. The shared
accesses with the MS-Write label indicate the write
accesses in tight Read-Modify-Write operations. The
shared read accesses not belonging to the MS-Read
access are labeled as the NMS-Read. The shared
write accesses not belonging to the MS-Write access
are labeled as the NMS-Write. So far, only the
accesses referencing to critical sections are labeled
migratory-sharing accesses because of the tradeoff
between the implementation complexity and the
impact on the critical path of the program execution
time.

3.2 Maintenance

To identify and maintain the migratory-sharing
memory blocks, the cache controller and the memory
controller for each memory block have to respectively
add one and two more states.

(1) For each cache block, add the new Migratory-
Dirty (MD) state. The cache block with MD siate
indicates that the block is migratory-sharing, and this
means that the memory subsystem has identified the
memory block as migratory-sharing one. The new
state is to prevent the memory subsystem from
unnecessary detection of migratory-sharing memory
blocks afierwards.

(2) For each shared memory block, add two new
states as follows:

(a) Migratory-Dirty-GONE(MD-GONE): The
shared memory block with MD-GONE state
indicates that the block is migratory-sharing, and
this means that the memory subsystem has
identified the memory block as migratory-sharing
one,

(b) Migratory-Uncached (MU): The shared
memory block with MD-GONE state indicates that
this block has no copy in any cache. The new siate
is - to prevent the memory subsystem from
unnecessary  detection of  migratory-sharing
memory blocks.

3.3 Handling

Our proposed method will implement directly in
three different protocols, including write-invalidate,
write-update, and write-competitive policies. For all
the references accessing to the non-migratory-sharing
memory blocks and the hit references accessing to the
migratory-sharing memory blocks, the handling
methods are the same as that in the original protocols.
However, for the miss references accessing to the
migratory-sharing memory blocks, we handle them

- differently according to their access types and the
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sharing status. The detailed handling techniques are
described by the following different sharing situations.

(1) No cache copy: In this situation, the memory
state must be MU, and the handling for the four types
of accesses are similar. Figure 2 shows the handling
for the MS-Reads or the NMS-Reads. When the
memory controller receives a read miss (RIM) request,
it replies the memory state and the block to the
requesting cache. The memory state will then be
transferred from MU to MD-GONE, and the cache
state be changed to MD. The handling procedure for
the MS-Writes or the NMS-Writes shown in Figure 3
is similar to that for the read miss.

(2) Only one cache copy: In this situation, the
memory state must be MD-GONE, and the cache state
will be MD. The handling methods for the four
different access types are described as follows.

(a) MS-Read: We adopt the Read-exclusive
policy to handle this type of read. The advaniage
of this policy is that the following write access will
incur a local hit, and thus reduce the unnecegsary
invalidation or update. Now, let us see the
detailed procedure as shown in Figure 4. When
the memory controller has received the request for
a migratory-sharing read miss, it keeps the memory
state unchanged because the state is MD-GONE.
Then, it replies the state and the pointer (pointing to
the head of the dirty sharing-list, Cache 1) to the
requester (Cache 0). Then, it sets the pointer to
point the requesting cache. When the requester
has received the reply, according to the replied
message, it issues a Read-exclusive request to the
head node of the sharing-list. Afier receiving the
Read-exclusive request, Cache 1 changes iis cache
state from MD to INVALIDATE, and replies the



MD state to the requesting cache. In addition,
Cache 0 changes its state to MD after it receives the
reply.

(b) NMS-Read: When an NMS-Read accesses a
migratory-sharing memory block, we adopt the
handling method of Read and Self-invalidate which
does not add the new cache copy to the dirty
sharing-list. The advantage of this method is that
the NMS-Read will not interfere the property of the
migratory-sharing memory block. Read and Self-
invalidate can be implemented by the following
two policies.

(i) Uncached policy: The requester
(Cache 0) that issues the NMS-Read miss
‘request will not copy the memory block into its
cache, as shown in Figure 5, and thus it will
not change the status of the dirty sharing-list.

(ii) Stale cached policy: This policy takes
advantage of the mechanism of delayed
consistency [9]. We place the copy in the
requesting cache but set it to stale - state.
Whenever reading the memory, it will be a hit
until the copy is invalidated due to the cache
encounters an acquire access. This policy can
reduce the amount of the read miss occurred in
(i). Figure 6 shows the handling procedure.
The requester (Cache 0), issuing the NMS-
Read miss, will bring the block into its cache
and change its state to Stale. Similar to (i),
the status of the dirty sharing-list will not be
influenced during the handling. However, to
guarantee the correciness of the program
execution, when the processor executes an
acquire access, all the stale blocks must be set
to invalid blocks.

(¢) MS-Write or NMS-Write: When these two
types access the migratory-sharing memory block,
we adopt the Write-invalidate handling method, as
shown in Figure 7. When the memory controller
has received the request for the write miss (WM), it
keeps the state unchanged because the memory
state is MD-GONE. In addition, it replies the
memory state and the pointer (pointing to the head
of the dirty sharing-list, Cache 1) to the requester
Cache 0. Then, it sets the direciory pointer to
point to the requesting cache. After receiving the
reply, the requester issues a request of Read-
exclusive to Cachel. When Cache 1 has received
the Read-exclusive request, it changes the state to
INVALID and replies the MD state to Cache 0.
After receiving the reply, Cache 0 changes iis staie
to MD.

Moreover, our proposed method described above
can be construcied by different labeling policies, and
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two handling policies of Read and Self-invalidate.
Here, we define the following implementation options.

(1) Only the Read-Modify-Write operations in the
critical sections for Barrier codes are labeled as
migratory-sharing accesses. We adopt the Uncached
policy to handle the Read and Self-invalidate,.

(2) The labeling is the same as that in ().
However, we adopt the Stale cached policy to handle
the Read and Self-invalidate.

(3) All the Read-Modify-Write operations in
critical sections are labeled as migratory-sharing
accesses.

In addition, our method can be implemented in
doubly-linked directory architecture with three
different write policies, including write-invalidate
(DD-INV), write-update (DD-UP), and write-
competitive (DD-CU). As a whole, we summarize all
of the implementation options of our method in Table
1. In the next section, we will give a brief
description of our simulation environment and some
performance evaluations of our methods for these
implementation options.

4. Simulation environment
performance evaluations

and preliminary

In order to study and evaluate the advantage of our
proposed technique, we have designed a simulation
and evaluation environment. The architecture we
simulate is a CC-NUMA, distributed shared-memory
multiprocessors, as shown in Figure 8.  The
architecture consists of many nodes, and these nodes
are interconnected by the K-ary, n-Cube network.
Each node consists of a lecal shared-memory area, a
processor environment, and a local inter-connection.
Each processor environment includes a two-level
cache hierarchy, as shown in Figure 9. In addition, in
order to support release memory consistency models
we implemented a lockup-free second level cache
[10].

Our simulation environment is a program-driven
simulator and constructed based on the MINT [11]
package, as shown in Figure 10. The environment has
been constructed on the SUN SPARC workstation and
can work correctly. It is written in C programming
language and has about 55000 statements (The
memory subsystem simulaior has 15000 statements).
The whole environment consisis of two parts: the
memory reference generator and the memory
subsystem simulator. The memory reference generator
simulates the instruction interpretation and forwards
the memory references to the memory subsystem
simulator.

Qur memory subsystem simulator consists of the
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node simulator and the global interconnection
simulator. The node simulator simulates the two-
level cache hierarchy, doubly-linked directory cache
coherence protocols, memory consistency models and
the local interconnection. The global interconnection
simulator simulates the K-ary, n-Cube network [12].

Before evaluating the performance, we have several
assumptions about the architecture, as shown in Table
2. In addition, memory pages are 4 Kbytes and are
mapped to the local memories in a round-robin
fashion. We use three benchmark programs from the
SPLASH and SPLASH2 suites [13, 14] in the
experimental evaluation. "'We summarize them in
Table 3 along with the data sets used. Regarding to
MP3D, we ran it with switching on the locking option.
All applications are written in C using ANL macros
and have been complied using cc with the
optimization level 2. All statistics are collected only
the parallel part of the benchmarks. In addition, in
order to realize the basic characteristics of benchmark
program we summarize them in Table 4.

As shown in Figures 11-13, we first analyze the
impact of implementation options on the system
performance. We can see that the option 2 with the
Stale-Cached sirategy has fewer coherence misses
than the option 1 with the Uncached strategy. On the
other hand, there is the non-negligible increasing of
read penalty for the option 3. The main reason is that
the accesses in all the critical sections are labeled as
migratory-sharing ones. Because the size of
migratory objects protected by the critical sections not
belonging to the Barrier codes is typically larger,
many non-migratory-sharing memory blocks will be
detected as the migratory blocks. Due to the wrong
labeling and the Read-and-Self-invalidate policy for
the NME-Read, the read penalty becomes larger and
degrades the system performance. The effect is
obvious in MP3D and PTHOR, however, it is not so
obvious in Ocean because there is lower percentage of
critical sections for implementing non-Barrier codes.
According to the above analysis and the consistent
performance improvement, we recommend the
implementation option 2.

In addition, we also observe that the performance
of the DD-CU protocols with our proposed technique
(implementation option 2) will be obviously improved.
Moreover, the performance of the DD-CU protocol
will close to the DD-INV protocol, and sometimes is
better than the DD-INV protocol, such as OAD2-CU1
for PTHOR and OAD2-CU4 for MP3D. According
to thie results, we also see the importance of the
threshold for the DD-CU protocol. The optimal
threshold for an application is difficul, or even
impossible, to predict statically because it varies for
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different applications and depends on (1) the ratio of
communication time and computation time and (2) the
access patterns to shared data structures. Therefore,
we hope to find a method that can dynamically assign
a better threshold to each cache line in runtime using
hardware or compiler in the future.

5. Concluding Remarks

In this paper, we have proposed a mechanism to
reduce the overhead of the migratory-sharing accesses
for the linked-based directory coherence protocols in
shared-memory multiprocessor systems. We first
divide the shared accesses into four classes, including
Migratory-Sharing Reads, Migratory-Sharing Writes,
Non-Migratory-Sharing Reads, and Non-Migratory-
Sharing Writes. Then we use the compiler to label
them. 1In the runtime, we use the label to detect
which memory blocks are migratory-sharing. Finally,
we handle the accesses differently according to their
types. The advantage of our mechanism is that it can
be implemented in the protocols with different write
policies, including write-invalidate, write-update, and
write-competitive  policies. According to our
simulation results, our method can effectively reduce
the overhead of the migratory-sharing accesses. In
the future, we hope to find a method that can
dynamically assign the optimal threshold for the DD-
CU protocol to each cache line in the runtime by using
hardware or compiler.
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OADI-UP__|The DD-UP protocol with the ! | HWB ade  GWB 3
implementation option 1. (] mc '. ac L 0L é
OAD2-UP  |The DD-UP protocol with the | ' |8
implementation option 2. | Frslovd 1 oy  Soonddewd || E
OAD3-UP  |The DD-UP protocol with the | ade e buffer witcbuffe 1| =
implementation option 3. R o S

Table 1| Summary of the implementation options Figure 9 The processor environment
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Figure 10  Our simulation environment
Architecture Parameters

Parameter Value
Number of Processing nodes 16
Size of FLC 32Kbytes
Size of SLC 256Kbytes
Block size of FLC and SLC 64bytes
Number of entries in FLWB 8
Number of entries in SLWB 16

Table 2 Architecture Parameiers

Benchmark Programs

Benchmark Description Data sets
MP3D 3-D particle-based wind-tunnel SK particles, 10 time steps
Ocean Ocean basin simulator 66x66 grid,tolerance 107

PTHOR RISC circuit, 1000 time step

Distributed time digital circuit simulator

Table 3 Benchmark Programs

Shared | Shared | R/W Avg. Invals
Benchmark | Reads | Writes | Ratio | Locks Barrier Per Write
(M) (M)
MP3D 1.29 0.71 1.8 104908 116 0.92
Ocean 17.59 4.04 43 4000 2084 1.15
PTHOR 8.25 0.91 9.0 117735 . 482 1.44

Table 4 The staiisiics and characteristic of access for benchmark programs
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Analysis of Migratory Sharing under 100MHz Torus
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Figure 11 Evaluation statistics for migratory sharing under MP3D
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Figure 12 Evaluation statistics for migratory sharing under Ocean
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Figure I3 Evaluation statistics for migratory sharing under PTHOR.
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