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Abstract

In distributed-memory multiprocessors system, the
distribution of data across processors is critically important
io the efficiency in executing a data parallel program.
This is due to how this distribution is done will affect the
amount of data movement required and the interprocessor
communication is much more expensive than computation.

In this paper, we analyze the reference patterns in a
program where nwltiple  arrays used have affinity
relations.  The abstract machine we adopt is a D-
dimensional grid of Nyx Nax... xNp processors, where D is
the smallest dimensionality of arrays used in the program.
Based on the reference paiterns, we present a scheme to
find a maximum spanning tree in the alignment group.
For each maxinum spanning tree, we then determine the
alignment function for all dimensions of arvays.  For each
reference pattern in the maximum spanning tree, we can
align each pair of the active elements for these two
dimensions of arrays to the same place of template, such
that the reference pattern with macimum cost will get free
communication in all distribution fashions and in any
number of processors.

Keywords : distributed-memory multiprooessors,
reference pattern, affinity relation, alignment finction, data
distribution.

1. Imtroduction

Distributed-memory multiprocessors system is
used for providing high levels of performance for
scientific applications. The distributed memory
machines offer significant advantages in terms of
cost and scalability, but they are difficult to program.
The code and data must be distributed to processors
by the programmer himself In SPMD(single
program muliiple daia) program ‘mode, the node
programs have the same code, so the disiribution of
data across processors is of critical imaportance to the
efficiency of parallel programs. This is because
interprocessors communication is much more

expensive than computation in processors. As the
result, for a program executing in a distributed-
memory multiprocessors system, it is essential that
the data used by a processor had better be located at
its local memory as much as possible.

For a data distribution strategy, there are two
important considerations. The first is how to reduce
the communication between processors, and the
second is how to balance the load of processors. In
the past years, data distribution has received much
attention in the literature. The problem of finding
optimal dimension distribution has been shown to be
NP-complete[9]. Li and Chen[9], Gupta and
Banerjee[3] formulated the component alignment
problem from the whole source program and used it
to determine data distribution. Kalns, Xu, and Ni [5]
provided a cost model for determining a small set of
appropriate data distribution patterns among many
possible choices. Chen and Sheu[2]‘ concentrated
on automatically allocating the array elements of
nested loops with uniformly generated references for
communication-free  execution on distributed
memory  multiprocessors. Ramanulam and
Sadayappan[10] determined data distribution based
on the hyperplane method. Lee[6,7,8] derived
efficient algorithms for determining data distribution
and generating communication sets.

In High Performance Fortran(HPF), data
distribution is divided into alignment phase and
distribution phase. Programmers have obligations
to provide TEMPLATE, ALIGN, and DISTRIBUTE
directives to specify data distribution. Then, base
on these directives, the compiler generates all
communication instructions. In this paper, we focus
on alignment phase, all dimensions of arrays will be
aligned to template using alignment functions, and
distributed according to the disiribution of iemplate.

The rest of this paper is organized as follows.
In section 2, we introduce the component alignment
proposed by Li and Chen[9]. In section 3, we
introduce the method of determining alignment
functions for all dimensions in an alignment group.
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In section 4, we show some results of communication
evaluation. Finally, conclusions are given in section
5.

2. Background

In this paper, the abstract target machine we
adopt is a D-dimensional grid of Nyx Nyx ... xNp
processors, where D is the smallest dimensionality of
arrays used in the program. A processor on the grid
is represented by the tuple (p,.ps.....pp), for
0<p<N-1 and 1<i<D.

Consider an array assignment statement
appearing in an m-level multiple-loop. Let array
references A[i,..., i, ] and’ B[j,..., j, ] are
respectively on the left-hand side and right-hand side
of the assignment statement. For each array
reference B[j,,..., j, ), the symbolic form A[i,..., i, ]
< B[j,,...,J, ] is called a reference pattern, where the
indices [i),..., iy ] and [j,,..., j, ] are quantified over
their index domain[9]. According to this definition,
multiple reference patterns may be derived from a
single array assignment statement if there is more
than one instance of array references occurring on the
right-hand side of the statement. A reference
pattern is either a self-reference pattern to the same
array or a cross-reference pattern between different
arrays. Given a cross-reference pattern Afi,,..., i, ,
in ] < Bljiseeosfgpresdn b A p and B q are said to have

an gffinity relation if j, = i, + ¢, where c is a small
constant. Component affinity graph(CAG)[9] is a
weighted graph, whose nodes represent the
component of index domains to be aligned and the
edges specify the affinity relations between two
nodes for each distinct reference pattern, excluding
self-reference patterns, in the program. In other
words, there is no edge between two nodes
corresponding to the same array. The weight
associated with an edge is equal to the
communication cost if these two dimensions of
arrays are distributed along different dimensions of
processor grid. Li and Chen[9] constructed the
CAG from the source program, and proposed a
heuristic algorithm to solve component alignment
problem. When constructing component affinity
graph from a source pregram, the component
alignment problem is defined as partitioning the node
set into D disjointed subsets, where D is the
dimension of the abstract target machine.

In this paper, we assume the dimension of
processor grid is equal to the smallest dimensionality
of all arrays. Before partitioning the node set, we
must delete the redundant nodes such that each array
has the same number of nodes equal to the dimension
of processor grid. This is because we can’t
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distribute an array whose dimension is smaller than
that of processor grid, unless we replicate it on some
dimensions of processor grid. This method will be
introduced at the next section.

In partitioning the node set into D disjointed
subsets , our aim is to minimize the total weight of
edges across different subsets. There is one
restriction at here: no two nodes corresponding to the
same array are in the same subset. All dimensions
of arrays in a subset will be distributed to the same
dimension of processor grid, different subsets will be
distributed to different dimensions of processor grid.

Table 1 lists the communication primitives used
in the hypercube machinef4,8], for which the
subscripts of dimension for arrays in the left-hand-
side(lhs) and right-hand-side(rhs) of assignment have
some specific patterns, and their costs on the
hypercube. The parameter m denotes the message
size; seq is a sequence of identifiers representing the
processors in various dimensions over which the
collective communication primitives are carried out.
The function num refurns the total number of
Processors.

Table 1. Communication primitives used in the hypercube
and their costs.

Lhs Rhs [Communication Primitive [Cost on Hypercube
¢, Cy |Transfer(m) O(m)
i ite Shift(m) O(m)
i c OneToManyMulticast(m,seq)  |O(m* log num(seq))
c I Reduction(m,seq) O(m* log num(seq))
iorf)(i) jorfy(j) [ManyToManyMulticast(m,seq) |O(m* nuin(seq))

In the original algorithm of component
alignment problem[9], the node set of the component
affinity graph will be partitioned into D disjointed
subsets, where D is the largest dimensionality of all
arrays. We use the following example to illustrate
this partition.

Example 1:

for I=1 tom
forJ=1tom

A[LI=B[I+11+C[J]
D[I+1,J]=A[LJ]
B[I]=A[J+1,1]

endfor

A[L1]=B[I]

BlI}=C[i+1]
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endfor
The component alignment graph of this program
is as follows:

Fig, 1. CAG of example 1.

Suppose that A and D are two-dimensional
arrays of mxm, B and C are one-dimensional arrays
of size m, and the number of processors is equal to N.
Then

e=ce~ManyToManyMulticast(m*/N,N)
c,=c~cs=ManyToManyMulticast(m/N,N)
Because there are two reference patterns having
affinity relation between B and A,, we have
cs=ManyToManyMulticast(m?*/N,N)
+Many ToManyMulticast (m/IN,N)

Since ¢3; + ¢4 > c~c, after applying the
component alignment algorithm, we get two
disjointed subsets as Fig. 2 shows. (A disjointed
subset will be referred to the alignment group in the
rest of this paper.) B

Fig. 2. CAG afier applying the component alignment
algorithim.

3. Data Alignment

In previous section, we had pointed out why we
made the dimension of processor grid to be equal to
the smallest dimensionality of all arrays. In the
following, we will use an example to illustrate how o
deleie the redundant nodes.

Example 2:
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Assume the reference patterns are
A[LJ]«<-B[J+1,1]
B[LJj«C[I}
A[l+1,J]«-C[I]
D{IJ«C[I+1]
B[LJ}«-D[1+1]
E[[}«-F[I+1]
We can construct the following component

alignment graph:
G
Ay

Cy

(&)

Cs

Fig. 3. CAG of example 2.

Since the dimension of processor grid is equal to
one, we must delete one redundant node for each of
two-dimensional arrays A and B. These two
redundant nodes will be one of these four
combinations: (A1,B1), (Al,Bz), (Az,BO, and (Az,Bz).
When a node is removed, all edges associated with
this node must also be removed. Thus, the costs for
these four combinations can be computed as follows:

(A),By) : crtestestestes
(A1,By) L ertes

(A2,By) ¢ csteqgtes
(A2,B)) © crtes

Sincec;+ ey <cptez<czteqtes<e;tertes
+ ¢4+ cs, the pair of (A;,B,) is deleted.  Afier this,
we get two alignment groups as Fig. 4 shows. &8

G,

Fig 4. CAG afler deleting Al and BY.



Since the dimension of template is equal to the
dimension of processor grid, which is one in example
2, and the two alignment groups G, and G, contain
no cominon array, we can align the nodes in G, io a
template T, and align the nodes in G, to another
template T'. In the following, we will introduce
how to determine the alignment function for all
dimensions in an alignment group.

3.1, Alignment function

The alignment function we consider will be
limited to the form of “w.J(+B” in this paper. Since
there is at least one affinity relation beiween two
dimensions if an edge exists, there may have more
than one affinity relation associated with an edge.
For different affinity relations, they may have
different costs. In this situation we will remove all
the affinity relations aside from the one whose cost is
the largest among all of the affinity relations.

In an alignment group, there may exist cycles,
Before determining the alignment function for all
dimensions in an alignment group, we must break the
cycles. Otherwise, the alignment functions may
conflict with each other. For convenience, the
affinity relation between the i-th dimension of array
A and j-th dimension of array B is represented by the
reference pattern Ajfal+b]«BjlcI+d]. In what
follows, we will explain how to construct a maximum
spanning tree from an alignment group containing
cycles, and then find the alignment functions for each
array.

Given the reference paiterns in a alignment
group and their costs as below:

Reference pattern Cost

A« B}  ManyToManyMulticasian”NN)
Afll«Bi2i+1)  ManyToMamyMalticasim”/N,N)
A«B[+]]  ManyToManyMulticastim’/NN)
AT} < C[+2] ManyToManyMulticastmy/N,N)
CRN«B3H2]  ManyToMamyMulticastan®/NN)
Bifl] «-D[I-1] ManyToManyMulticast(m/N,N)

The alignment group is shown in Fig. 5. For
the convenience of reference, we associate each edge
with a reference paitern. As mentioned above, the
reference pattern associated with an edge is that with
maximum cost.  Since there are two affinity
relations between A; and B,, and the reference
pattern A [I] «B,[I+1] appears two times, we
associate the edge between A, and B, with this
reference pattern.

The costs of edges in the alignment group can be
computed as below:
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A[[I]PB[[I‘FI] ¢

¢y NC'2 A IjeCli+2]

Bi[I] «D[I-1]

C'3

C’4
C[21] «By[31+2]

Fig. 5. An alignment group containing a cycle.

¢’y = 2*ManyToManyMulticast(m>/N,N)
¢>= ManyToManyMulticast(m/N,IN)
¢’s= ManyToManyMulticast(m’/N,N)
¢’y = ManyToManyMulticast(m?®/N,N)
We can see that there is a cycle in this alignment
group. Because ¢ > ¢3> c*%, after eliminating the

edge between A; and C, the maximum spanning tree
is obtained and shown in Fig. 6.

A][I]<—B1[I+1]

By[I} «-D[I-1]

Fig. 6. The maximum spanning tree in Fig, 5.

In the next step, we will determine the alignment
functions from the reference patterns appearing in
the maximum spanning tree, and use these alignment
functions to align each pair of the active elements of
these reference patterns to the same place of template.
In the maximum spanning tree, we can choose any
node to be the root. For the above example, we let
A, be the root. We will determine the alignment
function from A,, and then the descendent nodes one
by one.

[ Definition] Relative value

For a reference pattern A;[al+b] « B;[cI+d], let
¢'fa’= ¢/a such that ged(c’,a’)=1. We say that the
relative value of Bjto A;isc’, and A; o Bjisa’. 8

Fig. 7 shows the relative values of each edge in
Fig. 6, where the relative value is for the descendent
node relative to its ancestor.
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Fig. 7. The relative values in Fig, 6.

We assume that the root’s alignment function is
of this form “Oloot*X+Proot”, Where Proo iS a noON-
negative integer, oy is equal to the absolute value of
LCM(least common multiple) of all relative values in
the maximum spanning tree for an alignment group.
In this sense, for above example, the alignment
function for A; will be “f41(0)= o X+Bar”, for B,
- will be “f,00= opX+Pe”, for C will be “f(X)=
oacX+pc”, and for D will be “H,C30= opX+fp”.

Since A, is the root, we compute the alignment
function from A;. The aa would be equal to
|lcm(1,1,2) | =2. And according to the reference
pattern A;{I] < B, {I+1], we have fo,(I)= fp;(I+1).
Therefore,

oal+Bar= o (I+1)+Pg
Since oa=2, this becomes

2+ ar=om Itog +Bm
Comparing the coefficients of I, we have op, to be
equal to 2. And, we get

Bai=2+PBm
Assume that Pp is zero, then we have Pa=2.
Therefore, the alignment function for A, is 2X+2,
and for B, is 2X.

Now, we can compute the alignment function for
C as follows:

I (31+2)= £c(21)
This becomes

2(31+2)+H0=0.c(2D)+Bc
It yields

6I+4=20.c1+Bc
Comparing the coefficients, we have oc=3 and Bc=4.
This means the alignment function for array C is
3X+4,

By the similar discussion, we can find the
alignment function for array D to be fip(I) is 2X+2.

Using instruction formulation, we can describe
these alignments as follows:

Align A[L*] with T[21+2]
Align B[I,*] with T[21]
Align C[I] with T[3I+4]
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Align D[I] with T[21+2]

As for the data distribution, if the alignment
funciion for an array is aX+p and the femplate will
be distributed to N processors with block size k, then
its distribution function would be f(X)= [ (aX+p)/k]
mod N.

4, Communication evaluation

To evaluate the performance of our scheme, we
analyze the amount of communication of ithe
following three array statements in different
distribution fashions and different number of
processors. These thres array statements are as
follows:

Armay statement 1: A[1:601:2]=(B[0:900:3]) (R)
Array staiement 2; A[1:601:2]=(B[4:904:3]) ®R2)
Array statement 3: A[2:902:3]=f(B[1:601:2])  (Ry)

The alignment function for array A can be
computed to be “31” and for array B to be “2I+3”.
Table 2 shows the amount of communication between
processors for each array statement and four different
block size. From Fig. 8 we can see that no
communication arises in R, for any block sizes,
because the alignment function is derived from the
reference pattern in this statement. The amount of
communication decreases when block size increases
for array statement R,. As for R, the amount of
communication is not affecied very much by the
block size.

Next, let’s observe the relation beiween amount
of communication and number of processors. In
this situation, the block size is fixed to 16. From
Fig. 9 we can see that array statement R, still has no
communication in any number of processors, For
array statement R, , the amount of communication
remains unchanged for different number of
processors because the block size is fixed In array
statement R;, the amount of communication
increases relatively with the number of processors.

Finally, we use BLOCK distribution to disiribute
the template. -The result is shown in Fig. 10. We
find that R, still has no communication whatever the
numbesr of processors is. For R,, the amount of
communication is slightly increased when the
number of processors rises. The relation between
amount of communication and number of processors
is irregular for array statement R,

From these results, we can see that we can find
an alignment function for R, such that R; is always
free communication regardless of the distribution of
iemplate and the number of processors.



Table 2. The amount of communication between processors.

Po n p2 P3

4 8 1632{4 8 163214 8 1632(4 8 1632

Ry|7576 777710 0 0 0|0 O 0 0}j0 0 O O
poR2{0 0 3858({0 0 0 0(76 0 0 0(0 753819

R3(19 20 19 20|19 19 20 23|19 18 19 20|18 18 17 16

RyjO 0 0 0757674 75(0 0 0 0]0 0 0 O

p1 R0 7639190 0 37560 0 0 0|75 0 0 O

R3{19 19 20 20{19 15 18 1619 19 18 19{19 19 20 23

RyyjoO 0 0 0J0 0 0 0]76747574j0 0 0 O

p2R2f75 0 0 0)0 7637 19/0 0 3856j0 0 0 O

R3l19 19 19 19119 20 19 19118 19 20 18{17 18 18 16

Ryf0 0 0 0}0 0 0 0[O0 0 0 0(75757575

ps Rf0 0 0 0750 0 00 743718]0 0 37 56

R3{19 18 20 19118 18 18 1619 19 17 18]19 19 19 19

- Data items

4 8 16 32 64
Block size

Fig. 8. The relation between amount of communication and
different block size.

5. Conclusions

In this paper, we analyze the reference patterns
that have affinity relation, and determine the
alignment functions automatically for all dimensions
of arrays. For each reference pattern between two
dimensions of two arrays in the maximum spanning
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Fig. 9. The relation between amount of communication and

number of processors (block size=16).
—~&E—R2
—&— R 3

Data items

2 4 3 16 32
Processors

Fig. 10. The relation between amount of communication and
number of processors using block distribution.

tree, we can obtain the alignment functions for them
such that there is no communication for these
reference patterns.

This method will significantly reduce the
communjcation overhead if the reference patterns
between two dimensions of arrays are few or there is
a reference pattern whose cost is much greater than
the others. From the result of simulation, we prove
that we can find the alignment functions for given
reference patterns.  The reference pattern with
maximum cost is free communication.
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