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Abstract

The (n, k) block codes are translated into (I, p,r,n)
secret sharing schemes in which collusion between
players are not permitted. The performance of
both linear block codes and random block codes as
({,p,7,n) SSSs in terms of the relationship between
reconstructability and privacy; and the trade-off be-
tween privacy and resiliency is compared to the per-
formance bounds derived from a secret sharing model
GS3. It is demonstrated that linear codes, when
viewed as (I,p,r,n) SSSs, can at best achieve one-
half of the performance bounds asymptotically. It is
also demonstrated that the random codes do not have
privacy even though they can achieve the capacity of
reconstructability and resiliency with high probability
for sufficiently large n. Lastly, a hashed random code
(HRC) is presented and shown to achieve the perfor-
mance bounds asymptotically.

Secret Sharing  Reconstructability — Privacy Re-
siliency  Collusion-nonpermissible  (I,p,r,n) 558
secret sharing model  Hashed random code HRC

1. Introduction

In cryptographic and large distributed systems,
when a group of people share a common secret key,
it is highly desirable to have robust key manage-
ment such that a maximum level of privacy can
be achieved while allowing resiliency and preserv-
ing reconstructability. Several schemes, including
collusion-permissible and nonpermissible, have been
devised to achieve certain level of these requirements
[1,2,3,4,5,6,7).

In this paper, the (n, k) block codes are translated
into (I, p, 7, ng secret sharing schemes [7] in which col-
lusion between players are not permitted. Based on
the well established error-detecting, error-correcting,
and erasures-recovering capability derived in coding
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theory, the relationship among reconstructability and
resiliency of an (I,p,7,n) SSS and the code rate of
both linear and random block codes are established.
Privacy, which is the key requirement that distin-
guishes the (I,p,r,n) SSS from the coding problem,
is also estabhshed. The performance of both codes as
({,p,r,n) SSSs in terms of the relationship between
reconstructability and privacy; and the trade-off be-
tween privacy and resiliency is then compared to the
performance bounds, which were established from a
model GS® [7]. We show that linear codes, when
viewed as (I, p,r,n) SSSs, can not achieve the capac-
ity bounds; We also show that an (n, k) random code,
when viewed as an (I, p, r, n) SSS, can actually achieve
the capacity of reconstructability and resiliency with
high probability for sufficiently large n and alphabet.
But the drawback is that it does not have privacy be-
cause the level of secrecy decreases as shares are being
released.

We then devise a hashed random code (HRC)
which is an (n, k) random code with the index being
hashed such that the space of the new secret becomes
k-fold smaller than that of the original secret. We
show that such a code can asymptotically be perfect
and can achieve the capacity of reconstructability and
resiliency with high probability. Lastly, some com-
puter evaluations of the privacy of HRC are given for
the non-asymptotic case.

2. Preliminary

e An (I, p, 7, ) secret sharing scheme [7], ab-
breviated as (I, p, 7, n) SSS, divides the secret S into n
pieces of information called ‘shares’ (sg,s1,...,8,-1)
in such a way that the following properties hold:

(1) Knowledge of any [ or more shares make S easily
computable, and [ is called ‘reconstructability’;

(11) Knowledge of any p — 1 or fewer correct shares
leaves S completely undetermined in a sense that all
possible values of S are equally likely, and p is called
‘privacy’; and :

(ii1) No set of r or fewer incorrect shares can affect
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the correctness of S, and 7 is called ‘resiliency’.
e The performance bounds of the (I, p,r, n) SSS is

! >k+t >p+t |

p+r <n-p (M)
for sufficiently large n and N, where ¢ is the number
of errors, p is the number of missing pieces which have
occurred, and N is the size of the alphabet.

3. Linear Codes as (I, p,r,n) S88s

McEliece and Sarwate had related Shamir’s (k,n)
threshold scheme [1] to a special case of Reed-Solomon
code [3]. In this paper, we relate the Sl ,p,y7, 1) 585 to
a general (n, k) linear code. The results are stated in
the theorems below.

Theorem 3.1: Viewing an (n, k) linear code as an
(!,p,r,n) SSS, we have for reconstructability {, pri-
vacy p, and resﬂlency rthat | > k+ 2t > p+ 2t, and
p+ 2r < n— p, where ¢ is the number of errors and P
1s the number of missing shares.

Proof. Choose an i from 0,...,k — 1 and let u; of
the message word U be the secret S, u;j=0,.. k1,72
be any arbitrary elements in a Galois Field GF(g),
and vy =0, ,n-1 of the code word V be the shares
given to the n participants, then we can view an (m, k)
linear code as an (I, p,r,n) SSS. Since the secret S can
be reconstructed once the code word V is recovered,
finding ! is equivalent to decoding a linear code. From
[8, pp. 125}, any received pattern of t errors and p
erasures can be decoded provided that dp;, > 2t+14
p. But djin < n—~k+1for an (n, k) code over GF(g),
80 2t+14p < dppin < n—k-+1, and hence n—p > k42t
Since n — p is the number of pieces in the received
pattern, thus the minimum number of shares required
to reconstruct an (n,k) linear code (and hence the
secret) in a t-error environment is > &+ 2¢, and so we
have

1> k+2t. (2)

Also, we have t < 1(n—p—k), so the maximun number
of errors that the code can tolerate is $(n—p—k) and
hence

r=gn—p—k) (3)

The generator matrix of an (n,k) linear code has
rank k, so there exists at least one set of k equations,
which are generated by the % valid pieces of the code
word, to provide an unique solution to the k unknown
message pieces u;’s, and hence break the secret S.
Thus p < k. For an non-systematic linear code, v;’s
can be expressed explicitly as v; = up+uya; +ugcy?+

A up— 1ak ! where a;,i = 0,1,...,n — 1 are the
7N NON-ZEero, dlstinct elements in GF(g). Assume any
k—1 of v s are available, then we have £ — 1 distinct
points (z;, ;) in the 2-dimensional plane, where y; is
the share v; and z; is the identifying index a;. Note

that v; = ¢ in Shamir’s scheme. So by the interpo--

lation of polynomial argument that Shamir had used
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[1], we have p = k. But an (n, k) linear code can be
systematic, that is, vp_g4; = u; for 0 < 7 < k and
vj = uopo,j + ...+ Up_1Pk—1,; Where p;; e GF(q) for
0<i<k~- 1,0 < j<n=kFk][9. Since the secret
is one dumension, v,_g4+; can break the secret u; for
0<i<k Hence p = 1 for this case. Thus, for a
general linear (n, k) code, we have

1<p<k (4)

Combining (2), (3), and (4 we have [ > k4 2t >
p+2t,and p+2r <n —

Fig. 1 shows a relationship between TECDIlblT“UCiabiI-
ity and privacy of an (n, k) linear code when viewed as
an (I,p,r,n) SSS. The point line represents the bound
for optimality and the shaded area is the achievable
region for linear codes, while the bold line represents
the performance bound of an (/,p, r,n) SSS.

Remark: 1. For an error-free (I,p,r,n) SSS, we

have t = 0; thus, ‘reconstructability’ can be inter-
preted as ‘erasures-recovering’ capability in coding
theory.
2. Shamir’s (k,n) threshold scheme [1] is in fact an
error-free (I, p,r,n) SSS, and its (| %, §])-capacity sits
right on the optimal bound for linear codes as shown
in Fig. 1.

Fig. 2 depicts a trade-off between privacy and re-
siliency of an (n,k) linear code when viewed as an
(I,p,r,n) 5SS, given p missing shares. The shaded
area is the achievable region for linear codes while
Reed-Solomon codes are right on the optimal bound
for linear codes, which is represented by the point line.
The bold line represents the performance bound of an
(!,p,r,n) SSS.

Remark: 1. For a full-participating ({,p,r,n)

SSS, we have p = 0; thus, resiliency can be interpreted
as ‘error-correcting’ capability in coding theory.
2. Ben-Or el al’s scheme [Bt] is a full-participating
({,p,7,n) SSS, and its result of (p = n/3,r = n/3) lies
on the bound for linear codes When p = 0 as shown in
Fig. 2.

n

L=

>
performance bound
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Fig. 1. Reconstructability { vs. privacy p for an
(n, k) linear code when viewed as an (I, p, r,n) S885,
where ¢ is the number of errors occurred.

4, Random Codes as (I,p,»,n) $8Ss
4.1 Reconstructabilily of Random Codes
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Fig. 2. Trade-off between privacy p and resiliency r
for an (n, k) linear code when viewed as an (/,p,r,n)
§SS, given p missing shares.

~ Adopting the concept of weak universal code from
source coding [10], we define a Weak Universal
Channel Code for a channel class Q as a random
code C such that for each channel in Q, the average
probability of decoding error for code C' is arbitrary
small with high probability. We start with the follow-
ing notations.

e w: An N-ary, symmetric, erasure, discrete, mem-
oryless channel with error rate ¢, and erasure rate
6 as defined in section 2.

e (: A class of channels w. For example, {w :
Ve, 6,7 such that 0 <¢,6,y<1, and e +6 <7}
is a class Q, for a fixed 7.

o A: The set of input/output alphabet.

e X7: The code word of length n chosen for secret
message m.

e Y": The received sequence of length n at the
output of channel w.

o (e"®,n): a codebook of size e™® with each code
word of length n.

Construct a random code C* as described in [13,
pp. 200] with a rate R = (1 — ¥)In N in nats, and
a uniform distribution ¢(z) = wu(z) = 1/N. Thus,
the probability of generating a code C* is Pr(C*) =

nR
I1,,=; U(X}), where U(X]L) = (1/N)" is a uniform
distribution vector for code word X}. Consider the
following notation: [11, pp. 136-139]

e Pr,,(w): The average probability of decoding er-
ror over the ensemble of random block codes, given
that message m is sent through a channel w, when
the maximum-likelihood decoding rule is used. Thus,

Pr.w) =) > UXR)P.(Y X7,
Xn Ynr

me(error|m, XY™
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where P(error|m, X[, Y™), which is either 0 or 1 val-
ued, is the probability of decoding error conditioned
on the selection of the particular sequence X}, as mes-
sage m’s code word and the reception of sequence Y,
and P, (Y"[X2) = [1}=) Po(yi|®m;) is the transition
probability of The received sequence Y™ given that the
code word X7 is sent through the channel w. The
summations are for all possible input sequences X}
and output sequences Y™ respectively.

e P*(w): The average probability of decoding error
over the ensemble of random block codes, then over
all the messages that are sent through a channel w,
when the maximum-likelihood decoding rule is used.

Thus,
enR
Pr{w)y =3 Pr(m)P2,(w).
m=1

e P*w,C*): The average probability of decod-
ing error for code C* over all messages that are sent
through a channel w.

Furthermore, let f(w) be the density function of
w € Q,, and assume that all channels in 2, are uni-
formly distributed. Thus

2 .
f(w)z{ S 0Se45<7,0<e 87 <]

0, otherwise.

Lemma 4.1.1: The random coding exponent for
channel w € €, is

EY(R) = m;;ax—[n ([N‘r-:;.%(l - 5)$
+(6)'1#]1+p + 6 — pR, for sufficiently large N.

Sketch of Proof From [11, pp. 138], the random
coding exponent for channel w is defined as

Bf(R)=max{-ln 3 [3 u(z)Pu(yle)™]+"-pR}.

yEAU{E} €A

Substituting P, (y|z) by eq (1) in [7) and we have

B2(R) = max, —In (T, ealSoei u(@) Pulul) 1+
H e u(E) PulEl) ) — R
= max, — In ([Nﬁ%(l —e—6)TF + (t’)ﬁ_f']“'"
+6) = pR,
for 0 < p < 1 and N becomes sufficiently ‘large. //
Lemma 4.1.2: The ensemble of the random codes
that perform well for a given channel w € Q. also per-

form asymptotically well for all channels in the same
class.

Proof. Gallager’s Noisy Channel Coding Theorem
[11, pp. 143] states that the random eoding exponent
of a discrete, memoryless channel is non-negative for
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all R with 0 € R < C, where C is the channel capac-
ity. Furthermore, from (77) we have that the capac-
ity C of channel w is (1 —¢ = &) log N for sufficiently
large N, and that such capamty is achieved by a uni-
form 1nput distribution u(z) = 1/N Vz € A. Since
e+6 <4 Vw € Q,,s0 we haw C > (1—v)log N. Thus,
VYw € Q and0 < R<(1- 7)]ogN the random cod-
ing exponent E“’(R) in Lermnma 4.1.1 is non-negative.
Let gn(w) = exp{-nE“’(R)} Vn € N w € Q,, and we

(@

Applying the Monotone Convergence Theorem MCT
[12, pp. 211], we get

Jim Elgn(w)] = E[ lim_g,(w)] = 0.

91(w) 2 galw) > ...
lim g,(w)=0.

> gn(w) >0

From [11, pp. 138], we get

Pr.@) <e™ {3 (3 u@)P,(yle)FF] oY
yEAU{E} z€A
= exp{—nEY(R)} = ga(w).

So for an arbitrary set of message probabilities
Pr(m), we have

Pp(w) =

Thus 0 < im0 PP (w) < limy 00 gnlw) =0, Vw €
., which implies that nlin; Pr(w) = 0, Vw € Q.
Thus

Applying the Dominated Convergence Theoremn DCT
[12, pp. 72], we get

nlergoL PP (w)f(w)dw = 0, (5)

which implies that the ensemble of the random codes
that perform well for a given channel w € Q, will
also perform asymptotically well for all channels in
the same class. //

Theorem 4.1: Viewing an (n, k) random code as an
(!,p,r,n) SSS, we have for reconstructability ! that
{> k41 with hlgh probability for sufficiently large n
and N, where N is the size of alphabet and ¢ is the
number of errors which have occurred.

Proof: Step 1. Show the existence of a weak uni-
versal channel code for class Q. In other words, we
want to show that there exists a codebook C* that
lim / Pl w,C")f(w)dw = 0.

'7'

n—+00
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Z Pr(m)Py Pr () < E Pr(m)gn(w) = gn(w).

From [13, pp. 200], P?(w) = Z Pr(C*) P (w,C™)
CO
Substitute this into (5), we have

0 = lim/ > Pr(CT) PR (w,C7) f(w)dw

n—oo
'7 Ce

= lim Y Pr(C") / P*w,C*)f(w)dw
n—+o0 " Q
Ce v

= lim Eg- /

Since Pg(w,C) > 0, thus / Pl w,C") f(w)dw > 0.

P”(w,C*)f(w)dw] . (6)

-

-

Also, (6) implies that
Ec- / Pl w,C")f(w)dw| can be arbitrary small

-

for sufficiently large n. So if we let

E¢- [/ P}w,C") f(w)dw] < (¢/2) for any arbitrary
small ng > 0, and apply Markov’s inequality to
/ PYw,C") f(w)dw, then we have [13, pp. 57]

( / PMw,C") f(w) (lw] >e) < ——gz %,

€
which implies

P( /. P:(w,c'*)f(w)dw] se) >3

for any arbitrary 'small ¢ > 0. Thus, at least half of
C*’s have lim / P} w,C")f(w)dw = 0.
Q

n—o0

Step 2. Relate the weak universal channel code C*
to an gl,p, r,n) SSS and show that, with high proba-
bility, { > k4 for sufficiently large n and N, where ¢
is the number of errors, and k is the rate of code C*.

In Step 1, we have constructed a code C* with code
rate R = (1 — 4)In N. But the rate can also be ex-

k
pressed in terms of k as R = —lnN if e"f = NE,

Hence, lc-]nN = (1 — 9)In N, for sufficiently large

N. Thus E=n(l-9) <n(l-e¢-8) Vw € Q,.

Let p and ¢ be the number of erasures and errors
in the received word Y", respectively. Then, we
have ¢t = ne and p = né for sufficiently large n,
based on the Chernoff bound [11, pp. 127]. Thus,
k<n—t—p, Y(t,p), where t+ p < ny. This implies
that, with high pro ablhty of correct decoding, the
minimum number of correct elements in Y is greater
than or equal to k for any combination of errors and
erasures as long as their sum is less than or equal to
ny. Since we choose the secret m to be the index of



such a code word, and we assume that the codebook
is available, hence, for sufficiently large n and N, any
k4t or more shares suffice to recover the secret where
t is the number of erroneous participating shares.//

4.2 Privacy of Random Codes

Theorem 4.2: An (n, k) random code does not have
privacy when viewed as an (I,p,r, n) SSS.

Proof: Denote

e S: A random variable representing the secret
which takes on a value from {1,..., M}. In other
words, S is the index of the code word in a code-
book.

e X;: Arandom variable representing the jth given
share and takes on a value in the alphabet A =
{ao,a1,...,an—1} of size N. ,

e C*: An (n k) random code, or a codebook
(M, n).

o C7: The jth column of a codebook C*.

e H(S|X): The conditional entropy of S given a
released share X.

Following Shannon’s argument on the computation
of the key equivocation of random cipher [14], we have

H(S|X; = a; and C} has ¢ ajs) =logq, (7)

because the code vectors in each row are equiprobable.
Also because of the symmetry of the codes,

H(SlXJ‘ = a,») = H(S|X1 = a;). (8)

The elements are chosen independently, so

P(CF has g als) = () ()1 = M0, (9)

and
P(X) = a;| C? has ¢ als) = Iqi (10)
Also
P(Xy = a; and CY has ¢ a}s)
= P(X; = a;|Cy} has gals) x P(C} has gals).
(11)

Since a}s are equiprobable in codebook C* and there
are N a;’s, so we have

H(SIX) = EZH(SIXI = a; and C7 has ¢ a}s)
e 9
x P(X1 = a; and Cf has ¢ a}s)
N& 1 1.4
= Eiq () ()= 7" logg.
4=

(12)
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Next, consider the case of giving two shares X; =
a;,Xm = @ Since only the correct released shares
are considered, the pair (a,,a;) must be the jmth ele- .
ment of some code words in C*. Again, because of the
symmetry of the codes and the elements are chosen
independently, so we have P(CY{, has g (a;,a;)'s) =
(g{) (Tvlg)q(l - %)M«q’ and H(S|X1 = a,;,Xg =
a; and C}, has ¢ (a5,a1)'s) = logq. Also, P(X, =
a;, X2 = ai| C7q has ¢ (a;,a1)'s) = 5. Since (a;,a;)’s
are equiprobable in codebook C* and there are N?
possible pairs, so

H(S|X1,X2)
:ZZZH(S’{Xl = a,;,Xg =q

al'ld Cta has q (ai,a1)'s)
X P(X1 = a,,}\g = g and C{; has q (a;,@)'s)

MZ ]M(

In general, the conditional entropy of the secret,
when & shares are given, is

91— —)M~q logg.

H(S|Xi,, .., Xi,)

=2 “ZZH(Sle,,... in = (@1, 05,)

a5 jp

and C;‘l in has q (aj,...a;,)s)
x P(Xiy, ..., Xi, = (a5,,...,44,
and C',"‘l i, has ¢ (aj, ...a5,)'s)
1 -
= & zq ) ()" (1 = )= loga.

Asymptotically, when M gets sufficiently large, we
can evaluate the conditional entropy as Shannon did
for the random cipher [14]. The variation of logyg
over the range where (}) assumes large values will

be small, so log g can be replaced by log ¢, where § is
the expectation value of ¢. Thus

H(S’lX“, . X,_)

:—logq Zq(M )(1 - _L)M—q

:logM—hlogN,

as § = M -5, based on Chernoff bound [11, pp. 128].

Thus, for a random (M, n) code, where M = N* for

1<h<k-1, we have

H(S|X;,,...,X3,) =(k—=h)log N < klog N = H(S).//
Remark: Note that the information rate of a ran-

dom code is much greater than 1. Hence, the above

result coincides with a result derived by Karnin el al
[15] that the information rate for a perfect (I, p,r, n)



Proceedings of International Conference
on Cryptology and [nformation Security

$SS must be < 1. Fig. 3 illustrates how the entropy
drops when 0 to k& + 5 shares are given for alpha-
bet size N = 2,4, 8, 16,64 and, secret size M = N*
with & = 10. Observe that H(S|X;,,..., X, ) starts
at log M or klog N at h = 0, decreases linearly with a
slope of — log N to the neighborhood of £, then tapers
off with a smaller slope. '

8 8

0 12 13 1 18
h

Fig. 3. The conditional entropy of secret given 0 to
k + 5 pieces when (n, k) random codes are used for
k = 10, and various N.

5. Hahsed Random Codes as (I, p,r,n) SSSs
5.1 Hashed Random Code (HRC)

A hashed random (n, k) code (HRC) is a random
code C as described in {13, pp. 199] combined with
a hasher G which maps the index of a random code
C from the space S, = [0,...,N — 1]* onto the
space Sy = [0,..., N — 1] such that the new index
is uniformly distributed in space [0,...,N —1]. The
hashed index is used as the secret of HRC, and is de-
noted by S. Since the hasher G maps S from space
S, onto space Sy uniformly, the random codebook
C = (M, n) is equally divided into N blocks. Each
block of M/N code words is associated with a partic-
ular value i = 0,1,..., N—1 that the secret S can take
on. Because of the symmetry of the random codes, the
hasher can be any mapping from &, to S; as long as
it equally divides the space into IV subspaces.

5.2 Reconsiructability and Privacy of HRC

Theorem 5.2.1: Viewing an HRC as an ({,p,r,n)
$SS, we have for reconstructability ! and privacy p
that | > k4t = p + ¢, for sufficiently large N with
high probability, where ¢ is the number of errors which
have occurred.

Proof: We have.that [ > k + ¢ with high probabil-
ity 2s an immediate result fom Theorem 4.1, since
an ARC is a random code in which any k + ¢ shares
can reconstruct the code word with high probability.
Once the code word is reconstructed, the index S is
known and the secret S can be revealed by applying
the hasher G to S.
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To show that p = k for sufficiently large N, we'll
show that the conditional entropy of the secret re-
mains unchanged when 1 < A < k — 1 shares are
revealed. Use the same notations which were de-
scribed in Section 4.2 except replacing the key S by
S. Assume there are ¢ a;'s in the first columu of
codebook C and that these ¢ a;’s are distributed by
(g0,q1,---,9n-1] where g; represents the number of

¢;’s which fall in the block associated with 5 = 1,
0< ¢ <4 and fo_,;lqg = q. Denoting q as the
distribution [go,q1,...,q~-1], then we have

P(S' =1iX, =a,C) has gais with q) = gj,

H(S’[X1 = a;,C) has ga}s with §)
N-1

= Z -P(§ =i|X, =a,,C) has ga}s with )
i=0’ )
x log (P(S = i|.Xy = a;,C) has qas with q))
=h o O qv-1
q, q‘ ] q

Since
P(X; = a1,C) has gajs with §)
= P(X, = a1|C, has qais with §)
x P(C) has gajs with q)
= P(Xx = aﬂCx has qa’ls) X P(ﬁle has qa’,s)
x P(C) has ga)s)

because q will nbt affect the computation of P(.X; =
a,|C) has gajs). Also,

where p; is the probability that symbol a; falls in
block ¢, and hence is 1/N based on the symmetry of
the codes. Combining (13) with (9) and (10) yields

P(X, = ay,C) has gais with §)
M
= Z 4 (M (l)q(l _ _I_)M—q
M \gq N N do-
9=1
(14)

q

Gy

N-1
IJ @, a3

=0

P(G|C) has ga)s) = (q

[}

q

B Y

x T3 (4)”

Thus, the conditional entropy of secret S given X is
H(S1X) ]
=Y 55" H(3IX1 = a1,Cy has qa}s with §)
8 9 g

q
x P(X, = a;,C has qa’ls with q@)

SR N
)G H G

M
(15)

g=1

th(%o,...,
q

vt !

q
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Similarly, for two released shares @) and a2, we Asymptotically, when N gets sufficiently large and
have P(S = {|X; = a1, X3 = as, 0 does M and
Cys has g (a1, az)'s with §) = aq;‘, 7 g, and-we have that g =q1 =... = qn-1 = q/N, .

- ' Thush(i‘l,...,“’—“—):(ﬁ,...,]l\,):logN. By the
H(SIJ};l—-I_- ai, X2 = as,Ci2 has g(al,ag)’5.w1th q) Multinomqial ! Theorem,

- TN, — g T N-1 7: N-1 q
- z —P(b =1 JXI = a1, a2, z& <q i] ) Hi:U ('I%") = (Zi:ﬂ %) = L

i=0 0 IN~1

313 has ¢ (a3, az)'s with q) Thus, for 1 <h <k —1, (18) becomes

X lOg (P(S = il‘X’l = (11,)&’2 = as, -

C1» has ¢ (aj,az)'s with q H(S|Xiy, .., X))

I3 y M-
:h<ﬂ£,21_,wlN;l :%[Zg;qoq(ﬁ)q(l_wlﬂ q}logN
g9 1 q 1
=log N,

Since
o and we obtain that
P(Xl =a,,Xs = as,Cy, has q(al., ag)'s with q) '

= P(X; = a1, X = ao|Cls has ¢ (a1, a2)'s) 51y . logN = H(S), 1<h<k—1
X P(ﬁlcl‘g has q(al,ag)'s) H(bp\h ""\ih) = O’g ( )’ h=k
x P(C)2 has q(ay,a3)'s) (19)
because q will not affect the computation of P(X; = Thus, we have p= k. //
a1, X2 = a2|Ch2 has ¢ (ay, az)'s). Thus, we have Theorem §.2.2: Viewing an HRC as an Sl,p, r,n)
. sy = SSS, its privacy p and resiliency r are related by
P(X1 = a1, X3 = az,Cyz has ¢ (ar,a2)’'s with q) p+r = n — p, on an average for sufficiently large

) n and N, where N is the size of the alphabet.

M
=Z..‘1_ M (L)q(l__}_)M—q q
— M \qg /] N? N? Qo lino : (L
g=1 Proof: The rate of a random code is (k/n)log N
x TI ()™ since we let M = N* and it can achieve the capacity
(16) C' = (1—c=8)log N on an average for sufficiently large
where p; is the probability that a pair of symbols N with arbitrary small decoding error [11, 13, 16].
(a1,az) fall in the block 7, and hence is 1/N due to Since an HRC is a random code with key random-
the symmetry of the codes. So,

k i
ization, ;—logN = (1 —¢—&)log N, and so we have

H(S|X1, X2) _ k. = n—ne—né, where k. is the capacity rate. Hence,
=Y e H(SIX = a;, Xo = ay, k< n—t—p, and so t < n—p—k for sufficiently large
Clgxhasalq (ag ar)'s with @) l n, based on Chernoff bound [11, pp. 122] Thus, we

X P(X1 = o X = a1, Ci2 has q (a7, a;)'s with §) have » = n — p— k. From Theorem 5.2.1 we have that

N T o p = k for sufficiently large N. Thus p+7r = n— p, for

= NVQE;‘Q g (M (&) (1- %)M—" sufficiently large n and N. //
- q
‘ Ne1 N-1/1\¢. 5.3 Computer Evaluation of HRC
«Tgh(%m2) (o IS G P / |

(17) Th?oremﬂ?{‘él and 5(.1’2.‘2 add)r%sgsgs gle asymptotllc
. , case of an as an (I,p,r,n) SSS. However, mak-
In general, for 1 < h < k— 1, we have ing N infinity is unrealistic in practice. Next, We give
H(S|X:,,...,X:,) 7 some computer evaluations of the conditional entropy
Iy % of key S using (18). The solid line in Fig. 4 is for
- Z " N = 2 and k£ = 10. The dash line represents the
a5y 4G, 4 q asymptotic case and the point line is the conditional
H(S|Xiyy oo, Xay = (aj,,.-.,85,)'s, entropy of random variable S which is computed us-
Ci, .. has g(a;,,...,a;,)'s with q) ing (12?. Observe that, the conditional entropy of S
X P(X;,, ..., X, = (aj,,...,a5,)s, stays almost at log N for 0-to k — 4 released shares,
Ci,..i, has q(aj,,...,q;,)'s with §) decreases exponentially for the next 3 released shares
M 1\ L\ M4 to 0.6log N at the k — 1th released share, then tapers
2 zq (M) <_) (1 - __) to 0 at the k + 3th released share. Since N = 2 is
M =\ N Nk ' the worst possible case, such a result indicates that

N1 ‘ the asymptotic analysis will kick in relatively quickly.
Z b qo IN-1 q H l ! Fig. 5 shows a comparison between the computer eval-
— ' ¢ Qoln_y) 3 N uations of H{(S{Xy,..., Xp4s) for N = 2,k =5 and
q i=0 N = 4,k = 5. The solid line represents the case of
(18) N = 4 and the point line represents the case of N = 2
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_respectivey. Notice that the conditional entropy drops

much sharply at £ — [ and tapers to 0 quicker for
N = 4 than N = 2. This suggests that, an HRC has
reconstructability { = b + 1, and privacy p.= £ - 2,
for reasonably large N.

-
Q

—r & &+ &+ 7. 17 177

» M X1 ... Xn) — ]
HSE XL ..., Xn] ——
ASymORALiC Result H—i

LM I S |

Q e W W s B O N B
1
]

R I N Lm,‘_;__
90 &1 2 3 4 3 & 7 8 .9 1011 1213 14 15
N .

Fig. 4. The conditional entropy of the key S and
S given 0 to k + 5 shares when an HRC and random
codes are used for N =2, k= 10.

3 ) ) 1 i ] ) I L) r
25l H(SI XL, ..., %n), Ned, ka5 -0
: HIS X1, ..., Xn), No2, K=5 —— ]
. ASymptotic Result —
1.5 4
8 -
0.5 o
o bttt 1 &._L ,
@ 3 2 3 4 56 7 8 9 10
o
Fig. 8. The comparison between the conditional

entropy of the key S given 0 to k + 5 shares when
an (n,l? HRC are used for N = 4,k = 5 and
N=2k=5.

6. Conclusions

In this paper, a general (n, k) code is translated
into an (I, p, 7, n) SSS. The relationship among recon-
structability and resiliency of an (I,p, 7 n) SSS and
the code rate of both lineas and random block codes
are established. Privacy is also established. We show
that linear codes, when viewed as (I, p, v, n) SSSs, can
ot achieve the capacity bounds; We also show that
an (n, k) random code, when viewed as an (7, r, n)
SSS, do not have privacy even though it can actu-
ally achieve the capacity of reconstructability and re-
siliency with high probability for sufficiently large n
and alphabet. Lastly, we present 2 hashed random
code HRCL and show that such a code can asym
totically achieve the performance bounds with high
probability.
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