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Abstract— An improved voice activity detection (VAD) based 
on the radial basis function neural network (RBF NN) and 
continuous wavelet transform (CWT) for speech recognition 
system is presented in the paper. The input speech signal is 
analyzed in the form of fixed size window by using Mel-
frequency cepstral coefficients (MFCC). Within the windowed 
signal, the proposed RBF-CWT VAD algorithm detects the 
speech/ non-speech signal using the RBF NN. Once the 
interchange of speech to non-speech or vice versa occurred, the 
energy changes of the CWT coefficients are calculated to 
localize the final coordination of the starting/ending speech 
points. Instead of classifying the speech signal using the MFCC 
at the frame-level which easily capture lots of undesired noise 
encountered by the conventional VAD with the binary 
classifier, the proposed RBF NN with the aid of CWT analyzes 
the transformation of the MFCC at the window-level that 
offers a better compensation to the noisy signal. The simulation 
results shows an improvement on the precision of the speech 
detection and the overall ASR rate particularly under the noisy 
circumstances compared to the conventional VAD with the 
zero-crossing rate, short-term signal energy and binary 
classifier.  

Keywords-voice activity detection; continuous wavelet 
transform; mel frequency cepstral coefficient; radial basis 
function 

I.  INTRODUCTION  
Voice activity detection (VAD) is denoted as a crucial 

speech detector for most of the speech communication 
system, for instance, automatic speech recognition [1, 2], 
speech coding [3] to increase the bandwidth efficiency, 
speech enhancement [4] and telephony [5].  The failure of 
the VAD to accurately capture the presence of speech signal 
would directly affect the subsequent performance of the 
aforementioned applications. Therefore, a robust VAD for 
speech/non-speech detection, particularly under the noisy 
circumstances has become an essential topic and 
investigation throughout the decades [6]. 

There are numerous kind of VAD methodologies been 
proposed. The zero-crossing rate and short-term signal 
energy [7, 8] due to their simplicity, are normally used as 
the acoustic feature for the VAD. Nevertheless, the 
detection capability would be dramatically degraded under 
the noisy environments. Furthermore, the sound from the 
surrounding environment gives the same zero-crossing rate 
and energy as the speech signal, has yield the difficulty of 

accurate speech detection for the VAD [9]. Other than the 
abovementioned methods, the available VAD algorithm 
includes low-variance spectrum estimation [10], higher 
order statistic in the linear predictive coding (LPC) residual 
domain [11] and pitch detection [12].   

The recent research tends to incorporate the statistical 
model into the VAD approach to improve its performance 
[13-15].  J.H. Chang et al. [13] presented the VAD 
algorithm based on multiple statistical models, which 
incorporate the complex Laplacian and Gamma probability 
density functions for the statistical properties analysis. 
Besides, the VAD approaches which integrates the neural 
network and hidden Markov model post-processing to work 
under the presence of breathing noise is proposed in [15]. In 
[14], the VAD using support vector machine (SVM) that 
employs the likelihood ratios (LRs) computed in each 
frequency bin as the elements of the feature vector is 
demonstrated. Furthermore, the VAD using mel-frequency 
cepstral coefficients (MFCC) and SVM is presented by 
Tomi Kinnunen et al.[16] .   

In this paper, the VAD based on RBF NN and the CWT, 
in short named as RBF-CWT VAD is presented. Instead of 
utilizing the MFCC at the frame-level as the training 
material for the binary SVM classifier demonstrated in [16], 
the RBF NN dealt with the MFCC at the window-level and 
the computation of CWT energy change is proposed to 
improve the VAD performance especially under the noisy 
circumstances. This is due to the reason that the frame-level 
MFCC which used as the training material for the 
speech/non-speech classifier [16] would easily capture lots 
of undesired noise, though some of the post-processing, e.g., 
median filtering is applied to smooth out the VAD output, it 
is however part of the noisy signal are still be detected as 
the false detection. Alternatively, by evaluating the input 
audio signal with the window-level MFCC and the sliding 
information as proposed in this paper, the characteristic 
provided by the MFCC itself within the fixed window frame 
and the subsequent analyzes of the energy change of the 
CWT coefficients would offer a sequence of signal 
observation for the classifier and reduce the detection error.  

Figure 1 illustrates the overview of the proposed RBF-
CWT VAD algorithm.  The audio input signal is processed 
within a fixed length of non-overlapped window.  Under the 
supervised learning practice, the MFCC with delta and 
double delta are extracted as the most representative audio 
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features from a number of audio signals under different 
environment conditions. Subsequently, the RBF NN is 
trained by the extracted window-level MFCC to classify the 
speech and non-speech signal under different level of 
signal-to-noise ratio. On the other hand, during the VAD 
operation, the CWT and its energy calculation is triggered 
once the frame where the interchange of speech to non-
speech or vice versa occurred. The starting/ending points of 
the speech are localized according to the energy threshold 
predefined by the user and finally the detected speech signal 
would be sent for further ASR system to obtain final 
recognized speech. This paper organized as: Section 2 
introduces the proposed RBF-CWT VAD algorithm and 
briefly discusses about the MFCC feature extraction and the 
process of the RBF NN. Some simulation results and 
analysis are demonstrated in Section 3 following by the 
conclusion in Section 4.     

 

 
Figure 1. The overview of the proposed RBF-CWT VAD approach for 

ASR system 

II. PROPOSED VOICE ACTIVITY DETECTION BASED ON 
RADIAL BASIS FUNCTION NEURAL NETWORK AND 

CONTINUOUS WAVELET TRANSFORM 
The proposed RBF-CWT VAD algorithm contains three 

main parts: (i) feature extraction from the audio signal (ii) 
speech/non-speech classification and (iii) the energy 
calculation of CWT coefficients for speech localization. The 
respective components are discussed in details as in the sub-
sections below.   

A. Mel Frequency Cepstral Coefficent- Feature Extraction  
In this paper, MFCC is used as the most representative 

features of the speech signal for the coming RBF 
classification. MFCC, which possesses the characteristic of 
human ear’s non-linear perceptional condition (basically 
known as the logarithm relation) has been broadly applied in 
the ASR system. The general process to obtain the MFCC is 
depicted as in Figure 2.  

 
Figure 2. The process of MFCC audio signal feature extraction [17] 

Before the MFCC feature extraction, the signal is first 
windowed with the fixed length dimension. The windowed 
audio signal is then goes for the pre-emphasizing process 
using the finite impulse response (FIR) filtering for the 
purpose of flattening the spectrum. After that, the pre-
emphasized signal is split into the over-lapping fixed-length 
frames and Hamming windowing is subsequently applied 
onto each frame to smooth out the signal. By applying the 
Fourier fast transform (FFT), each of the frames is 
transformed from time to frequency domain and mapped 
onto the Mel scale [18]. The relationship between the 
frequency and the Mel-frequency is equated as [19]:  
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With the Mel-frequency filter bank, the frequency 
wrapping is done and the log-scale would be then 
transformed back to the time domain with the Discrete 
Cosine Transform (DCT).  The MFCC, its delta and double 
delta coefficients are computed as formulated in [20]. The 
total number of 39 coefficients is extracted as the features for 
the RBF NN speech/non-speech classification as discussed in 
the next sub-section.  
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Where N is denoted as the number of bandpass filter 
while nm is known as the log bandpass filtering output 
amplitude 

 

B. Speech/Non-speech Classification 
Referring to Figure 1, the output from the previous sub-

section which is the MFCC of the windowed signal would be 
passed to the present discussed RBF NN for speech/non-
speech classification. Before the process of classification, a 
simple SNR estimation is made by calculating the SNR of 
the current windowed signal to the fixed clean windowed 
non-speech signal. A SNR threshold is set as to define the 
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clean and noisy signal. After the estimation, the extracted 
MFCC would be then sent to the appropriate classifier. The 
architecture of the RBF NN which used as the speech/non-
speech classifier is briefly discussed as following. A general 
three-layer RBF NN as depicted in Figure 3 is adopted as the 
classifier to differentiate speech and non-speech signal.   
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Figure 3. The architecture of the RBF NN speech/non-speech classifier 

The first layer would be the input vector, 
T

n kxkxkxkX )](,),(),([)( 21  . In this paper, the input 
vector would be the extracted MFCC from the previous 
subsection. Furthermore, the centre layer of the RBF NN 
includes the parameters of RBF centre, nC  and the Gaussian 
width, n of each RBF unit which represent its 
corresponding subclass. On the other hand, the third layer is 
known as the output of the RBF NN as equated below [21]: 
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The )(k is known as the Gaussian function of the RBF. 

The above expression is equivalent as following: 
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Where n  could be mathematically represented as: 

Nn
CkX

k
n

n
n ,,2,1

)(
exp)( 2 









 



  (7)

The classification using RBF NN is based on the 
distances between the input and the centre values of each 
subclass. Therefore, from (7),  is denoted as the Euclidean 
norm of the input, while nC is the RBF centre and the n is 

the Gaussian width of the thn RBF unit.  
One of the outputs of the RBF NN speech/non-speech 

classification is demonstrated as in Figure 4 below. The 
windowed signal is marked as zero for the non-speech 
signal while noted as one for the speech signal. 
Additionally, if the interchange of zero-to-one, meaning 
from non-speech to speech or vice versa is triggered, the 
interchange windows which is within the boxes labeled in 
Figure 4 would be sent for further signal starting/ending 
point localization as discussed in the coming sub-section. 

The zoom in versions of the interchange signal labeled as 
starting and ending in Figure 4 are shown as Figure 5 and 
Figure 6 respectively.  

 
Figure 4. The output of the RBF NN speech/non-speech classification 

 
Figure 5. The interchange signal labelled as starting in Figure 4.    

 
Figure 6. The interchange signal labelled as ending in Figure 4.    

C. Continuous Wavelet Transfrom Speech Localization 
After obtaining the speech and non-speech classification 

of the windowed signal, the frame which has the interchange 
of speech to non-speech will be captured for the energy 
calculation as discussed in this sub-section. At first, the 
interchange frame is sent for the CWT to obtain its 
coefficients. The CWT possesses the characteristic of 
illustrating the frequency contents of the sound source as a 
function of time. Generally, the CWT would be defined as 
the sum over all time of the signal, )(tf  multiplied by the 
scaled and shifted versions of the wavelet function  [22]: 
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According to the equation shown above, it is denoted as 
the inner multiplying of a family of wavelet )(, t with the 
signal, )(ty as following: 
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Where  and  are the respective parameter for scale and 
translation,  known as the complex conjugate of the  , 
and the Coeff , denoted as the wavelet coefficients are the 
output of the CWT.  

 
(a)

 
(b)

Figure 7. The Scalogram of the (a) non-speech to speech and (b) speech to 
non-speech interchange 

Subsequently, with the CTW coefficients, the percentage 
of energy for each of the coefficient is computed as below: 

)( coeffcoeffabsP   (10)
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The aforementioned percentage of the energy for the 
CWT coefficients could be graphically represented by the 
scalogram as in Figure 7(a) and (b). The respective 
scalograms represent the energy changes of the interchange 
for signal starting and ending point from Figure 5 and Figure 
6 in the previous sub-section.  

From the scalograms shown, the position where the 
maximum energy occurred is first found. Subsequently, 
according to the energy which gradually reduces as the 
contour spreading from the maximum point, the coordination 
where the energy reaches the predefined threshold located at 
the same horizontal position as the maximum energy is noted 
as the starting/ending point speech signal. The starting and 
ending points are plotted on the respective scalograms. 
Finally, the resultant of the speech signal localization is 

demonstrated as in Figure 8 below. The coordination 
obtained from the energy percentage of the CWT 
coefficients as shown in Figure 7 (a) and (b) would be the 
respective starting and ending points after the conversion to 
the time step base.  

 
Figure 8. The final speech localization 

III. SIMULATIONS AND ANALYSIS 
The system evaluations are mainly focus on the 

speech/non-speech discrimination at different SNR levels. 
Furthermore, the influence of the VAD decision on the 
performance of the subsequent ASR system would also been 
analyzed. The proposed RBF-CWT VAD algorithm is 
evaluated by applying CUAVE database from Clemson 
University [23]. From the CUAVE database, 36 speakers 
utter continuous, connected and isolated digits are available. 
For the speech/non-speech classification training material, 
the MFCC is extracted from 20 speakers with the total 
speech length of 260s. In order to generate the noisy 
environment, the white noise with the SNR range from 30dB 
to 0dB is added to the clean speech data.   

 
(a) 

 
(b) 

Figure 9. The results of the proposed VAD algorithm under (a) the clean 
condition (b) the white noise 30dB (c) the white noise 10dB 
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Figure 10. (a) Input Audio Signal with the white noise 20dB  (b) the results 
of the proposed VAD algorithm with some undesired false detection (c) the 

final results of the proposed VAD algorithm after noise filtering 

Some of the simulation results of the proposed RBF-
CWT VAD approach in different level of SNR are presented. 
Figure 9 (a) demonstrates the RBF-CWT VAD speech 
detection results under the clean condition while Figure 9(b) 
shows the VAD results under the distorted signal with white 
noise 30dB. Another set of RBF-CWT VAD results are 
shown in Figure 10. In Figure 10(b), it is noticed that some 
of the false speech detection occurred, however the 
undesired false detection could be eliminated by applying the 
simple noise filtering, whichever detected signal is not 
exceeded to a fixed signal length, it would be considered as 
the non-speech signal as illustrated in Figure 10(c).   

As to analyze the performance of the proposed RBF-
CWT VAD algorithm in terms of speech/non-speech 
discrimination, the clean uttered digit from the CUAVE 
database is used as the reference decision. For the reference 
decision, each utterance is manually hand-marked as either 
the speech or non-speech frames. The performance of the 
speech detection with respect to the function of SNR is 
investigated in terms of the speech hit-rate (SHR) and the 
non-speech hit-rate (NSHR) [6]. The respective hit-rate is 
computed as below [6]: 

ref
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ref
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N

N
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
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Where speechN  and speechnonN   are the respective number of 
speech and non-speech frames which been correctly 
classified; while ref

speechN  and ref
speechnonN   are the number of 

reference speech and non-speech respectively.  
The SHR and NSHR for the proposed RBF-CWT VAD 

versus the (i) SVM binary classifier [16] and (ii) the 
conventional zero-cross rate and energy [7] are plotted in 

Figure 11 and Figure 12 respectively. From the plotted 
graphs illustrated, the proposed RBF-CWT VAD algorithm 
possesses a higher capability of detecting the speech signal. 
On the other hand, the false detection of the non-speech 
signal from the non-speech hit-rate graph is reduced by the 
proposed RBF-CWT VAD algorithm compared to others 
approaches. An obvious improvement of the system 
performance could be observed under the noisy 
circumstances, i.e. under the lower SNR condition.  

 
Figure 11. Speech Hit-rate comparison among the proposed VAD 

algorithm and other recent reported VAD approaches 

 
Figure 12. Non-speech Hit-rate comparison among the proposed VAD 

algorithm and other recent reported VAD approaches 

Furthermore, the evaluation of the ASR system with 
various kind of VAD approach is as well presented. For the 
experiment setup, the training data contains 1500 utterances 
while testing data consists of 300 utterances. For the ASR 
back-end processing which consists of the speech 
classification, hidden Markov model (HMM) [24] is 
employed as the classification tool as illustrated in Figure 1 
to model each word. The following ASR performance 
analysis is based on the output of the front-end processing (i) 
proposed RBF-CWT VAD (ii) zero-crossing rate and energy 
[7] and (iii) the SVM binary classifier presented in [16]. The 
average word accuracy under different SNR levels is 
tabulated in Table 1. From the tabulated results, it is noticed 
that the performance of the pre-processing, which is, in this 
case VAD algorithm would have an impact on the 
performance of the subsequent ASR. Compared to others 
VAD algorithms, the improved RBF-CWT VAD approached 
presented in this paper has demonstrated a better speech 
recognition rate either under the clean or noisy 
circumstances.    
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TABLE I. PERFORMANCE COMPARISON OF THE PROPOSED RBF-CWT 
VAD TO OTHER RECENTLY REPORTED ALGORITHMS 

SNR 
(dB) 

Proposed 
VAD (%) 

SVM binary 
classifier (%) 

Zero-crossing rate 
and energy (%) 

Clean 95.72 95.10 94.58 
30 93.81 91.92 91.28 
25 89.66 84.37 83.72 
20 84.02 82.63 83.04 
15 82.38 79.85 77.66 
10 67.57 61.29 60.51 
5 28.13 23.74 20.95 
0 15.24 10.82 9.63  

IV. CONCLUSION 
An improved VAD with the RBF NN and the CWT for 

ASR is proposed in this paper. The improved RBF-CWT 

VAD successfully detects the speech signal from the input 
audio signal even with the presence of noisy background. 
With the aid of the window-level MFCC as the training 
material for the RBF NN and the computation of the energy 
changes of the CWT coefficients, the proposed RBF-CWT 
VAD algorithm offers a better noise compensation and 
provides more precise speech/non-speech detection 
compared to the conventional frame-level binary 
classification approach. Furthermore, the proposed RBF-
CWT VAD approach is also shows a more accurate detection 
compared to the zero-crossing rate and short-term signal 
energy algorithms not even under the clean condition but as 
well the noisy circumstances. With a higher capability of 
speech/non-speech detection offers, the final ASR system 
has shown a higher recognition rate with the integration of 
the proposed RBF-CWT VAD algorithm. 
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