
Strip-based Watershed
using Multiple-bank Memory Storage

Lee Seng Yeong, Li-Minn Ang, Kah Phooi Seng
School of Electrical and Electronic Engineering

The University of Nottingham
Jalan Broga, Semenyih, Selangor 43500, MALAYSIA

e-mail: {eyxlsy, kezklma, kezkps}@nottingham.edu.my

Abstract—In this paper we propose a single-pass strip-based
watershed segmentation using multibank memory. This water-
shed segmentation is based on rainfall simulation and is targeted
for low memory applications whereby only a small amount of
memory is needed for processing at any one time. Using multiple
memory banks for storage also ensures that clock cycles for
memory accesses are kept to a minimum.

Keywords-strip-based, single-pass watershed, multibank mem-
ory

I. INTRODUCTION

Watershed processing is a segmentation method based on an
image’s topography. Each grey level is treated as a gradient and
the segmentation is based on how water accumulates in these
regions. For immersion based watershed, region boundaries
are formed by the dams built during flooding. Using the
rainfall simulation method, the boundaries are formed between
catchment basins. The differences are illustrated in Fig. 1.
However, watershed processing typically requires a lot of
memory. In many applications such as those whereby the
watershed needs to be implemented on FPGA, a low memory
version of the watershed is desired.

One such low memory method for immersion based water-
shed is given in [1]. In [2] new data structure for the output is
proposed to minimize memory usage for storage. The approach
to minimize memory usage used in this paper is named strip-
based watershed, called so because it processes a strip (i.e. a
few rows of pixels) at a time. It is loosely based on the rainfall
watershed proposed in [3], [4] and has been modified for
single-pass operation. The modifications includes merging of
the arrowing and labelling stages of the watershed and to how
plateaus are handled. In addition to processing the watershed
in strips, a multibank memory as described in [4], [5] is used.
This helps to reduce the number of clock cycles for memory
access, especially when multiple values are required before
processing can start by allowing these values to be accessed
in parallel. The general overview of the system is shown in
Fig. 2.

The main challenge for processing the watershed in strips
is the way the plateaus are handled. In [4], the entire plateau
is put into a queue and “eroded” one pixel at a time from
the outermost pixel moving inwards. During each pass, these
outermost pixels are labelled with the direction of it’s lowest
neighbour. In strip based processing, we no longer have the

(a) Flooding watershed.

Boundaries are formed by

dams between flooded

regions.

(b) Rainfall watershed.

Boundaries are formed

between catchment basins.

Dams

Catchment
Basins

Rain-
fall

Fig. 1. Flooding vs rainfall watershed.

9-bank

Memory

8-bank

Memory

Edge Detect

Watershed

Output

Memory

Image

stored in

External

Memory

(or Camera

Sensor)

Fig. 2. The block diagram of the proposed strip-based watershed with
multibank memory.

entire image in memory and consequently neither the whole
plateau. Without knowing the extent of the plateau, it will not
be possible to accurately determine the direction of steepest
descent. This is illustrated in Fig. 3. The rest of the paper is
organized as follows. Section II and III will briefly describe
the watershed segmentation and multibank memory used in
[4]. Section IV will describe our single-pass rainfall-based
watershed using the multibank memory. Finally, Section V
will summarize this paper.

II. RAINFALL WATERSHED

The watershed process described in [4] is a two-stage
process, arrowing and labelling. During the arrowing stage,
each pixel is labelled with the direction of its lowest neighbour
unless all its neighbours are of a higher value and forms a

553

cdclab
打字機
978-1-4244-7638-1/10/$26.00 ©2010 IEEE

?

Plateau

Fig. 3. In strip-based processing, the extent of a plateau is unknown until it
is complete. Illustrated here are possible plateau shapes if only the first two
rows of the plateau are known. Depending on the neighbouring pixels, these
three possibilities can yield different segmentation results.

lower minima. This basically creates a chain code that points
each pixel to its associated lowest minima. The labelling stage
then labels each pixel using this chain code into their respec-
tive groups forming catchment basins. It is the boundaries
between the catchment basins that form the edges of the
segmented regions. In our proposed system, these two steps
will be done in a single step eliminating the need to have to
effectively go through the whole image again.

During the arrowing stage, the lowest neighbour is deter-
mined by comparing the values of the centre to the four
neighbours to the north, east, south and west (using Cardinal
directions) shown in Fig. 4(a). This is called 4-neighbourhood
connectivity and it is the same one used for the strip-based wa-
tershed. This is good when there is only one lowest neighbour.
In cases where there are two or more lower valued neighbours
(but not the same value as the current pixel), the direction is
chosen based on a predetermined order. See Fig. 4(b). In cases
where the current pixel and at least one of the neighbours
have the same value, they are considered as plateau pixels. As
described earlier, this is processed by a recursive “erosion”
process using two queues.

To perform this watershed processing, large amounts of
memory is typically required with a minimum of the whole
image stored in memory. We proposed a strip based method
which allows processing of the watershed using less memory
by processing only part of the image at any one time. This
also eliminates the need to have large queues to process the
plateau regions recursively.

III. MULTIBANK MEMORY

In the proposed system, multiple memory banks as de-
scribed in [4], [5] are used for parallel value access. Two dif-
ferent instances of this multibank memory is used for storage,

(a) (b)

Order of

direction

labelling

priority

-1 -3

-2

-4

W C E

N

S

Fig. 4. (a) Values needed for 4-neighbourhood connectivity and (b) Direction
precedence, starting from W(highest priority), N, E and ending with S(lowest
priority). The negative numbers are the labels used during the arrowing stage
when finding the direction of the lowest valued neighbour.

Current

pixel

location

Parallel

Value

Output

Neighbouring

Pixel Locations

Calculator

Address

Logic

Multibank

Memory

Fig. 5. How multiple values are accessed in parallel using only the current
pixel location as input. Shown here is for a five parallel value access.

(1) a nine bank memory for nine parallel value access which
used during edge detection and (2) an eight bank memory for
five parallel value access which used during the watershed
transform. These are shown in Fig. 6 and Fig. 7 respectively.

The multibank memory allows parallel values access from
random pixel locations by calculating the memory addresses
for the banks and location within the banks based on the
current pixel position. This is normally some simple logic
which can be derived by mapping the binary values of the
pixel locations to their respective banks and locations within
the banks. During writes to memory, typically only one or
two values are written at a time and this is normally done
in a fixed manner. For this purpose, it is typically better to
use a lookup table. Parallel values are obtained by activating
multiple banks concurrently. This is done by calculating the
memory locations of as many parallel values as needed and
using it as an input into the multibank system. In the case
of edge and watershed processing, the parallel values are the
current pixel and its neighbouring pixels, generating five or
nine values respectively. This is shown in Fig. 5.

During operation, pixel values from the camera are stored
in the nine-bank strip buffer in a sequential manner, one pixel
at a time. An addressing scheme will select the correct bank
and address to which the values read from the camera will
be stored into. Values in this nine-bank strip buffer serves as
the input to the edge detection module. After edge detection,
the edge values are stored in the eight-bank memory. This is
followed by the watershed which takes these edge values as
input. This is shown in Fig. 2.

554

1:1

bank_number : location_within_the_bank

1

1

bank
number

n-1

2

2:1 3:1

4:1 5:1 6:1

1

2

n-1

2

1

3

n-1

2

1

4

n-1

2

1

5

n-1

2

1

6

n-1

2

1

7

n-1

2

1

8

n-1

2

1

9

n-1

n n n n n n n n n

2

7:1 8:1 9:1

1:n 2:n 3:n

4:n 5:n 6:n

7:n 8:n 9:n

1:2 2:2 3:2

4:2 5:2 6:2

7:2 8:2 9:2

L
o

c
a
ti

o
n

s
w

it
h

in
 t

h
e

b
a
n

k
s

n-th group of pixelsEach group is 3x3

Fig. 6. Image from camera is stored into nine memory banks for nine parallel
value access. Shown here for a 3xn-th group strip where n is the last group
that can contain the whole width of the image.

1:1

1

1

bank
number

n-1

2

2:1

1:2 2:2

3:1 4:1

3:2 4:2

5:1 6:1

5:2 6:2

1

2

n-1

2

1

3

n-1

2

1

4

n-1

2

1

5

n-1

2

1

6

n-1

2

1

7

n-1

2

1

8

n-1

2

n n n n n n n n

7:1 8:1

7:2 8:2

2:n-1

1:n 2:n

3:n-1 4:n-1

4:n

6:n-1

5:n 6:n

7:n-1 8:n-1

8:n

L
o

c
a
ti

o
n

s
w

it
h

in
 t

h
e

b
a
n

k
s

n-th group of pixelsEach group is 4x4

1:3 2:32:32:32:3

1:41:41:41:41:41:41:4 2:4

3:33:33:33:33:33:33:33:3 4:3

3:4 4:44:44:44:4

5:3 6:36:36:36:3

5:45:45:45:45:45:45:45:4 6:4

7:37:37:37:37:37:37:37:3 8:3

7:4 8:48:48:48:4

1:n-1

3:n

5:n-1

7:n

bank_number : location_within_the_bank

Fig. 7. Storage for the edge detected image. Shown here is a 4xn-th group
memory which is arranged in an eight-bank configuration.

2 10

14

21

55 55 55

55

55

2215

21

55

10

15

16

18 55 55 55 55

55

55

19

10 18 55

555510

7

5 8 11 15 16

55

55

55

24

55 55

22

11

1217

21

55

55 55 16

15

13

12 8

1055

9 6 4

5

9

10

3

(a) Result of original watershed using edge

erosion for the plateau. The plateau is

split into four. The result is four

segmented regions (or four catchment

basins) with the boundaries of each

shown by the detached line.

(b) Result of the strip-based watershed by

treating plateau regions as a complete

catchment basin. The result is five

segmented regions.

2 10

14

21

55 55 55

55

55

2215

21

55

10

15

16

18 55 55 55 55

55

55

19

10 18 55

555510

7

5 8 11 15 16

55

55

55

24

55 55

22

11

1217

21

55

55 55 16

15

13

12 8

1055

9 6 4

5

9

10

3

Local

Minima

Plateau

Region

Arrowing no

longer

performed

for plateaus

Watershed

Boundaries

(seperating

the different

catachment

basins)

Watershed

Boundaries

(seperating

the different

catachment

basins)

Fig. 8. Results of the rainfall-based watershed in [4] and our proposed system

IV. SINGLE-PASS STRIP-BASED WATERSHED

As mentioned in the introduction, the main challenge to
implement the rainfall simulation based watershed proposed in
[4] is the way the plateaus are handled. Since the data coming
in is “incomplete” there is no way to know to what extent the
plateaus go. To overcome this, we propose a modification to
this method and treat the entire plateau as a catchment basin as
done in [6]. By doing so, a plateau does not require arrowing
but treated as a catchment basin (one complete region). For
this, each plateau is processed using the connected components
processing described in [7].

An example of this watershed labelling for the first three
lines is shown in Fig. 9. The single-pass watershed works by
immediately assigning a label to the first pixel processed. The
next pixel points toward an already labelled pixel and will
assume the same label. When a pixel breaks this connectivity,
a new label is assigned and the process continues as before,
labelling each connected pixel with this new label. In the

555

given example this occurs at pixel location 5. At this point, it
points to a different direction and a new label is given. When
a labelled pixel points to an unlabelled pixel, both will get
labelled at the same time. This occurs at pixel 5 which points
to the unlabelled pixel 6. Both pixels will be assigned the same
label at the same time. When pixel 6 is processed the same
thing occurs and pixel 7 will get labelled with the label of
pixel 6.

The problem with this is that if a new group of connected
pixels is connected to a previous group, it will require label
corrections. Fortunately, this only needs to be done for a
selected number of pixels, namely the pixels which came
before the new found connectivity. In the example given, this
occurs twice, at pixel location 16 and 20. At pixel 16, it will
discover that it has two neighbours which have been labelled.
A flag is used determine which pixels have been labelled. In
the example, it is denoted by a negative sign. For pixel 16,
it will assume the smallest group number. The system will
then backtrack through the row following the direction of the
neighbours with the “wrong” group label. Only pixels 14 and
15 require relabelling. Correction is done immediately once it
is discovered.

The is correction can only be performed on the strip
currently in memory. Without complete correction over seg-
mentation will occur. Fortunately, this can be rectified during
the stage which follows segmentation. This is done by using
an association tree which is generated when the correction
marker moves to the boundaries of a strip. This association tree
is used each time an operation is performed on the segments,
such as size or average value calculations and again during the
actual segmentation. Instead of using only one group of pixels,
other groups are included in the calculations and processing
depending on the association tree.

V. SUMMARY

In this paper, we have proposed an efficient single-pass
strip-based rainfall simulated watershed segmentation. By
treating the plateau as a catchment basin it allows us to
eliminate the queues used for plateau processing in [4]. Clock
cycles required for memory access are also kept to a minimum
by allowing parallel value access through the use of multibank
memory storage.

REFERENCES

[1] I. Pitas and C. I. Cotsaces, “Memory efficient propagation-based water-
shed and influence zone algorithms for large images,” IEEE Transactions
on Image Processing, vol. 9, 2000.

[2] J. De Bock and W. Philips, “Line segment based watershed segmentation,”
in Computer Vision/Computer Graphics Collaboration Techniques, ser.
Lecture Notes in Computer Science, A. Gagalowicz and W. Philips, Eds.
Springer Berlin / Heidelberg, 2007, vol. 4418, pp. 579–586.

[3] V. Osma-Ruiz, J. I. Godino-Llorente, N. Sáenz-Lechón, and P. Gómez-
Vilda, “An improved watershed algorithm based on efficient computation
of shortest paths,” Pattern Recogn., vol. 40, no. 3, pp. 1078–1090, 2007.

[4] L. S. Yeong, C. W. H. Ngau, L.-M. Ang, and K. P. Seng, “Efficient
processing of a rainfall simulation watershed on an FPGA-based archi-
tecture with fast access to neighbourhood pixels,” EURASIP Journal on
Embedded Systems, vol. 2009, no. 318654, p. 19, 2009.

0

1

2

3

-1-1

-1

-1

55 55 55

-3

-3

-1-1

-1

-4

-1

-1

16 55

-3

-3

-2

55 55

-2

-4

-2-2

-4

-3

15

--2

-2

-2

 (a) A new label is given to the pixel once the

connectivity between the pixels is lost.

 (b) A plateau region will be given a new label.

 (c) A pixel with two neighbours which have

already been labelled will change the state

of the system to “label correction”. The

smaller valued label is chosen. The system

backtracks on the same row and relabel the

mislabelled ones.

(a) New Label

(b) Plateau region

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

18 55 55 55 55 55 55 16

10 19 55 55 55 55 10 9

7 10 18 55 55 12 8 5

5 8 11 15 16 9 6 4

2 10 15 22 24 17 12 3

10 14 21 55 55 21 11 10

15 21 55 55 55 55 22 13

16 55 55 55 55 55 55 15

0

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

Linear index

Value

Initial Label

(c) Two neighbours with labels

Fig. 9. Example of the single-pass strip-based watershed. The linear index
is given for easier reference during the explanation and the arrows represent
paths of steepest descent for each pixel. (These paths are not used for the
plateau processing)

[5] D. Noguet and M. Ollivier, “New hardware memory management archi-
tecture for fast neighborhood access based on graph analysis,” Journal of
Electronic Imaging, vol. 11, no. 1, pp. 96–103, 2002.

[6] J. De Bock, P. De Smet, and W. Philips, “A fast sequential rainfalling
watershed segmentation algorithm,” in Advanced Concepts for Intelligent
Vision Systems, ser. Lecture Notes in Computer Science, J. Blanc-Talon,
W. Philips, D. Popescu, and P. Scheunders, Eds. Springer Berlin /
Heidelberg, 2005, vol. 3708, pp. 476–482.

[7] L. S. Yeong, L.-M. Ang, and K. P. Seng, “Efficient connected component
labelling using multiple-bank memory storage,” Proceedings of the 2010
3rd IEEE International Conference on Computer Science and Information
Technology, vol. 9, pp. 75–79, July 2010.

556

	S7-W3-06

