
UDispatch+: A User Dispatching Tool with Automatic Binding

Tang-Hsun Tu, Yuan-Cheng Lee, and Chih-Wen Hsueh
Embedded System and Wireless Network Laboratory

Department of Computer Science and Information Engineering
National Taiwan University
Taipei, Taiwan 106, R.O.C.

E-mail: {d98944004, b94101, cwhsueh}@csie.ntu.edu.tw

Yi-Sheng Liu
Department of Information Management

National Chi Nan University
Nantou, Taiwan 545, R.O.C.

E-mail: s96105016@ncnu.edu.tw

Abstract—In multicore environment, multithreading is often
used to improve application performance. However, there are
some unexpected anomalies which degrade the performance of
multithreading applications. Some of the unexpected anomalies
come from inappropriate thread dispatching by operating
system. To solve this problem, a novel User Dispatching
Mechanism (UDispatch) was proposed. Through modification
of application source codes with the UDispatch application
programming interface (API), the application performance
can be improved significantly. However, most of the time, the
application source codes are not available, or it might not be
suitable to do the modification of source codes. Therefore, we
provide another tool to dispatch threads without any modifica-
tion of application source codes, called User Dispatching Plus
(UDispatch+). It can bind the application threads automatically
and dispatch to specific cores at the discretion of users.
We experiment UDispatch+ on multithreading multimedia
applications. The results show that a more parallelized skip-line
application can speed up to 171.8% on a 4-core machine, and
a more dependent optimized H.264/AVC decoder can speed up
to 20.1% on a 4-core machine.

Keywords-Scheduling, Dispatching, Anomaly, Multithread-
ing, Multicore, Virtual Device.

I. I NTRODUCTION

There are some unexpected scenarios, which users usually
do not notice, in dispatching threads by operating system.
For example, even if some cores are idle, the operating
system might not dispatch any thread to the idle ones
because it might not reach the load-balancing threshold or
some threads finish too quick before the operating system
can do any correct response. However, when users find out
this situation, they still cannot do anything about thread
dispatching if the operating system does not provide related
control mechanisms.

Nowadays, there are some existing approaches that allow
users to dispatch threads without any modification to source
codes, e.g. taskset [1] and bindprocessor [2]. They can bind
threads to a specific core through command line instructions.
However, even if it is convenient to use, there are still not
enough for multithreading applications. For example, if users
only bind main thread to a specific core, the slave threads
will inherit core affinity of the main thread and the workload
will be still placed totally on the same core. Since taskset

only can set a thread one at a time, to dispatch a multi-
threading application, users need to get process identifiers
(pids) of all needed slave threads and execute this command
many times. Moreover, sometimes, we need related system
information to decide the dispatching. However, getting
those information might incur extra overhead [3], especially
for some timing critical applications. Another problem is that
since users often do not have knowledge of the application,
i.e. when the slave threads will be created, the later binding
of the slave threads, the higher overhead that could be
controlled. Therefore, we designed UDispatch [3] to provide
the control mechanism and act as a bridge between user
applications and kernel in the form of a virtual device [4],
where the virtual device design further reduces the work
of modifying kernel. Through this mechanism, users can
dispatch threads of their applications to specify cores easily
and efficiently.

Although UDispatch can improve the performance of
applications remarkably, but it requires users to modify the
source codes of their applications. In most cases, users
do not have the source codes, and the specific application
domain knowledge to modify the source codes. Therefore,
extend UDispatch to UDispatch+ by adding a shell com-
mand. It can manipulate kernel and UDispatch for thread
binding thus requiring no modification to source codes with
little patch to Linux kernel.

Our contributions can be summarized as follow:

• We present an automatic dispatching program,
UDispatch+, which can dispatch threads to specific
cores so that the application performance can
be improved on multicore systems without any
modification of source code.

• We apply and verify UDispatch+ through multimedia
applications and sustain higher performance improve-
ment than UDispatch.

The rest of this paper is organized as follows. In Section
II, we present the framework and the usage of UDispatch+.
Section III shows the experiment results of UDispatch+.
Section IV shows the comparison between UDispatch+ and
UDispatch. This paper is concluded in Section V.

581

cdclab
打字機
978-1-4244-7638-1/10/$26.00 ©2010 IEEE

…

pthread_create()

Slave Threads

Main Threads

UDispatch

do_fork()

load and fork

UDispatch

manipulate

enable switch control

threads

App

system callkernel space

user space

pass arguments

+

Figure 1: UDispatch+ architecture.

� �
1 #include "UDispatch.h"
2
3 vo id UDPlus_main(i n t fd, pid_t ppid,

pid_t cpid, unsigned char bm_flag){
4 // pass pids to UDispatch
5 // (UDispatch+ pid and leader pid)
6 set_UDPlus_pids(fd, ppid, cpid);
7 //bind main thread
8 i f (bm_flag) bind_to_cpu(fd, cpid,

find_least_load_core());
9 // enable the switch for slave

10 // threads
11 enable_UDPlus_switch(fd);
12 // wait specify application finishes
13 wait_app_done(cpid);
14 // disable the switch
15 disable_UDPlus_switch(fd);
16 }

� �

Code 1: The default template of UDispatch+.

II. UD ISPATCH+ FRAMEWORK

To develop UDispatch+, the main concern is how the
workflow executes, i.e. when to bind, where to bind, how to
get the system information of the application and cores, and
how to decrease the overhead of dispatching threads due to
the system design as much as possible.

In Linux, a thread is treated as a process, and a process is
created by the low-level kernel functiondo fork(), i.e. sys-
tem callfork. Therefore, to decide when to bind and where to
bind, our idea is making a switch in the dofork() function to
automatically detect whether a newly created thread should
be bound or not. As shown in Figure 1, an application, App,
creates multiple slave threads, and the threads will be bound
to specific cores. According to the mechanism in Linux,
each thread will call the dofork() to build its context in the
creation process. When UDispatch+ starts, the application

main
thread �

leader

slave
thread

#1

slave
thread

#n

n

Figure 2: Multi-thread structure with identifiers.

will be loaded and forked by UDispatch+ as a child process.
UDispatch+ then passes its pid and the pid of its child to
UDispatch and enables the switch through UDispatch to start
binding.

Since multiple threads might be created simultaneously, a
simple switch mechanism in the dofork() is not enough to
identify whether a newly created thread needs to be bound
or not. Therefore, another comparison is added to solve this
problem. In Linux kernel, a multi-threading application is
stored in a list structure as in Figure 2. The main thread is
the group leader, and its slave threads are group members
and linked sequentially. To ensure that a thread is the correct
one for controlling, we make a comparison between the main
thread pid of the application passed from UDispatch+ and
the pid of a newly created thread. If the pids are matched, the
newly created thread is a slave thread of the application and
it will be bound to the specific core automatically; otherwise,
nothing to be done.

UDispatch+ is implemented as a user application. To fit
various applications, we provide a UDispatch+ template in C
language as in Code 1, and users can customize this template
easily. There are some related functions in UDispatch API
as follows:

• set UDPlus pids: Passing pids to UDispatch, i.e. pids
of UDispatch+ and the application.

• enable UDPlus switch: Turning on the switch to
bind specific threads automatically in kernel function
do fork().

• disable UDPlus switch: Turning off the switch to stop

582

the binding in kernel function dofork().

� �
1 vo id UDPlus_main(i n t fd, pid_t ppid,

pid_t cpid, unsigned charbm_flag) {
2 i n t i, nr_slave_threads = 0, ret;
3 pid_t *pidary = NULL;
4 #define NR_THREADS 4
5 ...
6 // get threads’ pids on a
7 // specific application
8 whi le(nr_slave_threads !=

NR_THREADS)
9 nr_slave_threads =

get_nr_threads(fd, cpid);
10 pidary = (pid_t *)

malloc(nr_slave_threads *
s i z e o f(pid_t));

11 get_pids_on_task(fd, pidary,
nr_slave_threads, cpid);

12 // bind threads to specify cores
13 ret = bind_to_cpu(fd, pidary[1],

find_least_load_core());
14 i f (ret) ; // bind failure
15 bind_to_cpu(fd, pidary[3],

find_least_load_core());
16 ...
17 free(pidary);
18 }

� �

Code 2: An example of customized UDispatch+.

As shown in Code 1, the entry point of UDispatch+

is UDPlus main(). The first parameterfd is the file de-
scriptor of the virtual device of UDispatch. The second
parameterppid is the UDispatch+ pid got by system call
getpid(). The third parametercpid is the pid of multi-
threading application for controlling which is obtained by
system call fork() and the last parameterbm flag indi-
cates whether to bind the main thread or not. The func-
tion find least load core() returns the core with the least
load and the functionwait app done() is implemented by
system call wait() to wait until the specified application
finishes. When users want to use the switch mechanism
in do ork() function, set UDPlus pids() should be called
first to pass pids for binding, and then the switch is turned
on to start checking by callingenable UDPlus switch().
Af ter the multi-threading application (cpid) finishes,dis-
able UDPlus switch() is called to turn off the switch. To
customize UDispatch+, users only need to modify the entry
function UDPlus main(). An example is shown at Code 2,
where it is customized to get identifiers of the application
threads of more than the default number and assign one of
the threads to a specific core.

Table I: Configuration of experiment machines.

4-Core Machine

CPUs Intel R©CoreTM2 Quad CPU 2.4 GHz

Memory 1G DDR2 RAM

Hard Disk 160 G

OS Ubuntu 7.04 - Linux-2.6.2.17-generic
Upgraded to Linux-2.6.26.3

Table II: Skip-line arguments.

VTL Range Threshold Image Size

Value Yes 7 3 1920x1080

III. E XPERIMENTS

We apply the default template of UDispatch+ listed in
Code 1 to two multi-threading applications to measure its
performance, one is the skip-line encoder and decoder [5],
and the other is an optimized H.264 decoder. The ex-
periments are conducted on a 4-core machine with the
configuration in Table I. The experiment results are averaged
from 1000 times and500 times of execution with the
same binding approach for skip-line application and H.264
decoder respectively.

For convenience, we use the following shorthand to rep-
resent different binding approaches:

• NoB: threads of user application are executed without
core binding.

• 1-1: slave threads are bound with one-to-one mapping.
• M-L : main thread are bound with the core of the

least load and slave threads are bound with one-to-one
mapping.

• 1-1+: using 1-1 in UDispatch+.
• M-L +: using M-L in UDispatch+.

A. Skip-line Algorithms

Skip-line encoding is one of the lossy encoding techniques
for binary image. It keeps a line using the run-length
encoding, compares with the next line, and skips it until
the line is not similar or fix number of lines has been
skipped. Then, it keeps the dissimilar line or the next line to
continue comparison. To get higher compression ratio while
still keeping high recognizability,Basic, Swing, and TOW
were three variants of skip-line algorithms with different
thresholds [3].

Based on the skip-line algorithms with threshold, we
can partition a whole image into some independent image
strips as shown in Figure 3, wherenr skip line is the
number of lines encoded (or skipped plus one) from the
original image. For each strip, we construct a thread to do
encoding or decoding. Therefore, it is a very parallelized
application. Since we focus on the behavior of threads, the

583

Thread1

Thread2

Thread3

Height

Width

3
Thread1

Thread2

Thread4

(a) (b)

2

Reset

2
1
2

nr_skip_line

Keep

Reset

Keep

Keep
Reset

Thread4

Reset

1

1

Thread3

Figure 3: Skip-line (a) encoding (b) decoding with multiple threads.

Table III: Attributes and speed-up (%) of H.264 bitstreams.

Attributes Speed-up

No. Name Resolution # of Frames NoB 1-1+ NoB
M-L+ M-L+ 1-1+

1 Harbour 720P (1280x720) 300 12.9 0.4 12.5
2 Night 720P (1280x720) 300 14.4 0.2 14.2
3 Jets 720P (1280x720) 300 20.1 0.3 19.7
4 Harbour 480P (720x480) 300 12.0 0.3 11.6
5 Crew 480P (720x480) 300 15.9 0.6 15.2
6 Sailormen 480P (720x480) 300 12.9 0.1 12.9
7 Night 480P (720x480) 230 13.3 0.4 12.9
8 Mobile CIF (352x288) 300 10.2 0.1 10.2
9 Football CIF (352x288) 260 11.5 0.1 11.4
10 Bus CIF (352x288) 150 13.4 0.1 13.3

Table IV: The speed-up (%) of skip-line applications.

Skip-line Encoding Skip-line Decoding

NoB 1-1+ NoB NoB 1-1+ NoB
M-L+ M-L+ 1-1+ M-L+ M-L+ 1-1+

Basic 121.5 30.6 69.6 88.2 0.7 86.9

Swing 171.8 24.2 118.9 49.7 1.1 48.0

TOW 149.2 24.6 100.1 74.5 1.9 71.2

arguments of skip-line algorithm as described in Table II can
befixed, whereV TL means that it also solves a vertical line
problem [5] when encoding,Range is the number of pixels
to compare for each pixel, andThreshold is the number of
dissimilar pixels for skipping a line.

Table IV summarizes the performance gain using
UDispatch+ for skip-line encoding and decoding on the 4-
core machine. The speed-up is defined by

Speed-Up= (
{NoB 1-1+ }

{M-L+ 1-1+}
− 1) ∗ 100,

where the vertical bar stands for logicalOR. As shown
in Table IV, comparing to the original encoder without
UDispatch+, NoB, the improvement of M-L+ can achieve
up to 121.5%, 171.8%, and 149.2% for skip-line algorithm
Basic, Swing, and TOW, respectively, and comparing to the
original decoder without UDispatch+, NoB, the improve-
ment of M-L+ can achieve up to 88.2%, 49.7%, and 74.5%
for skip-line algorithm Basic, Swing, and TOW, respectively.

B. H.264 Decoder

H.264 or Advanced Video Coding (AVC) is a standard [6]
for video compression. It is widely used in HD-DVD and
Blu-ray Disc for its high quality and support of digital tele-
vision broadcasting. Figure 4 shows the block diagrams of
H.264 decoding. The main components are entropy decoding
(ED), inverse quantization (IQ), inverse discrete cosine trans-
form (IDCT), motion compensation (MC), intra prediction
(IP), and deblocking filter (DF) [7]. Since the components
are connected sequentially with lots of dependencies, except
for deblocking filtering, it is difficult to apply the multi-
threading technique to exploit parallelism and speed up
its performance. Therefore, we focus on optimizing the
multi-threading of deblocking filter. Based on the H.264
standard reference software [8], the H.264 decoder has been
optimized with many advanced features [9], [10]. We adopt
an efficient parallel deblocking filter algorithm [11] and
apply UDispatch+ on it. The deblocking filter is executed
with four threads on the 4-core machine.

We use ten quite different H.264 bitstreams in the experi-
ments. The performance gains compared to the ones without
using UDispatch+ is summarized in Table III. The speed-up
is defined as

Speed-Up= (
{NoB 1-1+ }

{M-L+ 1-1+}
− 1) ∗ 100.

Table III shows that it has10.2% to 20.1% performance
gain when using UDispatch+. The main thread bound with

584

IDCTIDCT

Deblocking Filter

Reference
Frame Buffer

Inter Intra

Uncompressed
Video

�

Thread1Thread1

Thread3Thread3

ThreadnThreadn

Thread2Thread2H.264
Bitstream

Motion
Compensation

Intra
Prediction

Inverse
Quantization

Inverse
Quantization

Entropy
Decoding
Entropy
Decoding

Figure 4: H.264 baseline decoding with multiple threads.

Table V: Speed-up (%) of H.264 decoder.

No. NoB 1-1 NoB M-L 1-1
M-L M-L 1-1 M-L + 1-1+

1 12.9 0.7 12.1 0.1 0.4

2 14.4 0.5 13.7 0.1 0.3

3 19.9 0.1 19.0 0.7 0.6

4 11.3 0.2 11.1 0.6 0.4

5 15.1 0.3 14.7 0.7 0.5

6 12.8 0.1 12.6 0.2 0.2

7 13.0 0.4 12.6 0.2 0.2

8 10.0 0.1 10.0 0.2 0.4

9 11.2 0.1 11.1 0.3 0.3

10 13.0 0.1 12.8 0.4 0.2

the core of the least load has up to 0.6% performance gain
than the one-to-one binding approach.

IV. COMPARISON BETWEENUDISPATCH+ AND

UDISPATCH

In this section, we make a comparison between
UDispatch+ and UDispatch. First, we apply UDispatch to
the same experiment applications and then compare the
result with one from the earlier experiment. The results are
listed in Table VII and Table V, and the speed-up is defined
as

Speed-Up= (
{NoB 1-1 M-L}

{ M-L 1-1 M-L+ 1-1+}
− 1) ∗ 100.

As we presented earlier, UDispatch+ employs a switch to
control the thread binding in the low-level kernel function
do fork() directly. However, when using UDispatch, the
thread will not be bound until the functionbind to cpu() is
called. So, before the binding, the thread might be initially
scheduled on a heavily-loaded core. Also, a migration will
occur, which causes undesired overhead, if the specified core
is different from the initial one. Hence, in general, the per-
formance of UDispatch+ should be better than UDispatch.

As shown in Table VII, UDispatch+ can achieve better
performance than UDispatch in M-L and 1-1 bindings
for both encoding and decoding of skip-line algorithms.

Table VI: Comparison between UDispatch and UDispatch+

UDispatch UDispatch+

Flexibility More Less

Convenience Less More

Performance Good Better

Extra Overhead Li ttle More

Real-time Better Good

Although the best performance gain of 1-1 in skip-line
encoding is closed to 1-1+ in Figure 5 (only first 100
executions are shown because of the clear difference),
UDispatch+ shows a much more stable execution behavior
than UDispatch. Actually, it has been shown in Table VII
that UDispatch+ can achieve higher performance gain using
1-1 approach, i.e.33.1%, 50.9% and48.8% respectively.

As Table VI shows, we make a summary of comparison
between UDispatch+ and UDispatch to help users choose
which one is suitable for their applications.

With UDispatch+, a thread will be bound when it is
just created, but with UDispatch, users can control when
the binding should be done through UDispatch API. Thus,
UDispatch has more flexibility. From the view point of
convenience, UDispatch+ is preferred because users can
execute an application without making any modification
to the application. For UDispatch, applications must be
modified by using the UDispatch API. As discussed earlier,
for UDispatch, thread might be scheduled to a heavily-
loaded core initially, and there might be an extra migration
if the bound core is different from the original one. On the
other hand, though UDispatch+ has better performance, it
incurs extra overhead to fork a specific application in the ini-
tialization and need to manage some extra data structures. As
for real-time concern, since UDispatch+ is a user process, it
is scheduled together with other processes. In other words,
we cannot guarantee the execution behavior of UDispatch+

and thus it is hard to predict when the bound application
will be executed. Hence it is not suitable for applications
with critical real-time constraints. To deal with this issue,
we can raise the priority of UDispatch+ process to reduce
the uncertainty.

585

Table VII: Speed-up (%) of skip-line algorithms.

Skip-line Encoding Skip-line Decoding

NoB 1-1 NoB M-L 1-1 NoB 1-1 NoB M-L 1-1
M-L M-L 1-1 M-L + 1-1+ M-L M-L 1-1 M-L + 1-1+

Basic 115.5 69.2 27.4 2.8 33.1 84.9 1.3 82.5 1.8 2.4

Swing 166.1 96.1 35.7 2.2 50.9 46.8 1.2 45.0 2.0 1.5

TOW 147.1 28.7 92.0 0.8 48.8 70.5 0.1 70.4 2.4 1.9

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70 80 90 100 Experiment times

P
er

fo
rm

a
n

ce
 (

u
s)

1-1

1-1
+

Figure 5: 1-1 versus 1-1+ for skip-line encoding.

As described above, although under some circumstances,
such as applications with critical real-time constraints,
UDispatch+ might not be able to outperform UDispatch.
UDispatch+ is in general a better choice, because its per-
formance is better than UDispatch in most situations, and it
can still work even if the source code is not available for
modification.

V. CONCLUSION

We enhance a tool UDispatch to dispatch threads of
application without any modification of application source
codes, called User Dispatching Plus or UDispatch+. We also
provide an example template of UDispatch+ for users to cus-
tomize for various applications with different thread binding
approaches. We conduct experiments for multimedia appli-
cations with UDispatch and UDispatch+. The results show
that UDispatch+ has significant performance improvement,
where a skip-line encoder can be improved up to 171.8%
on a 4-core machine, and up to 20.1% enhancement for
an optimized H.264 decoder in the same environment. We
believe that UDispatch+ provides convenient controllability
so that users can easily and effectively dispatch threads for
their applications to tune up the performance.

ACKNOWLEDGMENT

Supported in part by research grants from the ROC Na-
tional Science Council, NSC 99-2628-E-002 -027 - and the
Excellent Research Projects of National Taiwan University,
99R80304.

REFERENCES

[1] “util-linux-ng,” http://www.kernel.org/pub/linux/utils/
util-linux-ng/, 2010.

[2] “IBM:bindprocessor,” http://publib.boulder.ibm.com/
infocenter/aix/v6r1/index.jsp, 2010.

[3] T.-H. Tu, C.-W. Hsueh, and R.-G. Chang, “A Portable and
Efficient User Dispatching Mechanism for Multicore Sys-
tems,” in The 15th International Conference on Real-Time
Computing Systems and Applications (RTCSA ’09), Aug.
2009.

[4] “Virtual Device - Wikipedia, the free encyclopedia,”
http://en.wikipedia.org/wiki/Virtualdevice, Sep. 2008.

[5] A. Moinuddin, E. Khan, and F.Ghani, “An Efficient
Technique for Storage of Two-Tone Images,”IEEE
Transactions on Consumer Electronics, vol. 43, no. 4,
pp. 1312–1319, Nov. 1997.

[6] ISO/IEC 14496-10, International Standard of Joint Video
Specification, Coding of Audiovisual Objects-Part 10:
Advanced Video Coding, ISO/IEC Std., 2003.

[7] I. E. Richardson,H.264 and MPEG-4 Video Compression,
1st ed. Wiley, Aug. 2003, iSBN 0-470-84837-5.

[8] “H.264/AVC JM Reference Software,” http://iphome.hhi.de/
suehring/tml, Jan. 2009.

[9] S.-W. Wang, Y.-T. Yang, C.-Y. Li, Y.-S. Tung, and J.-L.
Wu, “The Optimization of H.264/AVC Baseline Decoder on
Low-Cost TriMedia DSP Processor,”Proceeding of SPIE,
vol. 5558, 2004.

[10] X. Zhou, E. Q. Li, and Y.-K. Chen, “Implementation of
H.264 Decoder on General-Purpose Processors with Media
Instructions,”Proceeding of SPIE Conference on Image and
Video Communication and Processing, vol. 5022, Jan. 2003.

[11] S.-S. Yang, S.-W. Wang, and J.-L. Wu, “A Parallel Algorithm
for H.264/AVC Deblocking Filter Based on Limited Error
Propagation Effect,” inIEEE International Conference on
Multimedia and Expo, Jul. 2007, pp. 1858–1861.

586

	S7-W3-11

