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Abstract—In wireless mobile environments, the bandwidth and
client capability are limited. Data broadcasting is an efficient and
scalable method to disseminate information to a large amount
of mobile clients. In recent years, several research has engaged
in scheduling dependent data on multiple broadcast channels.
However, most of the previous research focused on unordered
queries and only few of them on ordered queries. In this paper,
we study the problem of data allocation for ordered queries on
multiple broadcast channels and devise an efficient algorithm
based on a local search strategy. The experimental results show
that the proposed algorithm outperforms the existing algorithms
when the query distribution is known. Moreover, our algorithm
with minor modification can also be applied efficiently when the
query distribution is unknown.

Keywords: data broadcasting, data scheduling, multiple chan-
nels, wireless mobile networks

I. INTRODUCTION

Nowadays, due to the advances in wireless networks, people
can access information by portable devices such as laptops,
PDA, and smart phones in daily life. In this scenario, there are
various media contents provided, including stock information,
weather forecast, traffic report, and news [7][21]. Because the
bandwidth and client capability are restricted[15], disseminat-
ing information efficiently under limited resources conditions
is an important issue in wireless mobile environments.

Data broadcasting is an efficient and scalable method to
disseminate information for a large amount of mobile clients.
Typically, there are three kinds of data broadcast models: the
pull-based model, the push-based model, and the hybrid broad-
cast model [13][15]. In the pull-based model (also refer to
on-demand broadcast), clients send requests to the server and
keep listening broadcast channels for the data requested. In the
push-based broadcast, servers broadcast all data periodically
and clients retrieve the data needed when it is broadcasted.
Based on this model, the scheme of broadcast disks [1][2]
schedules data on single channel by the access probability
in which hot data items are broadcast more frequently. The
hybrid broadcast model applies pull-based broadcast and push-
based broadcast in different situations. For instance, the hybrid
approach suggested in [26] broadcasts popular data by the
push-based method and others by the pull-based model.

In most applications, clients request several kinds of data in
a query, which is called complex query (or dependent data).
In general, complex queries are categorized into two types:

unordered queries and ordered queries. Data in unordered
queries does not have to be retrieved in certain order. The
QEM algorithm [5] schedules unordered queries according to
the access probability. This problem is proved to be NP-hard
in [6]. Later, the MQEM algorithm is suggested in [13] which
improves the performance of the QEM algorithm by using a
weighted undirected graph. Another scheduling algorithm is
proposed by using tree structures to allocate data on multiple
channels [23]. On the other hand, a genetic algorithm in [8] is
proposed to solve the data scheduling problem for unordered
queries on multiple channels.

In ordered query environments, data items are associated
such that objects need to be retrieved in sequential order. In
the systems with only one single channel, there are some
researches on allocating ordered queries by various directed
graphes and data structures in [4][14][25]. For multiple chan-
nel environments, Huang and Chen [10] use a genetic al-
gorithm to allocate ordered data on multiple channels. The
algorithms, MPPA, RMPPA, and CMPPA [17][18] arrange
data items on multiple channels by exploiting DAG and heaps.
Given the query distribution, Hung and Chen present the
MULS framework [11] to schedule sequential data broad-
casting. The MULS algorithm contains two stages: OLS and
BASIC. The OLS algorithm checks backward or forward
for two consecutive items item to allocate better placement.
The BASIC algorithm is proposed to schedule the broadcast
program by comparing all possible pairs of data and then
exchanging them for the best arrangement. Although MULS
can adjust the broadcast program for less access time, it takes
much time to evaluate possible solutions. In addition, the
broadcast scheduling problem with data replication is studied
for ordered queries in [9].

Most researches consider the environment is static and the
exact request distribution is known. However clients may sent
queries in any time or new clients might join in the system
spontaneously. Under such dynamic conditions, the related
query distribution is hard to obtain in advance. In this paper,
we allocate ordered queries on multiple channels when the
query distribution is unknown. Our algorithm schedules the
ordered data item in a query and adjusts the scheduled data
item when they appear in the unscheduled query again. We
first exam and evaluate some promising data items, and then
exchange the broadcast sequence to reduce the average access
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time. Meanwhile, when the query distribution is known, our
algorithm takes less average access time and reduces execution
time, compared to the MULS algorithm.

The rest of this paper is organized as follows. Section
2 describes the environment, preliminaries, and analytical
models. In Section 3, the proposed algorithm is present and
brief examples are given. The simulation results are shown in
Section 4. Finally, this paper concludes with Section 5.

II. DEFINITION

In this section, we introduce the problem definition and
some notations used in this paper.

A. Environment

The environment of this paper is shown in Fig. 1. The
clients send their queries to the server. Every query contains
several data items which are equal in size and are ordered.
When the server receives queries, it starts to schedule the
broadcast program and then follows the program to broadcast
data cycle by cycle. On the other hand, clients listen to all
channels and download data in order when the needed data
is broadcasted. If one broadcast cycle is finished and there
are new data requested, the server stops broadcasting and
adjusts the broadcast program. Once the broadcast program is
altered, the sever informs all clients in this system and starts
to broadcast by the new broadcast program.

Server

…

K Broadcast Channels

Client 1 Client 2 Client i

Broadcast
… d1 d2 d3 d4

…… d5 d6 d7 d8

Request

<d1, d6, d8> <d5, d4, d3, d7> <d2, d8>

Query List

  q1:<d1, d6, d8>
  q2:<d5, d4, d3, d7>

…

  qi:<d2, d8>

…

Query1 Query2 Query i

…

…

…

…

Scheduler

Fig. 1. The environment of broadcasting ordered queries on multiple
channels.

B. Notations

Suppose that the number of channels in the system is K
for K ≥ 1 and there are a set of N distinct data items D,
where D = {d1, d2, . . . , dN} and each data item di is equal
in size for 1 ≤ i ≤ N . Let Q denote a set of all ordered
queries and Q = {q1, q2, . . . , qM} where M is the number
of ordered queries requested from clients. Each ordered query
contains several data items and these data items need to be
downloaded in order. Let q be a query in Q, q(j) be the jth
data item in q, nq be the number of data items requested in
q, and fq be the access probability of q.

Assume that the length of broadcast cycle is L, which means
that for each cycle there are L data items to be broadcast in
a channel. Since every data item is just broadcast once and
every channel broadcasts the same number of data, we have
L = dN/Ke. The broadcast program is recorded as a K × L
matrix P . For the data item di, let K(di) be the channel that di
is arranged and L(di) be the position of di in channel K(di).
Thus P [K(di)][L(di)] = di. For the reader’s convenience, all
of the symbols in this paper are summarized in Table I.

TABLE I
DESCRIPTION OF PARAMETERS.

Parameters Description
D a set of all data items
N the number of data items in D
di the ith data items in D, 1 6 i 6 N
Q a set of ordered queries
M the number of ordered queries in Q
q an ordered query in Q
nq the number of data items requested in q
fq the access probability of q
K the number of broadcast channels
L the length of a broadcast cycle
P the broadcast program
K(di) the channel of di

L(di) the position of di in channel K(di)

For example, consider that the set of all data items D =
{d1, d2, d3, d4, d5, d6}, the number of data items N = 6, and
Q = {q1, q2, q3}. The ordered queries profile is given in Table
II. If K = 2 and L = 3, three feasible broadcast programs are
shown in Fig. 2.

TABLE II
EXAMPLE OF ORDERED QUERIES PROFILE.

Probability Query Contents
0.5454 q1 < d1, d2, d3 >
0.2727 q2 < d3, d4, d5, d6 >
0.1818 q3 < d3, d4, d6 >

 

 1 2 3 

1 d4 d5 d6 

2 d1 d2 d3 

(a) 

K 
 1 2 3 

1 d4 d6 d5 

2 d1 d2 d3 

(b) 

 1 2 3 

1 d4 d5 d3 

2 d1 d2 d6 

(c) 

K K 
L L L 

Fig. 2. Three feasible broadcast programs.

C. Analytical Models

Herein we describe some related definitions, the more
detailed discussions for ordered queries on multiple channels
are studied in [10][11].

When each data item is equal in size and the download
bandwidth is stable, the time of download each data item is
the same. Let the time of download a data item be a unit of
time. In the broadcast program P for two distinct data items
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di and dj , the distance from di to dj , denoted by ∆(di, dj) is
defined as follows:

∆(di, dj) =
{
L(dj)− L(di)− 1, if L(dj) > L(di),
L− L(di) + L(dj)− 1, otherwise.

In particular, ∆(di, di) = 0.
Let TA(q) be the access time of query q; that is,

TA(q) = TS(q) + TW (q) + TR(q),

where the start-up time TS(q) is the time between the client
starts listening and the client receives the first data item
of query. The waiting time TW (q) is defined by TW (q) =∑nq−1
j=1 ∆(q(j), q(j+1)). The retrieval time TR(q) is the time

that the client spends to download all data items.
Consider the broadcast program as shown in Fig. 3. A query

q = < d3, d4, d6 > is requested at the beginning of the `th
cycle. The start-up time TS(q) is 2. After d3 is downloaded, d4

and d6 are downloaded in the (`+1)th cycle . In this situation,
the waiting time TW (q) is 0 and TR(q) = 3. Then

TA(q3) = TS(q3) + TW (q3) + TR(q3) = 2 + 0 + 3 = 5.

Cycle l 

TS(q) 

TA(q) 

TR(q) TR(q) 

d1 d2 d3 d1 d2 d3 

d4 d5 d6 d4 d6 d5 

Cycle l+1 

TR(q) 

 
Fig. 3. A broadcast program.

Generally, clients may sent queries in any time or new
clients may join in the system spontaneously. The server can
not know the access probability of queries when the system is
initialized. So the broadcast program needs to be updated when
some new queries are sent by clients. Assume that the server
updates the broadcast program if necessary and the server uses
the new broadcast program for the next broadcast cycle.

III. SCHEDULING

In this section, we will first study the case that the query
distribution is known, then extend to the case that the query
distribution is unknown.

A. The case that the query distribution is known

If the query distribution is known, the server first sorts it
according to the access probability. Then we have the access
probability of data items as shown in Table III. Since the server
knows all access probability of queries, the average access time
of all query TA(Q) can be computed by

TA(Q) =
M∑
i=1

fqi · TA(qi).

TABLE III
A QUERY DISTRIBUTION.

Probability Query Contents
0.3679 q1 < d7, d11, d5, d1, d10 >
0.1839 q2 < d1, d12, d3, d10, d7 >
0.1226 q3 < d12, d2, d5, d3, d6, d2 >
0.0919 q4 < d8, d6, d12, d3, d9 >
0.0735 q5 < d9, d8, d3, d10 >
0.0613 q6 < d1, d3, d4, d7, d6 >
0.0525 q7 < d2, d6, d12, d11 >
0.0459 q8 < d11, d8, d3, d10, d4 >

Instead of evaluating possible combinations pair by pair, we
just check a pair of consecutive data items and the relations of
all scheduled queries, then adjust them one by one into some
free placements for reducing the average access time for all
scheduled queries. Since the channel of data item does not
affect the access time, the number of free placements that we
check is always less then L. Thus the computation complexity
is much lower than that of MULS. The proposed algorithm is
described as follows.

Algorithm 1 schedule1

Require: Q: a query set with M = |Q|
D: a data item set with N = |D|
K: the number of channels
A: the corresponding probability matrix

Ensure: The broadcast program matrix P
1. Sort Q according to the access probability in decreasing

order.
2. L = dN/Ke
3. P is a K × L matrix
4. for i = 1 to M do
5. for j = 1 to nqi

do
6. if qi(j) is unscheduled and qi(j + 1) is unscheduled

then
7. insertAfter(qi(j), L, P )
8. end if
9. if qi(j) is scheduled and qi(j + 1) is unscheduled

then
10. check(qi(j), P )
11. insertAfter(qi(j + 1),L(qi(j)), P )
12. else if qi(j) is unscheduled and qi(j+1) is scheduled

then
13. check(qi(j + 1), P )
14. insertBefore(qi(j),L(qi(j + 1)), P )
15. else if qi(j) is scheduled and qi(j + 1) is scheduled

then
16. check(qi(j), P )
17. check(qi(j + 1), P )
18. end if
19. end for
20. end for
21. return P

Note that A is an N × N probability matrix, in which
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A[di][dj ] represents the access probability of the case di is
requested just before dj is requested. The queries are processed
according to the access probability in decreasing order and for
each query qi is evaluated by two consecutive items qi(j) and
qi(j + 1) at each stage, 1 ≤ j ≤ nqi

− 1. When one of the
two items is scheduled, our algorithm will re-check if there
still exists better position for it in this moment. The procedure
insertAfter(d, i, P ) allocates the unscheduled data item
d to the placement that has the minimum ∆ from position i to
d. Likewise, the procedure insertBefore(d, i, P ) allocates
the unscheduled data item d to the position with minimum ∆
from d to placement i. The procedure check(d, P ) exchanges
d to some free position. The procedure evaluate(d, i)
calculates the total access time when d is in the position i.

 
Figure 5. Example of scheduling. 

 

 1 2 3 4 

1 1d7 2d11 3d5 4d1 

2 5d10 7d3   

3 6d12    

(a) 

K 
 1 2 3 4 

1 d7 d11 d5 d1 

2 d10  9d12 8d3 

3 11d6   10d2 

(b) 

K

 1 2 3 4 

1 d7 d11 d5 d1 

2 d10 12d6 d12 d3 

3 13d8 14d9  d2 

(c) 

K 
L  1 2 3 4 

1 d7 d11 d5 d1 

2 d10 d6 d12 d3 

3 16d4 d9 15d8 d2 

(d) 

K
L

L L

Fig. 4. An example of scheduling.

Consider the example of eight queries as shown in Table III.
Assume that the number of channels K is 3. Since there are
12 data items, the length of broadcast cycle L = 12/3 = 4.
A is an N × N probability matrix. The element A[di][dj ]
records the probability of the case that di requested before
dj . For example, the consecutive items d7 and d11 only are
needed in q1, then A[7][11] = 0.3679. On the other hand,
two consecutive items d12 and d3 are needed in q2 and q4,
A[12][3] = 0.1839 + 0.0919 = 0.2758. Thus we allocate
q1 and q2 as shown in Fig. 4(a). When we consider d3 and
d10 in query q2, check(d3, P ) finds better placement for d3

and exchanges it. Similarly, query q3 is arranged as shown
in Fig.4(b) after the steps of d12 and d2. Then query q3 is
adjusted as shown in Fig.4(c) after the steps of d6 and d2.
When d4 is allocated in P , all data items are scheduled as
shown in Fig. 4(d) and the algorithm stops.

B. The case that the query distribution is unknown

In real applications, the exact query distribution is hard to
obtain because the clients may sent queries or new clients
might join in the system in any time. The probability matrix
can not be known in advance, so we apply a frequency matrix,
denoted by F , to record the history of data items in queries.
When the sever receives a new query, it updates the element
F [di][dj ] by adding 1 after a broadcast cycle is finished, and
then the server re-schedules and uses new broadcast program

in the next broadcast cycle. The related algorithm is described
in Algorithm 2.

Algorithm 2 schedule2

Require: Q: a query set with M = |Q|
qi: a new unscheduled query
D: a data item set
K: the number of channels
L: the number of positions in each channel
F : the corresponding frequency matrix

Ensure: The broadcast program matrix P
1. add qi into the unscheduled query set Q
2. for k = 1 to ni do
3. F [qi(k)][qi(k + 1)] = F [qi(k)][qi(k + 1)] + 1
4. if qi(k) /∈ D then
5. add qi(k) into D
6. end if
7. end for
8. N = |D|
9. resize(N,K,L, P )

10. schedule1(Q,D,K,F )
11. return P

Since the queries are not static, the size of broadcast
program P is not constant. Thus we need to adjust the size
of P . If we set L as large as possible, it will take too much
time to check free placements for locating a better solution.
On the other hand, if L is too small, there are fewer free
placements to examine such that the access time will increase.
The resize procedure is suggested in Algorithm 3 to alter
the dimension of P dynamically for containing some more free
placements such that data items can be re-allocated. When the
free placements are not enough, K and L are added by 1
simultaneously. Thus, when the systems opens a new channel
to schedule, every position in this channel is available to be
assigned.

Algorithm 3 resize(N,K,L, P )
Require: N : the number of scheduled items

K: the number of channels
L: the number of positions in each channel
P : the old broadcast program matrix

Ensure: The new broadcast program matrix P
1. while K ∗L ≤ N + (the average length of queries)/2 do
2. L+ +
3. K + +
4. if L > maxL then
5. L = maxL
6. end if
7. if K > maxK then
8. K = maxK
9. end if

10. end while
11. P is a K × L matrix
12. return P
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IV. SIMULATION

This section presents the experimental results of
schedule1 and schedule2. Two measurements are
considered: access time and execution time. The test sample
of ordered queries are generated by Zipf distribution [27],
fi = (1/i)θ/

∑N
j=1(1/j)θ where 1 ≤ i ≤ M and θ

is skewness parameter. When θ = 0, the distribution is
uniformly distribution. When θ = 1, the top 20 percent of
queries request 80 percent of data items. In busy web sites,
the traffic obeys the distribution when θ is large than 1 [22].

A. The case that query distribution is known

The related parameters when the query distribution is known
are listed in Table IV. The results are also compared to OLS
and MULS [11]. Fig. 5 and Fig. 6 show that schedule1
the average access time is lowest while the execution time
is between those of OLS and MULS. This reveals that
schedule1 takes reasonable amount of time to improve the
access time. In fact, MULS may suffer the local minimum
problem since it just checks and exchanges possible solutions
pair by pair. From Fig. 7, we obtain that the average access
time decreases when θ increases. This is because these algo-
rithms allocate the higher probability queries first. Moreover
the average access time of schedule1 is very close to that
of MULS, and it is lowest when θ is large than 0.8.

TABLE IV
PARAMETERS USED WHEN THE QUERY DISTRIBUTION IS KNOWN.

Parameters Value Range
N 240 220 ∼ 380
K 12 4 ∼ 12
M 100 100
θ 1.0 0.0 ∼ 1.2

average query length 100 10 ∼ 120
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Fig. 5. Average access time with N varied when the query distribution is
known.

B. The case that the query distribution is unknown

Table V lists the values of all parameters used when the
query distribution is unknown. Since MULS needs more exe-
cution time, we just modified the original OLS to be applied in
this scenario. From Fig. 8, it is shown that the average access

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

220 240 260 280 300 320 340 360 380

E
x

ec
u

ti
o

n
 T

im
e 

(m
s)

N

OLS
schedule1
MULS

Fig. 6. Execution time with N varied when the query distribution is known.
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Fig. 7. Average access time with θ varied when the query distribution is
known.

time increases when N increases and schedule2 algorithm
is more efficient than the modified OLS version. Similarly,
even to the execution time, schedule2 takes reasonable
amount of time to improve the access time.

TABLE V
PARAMETERS USED WHEN THE QUERY DISTRIBUTION IS UNKNOWN.

Parameters Value Range
N 200 100 ∼ 400
K 10 10
M 50 50
θ 1.0 0.0 ∼ 1.2

average query length 100 10
query rate per unit time 10 10

V. CONCLUSION

Data broadcasting is an efficient and scalable method to
disseminate information to a large amount of mobile clients.
In this paper, we studied the problem of data allocation for
ordered queries on multiple broadcast channels and proposed
an efficient algorithm based on a local search strategy. The
experimental results show that our algorithm outperforms the
existing algorithms when the query distribution is known.
Moreover, our algorithm can be applied efficiently when the
query distribution is unknown, and can reduce the average
access time as well.
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