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Abstract—A bipartite graph G = (V,E) edge- of E lies on cycles of every even length from 4 to

bipancyclic if every edge lies on the cycles of every even|v|, In [8], Li et al. proved that), — F. is edge-

length from 4 to |V|. Let Q,, = (Vb U V4, E) be an n- bipancyclic forF, c E(Qn), |Fe| <n-—9.
dimensional hypercube whereV, and V,, are the sets of -

black and white vertices, respectively. LetF;, (resp. F,) be There is little literature about general vertex fault
the set of black (resp. white) faulty yertices. In this paper tolerant Hamiltonian properties of hypercue =
\|NFe |W|Ig“s|ho<WLtD§t1?n — ¥, — F, is edge-bipancyclic it (17 ;. F). Some literatures concern embedding
bl w| > L7y J- _ H
| dlex Termsihypercube, edge-bipancyclic, bipartite fauIF free cycles or paths for hypercube with faulty
graph, vertices fault-tolerance vertices. The upper bound of Io.ngest fault-free cycle
of Q, — F, is 2" — 2f whereF,, is the faulty set of
|. INTRODUCTION vertices ofQ),, and f = max{|F,NV,|, [F,NV;[}. In

. 2], [4], [10], [12], the authors showed that a fault-
The hypercube network is one of the most popul tee cycle of lengti2™ —2 f,, can be constructed with

interconnection networks. It has many attractiv .
properties, such as regularity, symmetry, small dé"- faulty vertlces: In [5], [14], th? authors showed
. ) at every edge i), — F,, — F. lies on cycles of
gree and diameter, maximum fault tolerance, eagy n .
. : every even length from 4 t@™ — 2|F,| if |F,| +
routing algorithms. . .
. : : |F.| < n—2. When all faulty vertices are in the same
An interconnection network is usually repre: °'. . : .
. artite set, this result is the vertices fault tolerance
sented by a graph where vertices represent procgs- . L ;
. or edge-bipancyclicity of),,. However, there exist
sors and edges represent links between processgrs. . .
L onger cycles when both partite vertex sets contain
Let G = (V,UV,, E) be abipartite graph whereV, ome faulty vertices
andV,, are two disjoint vertex sets such that eac% y '
edge of £ consists of one vertex from each set. Let In [1], Caha et al. proposed the multiple span-
d(u,v) be the distance of the verticesandv. A bi- ning paths problem for hypercube. Let, ¢;, for
partite graph? = (V,UV,,, E) is Hamiltonian lace- 1 < i < k, be vertices ofQ,,. The {s;,t;}}_, is a
able if there exists aHamiltonian path betweenz,y connectable family if there existsk spanning paths
foranyx € V,,y € V,,. The graphG = (V,UV,,, E) P(s;,t;) of Q, for 1 < i < k. The {s;,t;}F_, is
is hyper-Hamiltonian laceable if Vv € V,(resp.V,,), balanced if it has the same number of vertices in
there exists a Hamiltonian path 6f— {v} between each partite set. Caha showed that every balanced
each pair of vertices df,,(resp.V}). In [13], Tsai et family {s;,¢;}!, is connectable irQs, if d(s;,t;)
al. proved that),, — F, is Hamiltonian laceable foris odd for1 < ¢ < n. Caha also showed that
F. C E(Qn),|F.| < n — 2 and hyper-Hamiltonian every balanced family{s;,t;}?, is connectable
laceable forF, C E(Q.,), |F.|] <n — 3. A bipartite in Qg,. In [7], Hung et al. investigated the fault

graphG = (V, E) is edge-bipancyclic if every edge tolerance for connectable family of bipartite graph.



Let the family {s;, ¢;}722 of @, be the vertex set  Let F, be the set of black faulty vertices aifd,

KyUK, = {s;,t;] for 1 <i < (|Ky| + |Ky|)/2} be the set of white faulty vertices @6f,,. Similarly,
of @, — F, — F,. The family {si,ti}?ﬁ;’w is we also useF] and F to denote the black and
balanced if2|F,| + |K,| = 2|F,| + |K,|. The white faulty vertex set ofQ’,_,, respectively, for
family {s;,t;};0}2 is connectable if there exitj =0,1. Thus,F, = FPUF}, F, = FQUF} F° =

(| K| + |Kw|)/2 spanning disjoint paths®(s;,t;) FPUFEY, F' = F} UF..

for 1 < i < (K| + |Ku[)/2 Of Qu — Fy }b%" Let F, be the set of adjacently faulty vertices

The authors showed that every family;, t:}y 'k, of Q.. Similarly, we also useF? to denote the

of Qy, Is connectable IfKy|+|Ku|+|F|+|Fu| < n adjacently faulty vertex set of)’_,, respectively,

and4|Fy| + 2/ K| = 4| Fy| + 2| Ky| < n + 1. for j = 0,1. Thus,F, = FQUF}. We further define
In this paper, we incorporate the adjacently faultyf = F, U F, U I,

verticgs into the vertex fault toIeranceFm;(multiple Let K, and K, be the black and white fault-free
spanning paths of hypercube. Lgt;, ¢} be vertex set. Letd — KUK, — {si, t;|1 < i < @}
. . b w iy Ui >~ b > .

a family of G = (V, UV, E) — F, where K, U And let K7 — KAV Ki — K. (V7. for ._8 1
Ky = {siti|1 < i < (K| + |K,|)/2} is the set b = MV, Ay = Ko (IVS, 1007 =0, L.
of fault-free vertices/F, is the set of|F,| pairs of
adjacently faulty vertices;, ¢ V, andF,, C V,, are Let ¢(v) be a vertex ofV* for everyv € VJ
sets of faulty vertices. In this paper, we will shovguch that(v, ¢(v)) € E and{i,j} = {0,1}. Let
that every family{s;, ;};>" of hypercube), —F, X = {w1,25,---,2:} be a vertex subset af_,
is connectable ifF, |+ | Fy |+ | K|+ | K| +|F,| < n, fori=0,1. We define the free neighbor set &f
A By 4+ 20 K| + | Fy| = A|F, [+ 2 K| + | Fal <t 1, is N(X) = {u;|(z;,u5) € E(QL_,) and ¢(u;) ¢
for n > 3. Applying this result, we can obtain that F U K) for 1 < j < k,i = 0,1}. Let ¢(X) =
Q, — F, — F, is edge-bipancyclic if F|, |F,| < {é(v)|v € X} be a vertex subset af’ for X C V*
|21 . for {i,5} = {0,1}.

The rest of this paper is organized as follows. We need some previous results for our proofs.
In Section 2, we introduce some important definiFhe following lemma is proposed in [6].
tions and lemmas. Section 3 shows the vertex fault
tolerance for multiple spanning paths. The verte
fault-tolerance for edge-bipancyclicity is introduce
in Section 4. We finally give some conclusion ir&
Section 5.

Lemma 1. The graphQ, is f-adjacency«f —2—
edges Hamiltonian fof < f < (n —2), f-
djacency{—2— f) edges Hamiltonian laceable for
< f < (n-3), and f-adjacency{ — 3 — f) edges
hyper-Hamiltonian laceable far < f < (n — 3).

[I. PRELIMINARIES A bipartite graphG = (V, UV, E) hasproperty
i . 2H if for any sq, s, € V, andty, t; € V,, there exist
An n-dimensional hypercub@, = (VU Vu, E) o spanning disjoint path#(s,, 1) and P (s, t2)

is a bipartite graph whose vertices are labeled By ~ g et al. proved the following lemma in [11].
distinctn-bit binary strings. Two vertices are linked

by an edge if and only if their labels differ exactly

in one bit. The hypercub€), can be constructed Lemma 2: The graph(), — F;, — F. has property
recursively asQ,, = Q._1 x K,. We can partition 2H \_/vhereFa is the set of F, | pairs adjacently faulty
Q. as two Subgraph@%_l and Qi—l by choosing vertices andF, is the set of faulty edges arnd <
any one bit of binary string. [Fol + [Fe] <n—3.

We call theV;, black vertex set an#f,, white ver-
tex set. Letl;’ andV}] be the black and white vertex
set of @, _, for j =0,1. And letV? = VY UV for
j=0,1. Thus,V, = V2 UVLV, =VoUVLV = In this section, we will prove the vertex fault
VUV, =Vouvh tolerance for multiple spanning disjoint paths of

IIl. V ERTEX FAULT TOLERANCE FOR MULTIPLE
SPANNING PATHS IN HYPERCUBE



hypercube. The following lemma is the proof fofs;, ¢}, K, = {s2,t2}. Thus, this theorem is true
some property for),. for n = 4.

, We will prove the induction step foiF,| < n —4
Lemma 3: Let sy, €V, andsy, t; € 1, be two. and n > 5 with the following cases. By the
pairs of fault-free vertices. there exist two spannin mmetry of hypercube, we can assume that every

Ic:i)lsp;nthathsP(slt, h) ?Edp(s”? of Q. air of adjacently vertices is either i°_, or
root. Oy symme VBI/ Of Nypercube, we can arrang L .. We draw @y, in figures of some cases for
s1 In Q3 andt; in Q3. We will prove this lemma in illustration

the following cases. '
Case 1.5, andt, in the same subcube. Case 1:n — |F,| is even.

Without loss of generality, we can assume that, \yhen |Fy| + |F,,| > 1, the proof of this case is

are in Q. We can construct a Hamiltonian pathhe same as the case ©f,_,. Thus, we only need
P(Sg,tz) P(I,tl) !

(so == ty,x == t;) of Q3. We can also to prove this case fofF;| = |F,| = 0. We can
construct a Hamiltonian patt®(s;, ¢(x)) of Q3. infer that|K,| + |K,| + |F,| = n. Without loss of
Thus, P(ss,t2) and (s; = 24 g2y, 7&%) ¢y generality, we can assume thal| > |F}|.

are two spanning disjoint paths 6f;. Case 1.1:[F,| = 0.

Case 2.s, andt, in different subcubes. Without loss of generality, we can assume that

Without loss of generality, we can assume thae [K°| = |K1|.211 and | K| > [K3[ > 1.
Q! andt, € Q). We can construct a HamiltoniarCase 1.1LL1[K*| =1.

P(s1,21) P(x2,t2) Without loss of generality, we can assume that
path(s; " —5" z,2o —> to) of QS for z; € V? 1 . , f
and{o(r) 6(2)) (52,11} = 0. Applying Lemra 2 € 1 SnCelon 12} 18 odd. Letl ) andtn )

2, we can further construct two spanning disjoir?t g oot == K ,
paths P(¢(z1),t;) and P(ss, ¢(z2)) of QL. Thus, 2 ¢ {o(s), 0(t)] for 3 < @ < 5}, Applying

P(s1,21 b(x1),t1 P(s2,6(z2)) L€mma 1, we can construct a Hamiltonian path
<31 — x17¢(x1) ? t1> and <52 ? P(s1,t1) P(x,t2) 0 / /
P(z2,t2) S1 >t T ’ t2> of Qn—l_{5i> 5i>tivtz‘|3 <

Zz)&f(xé),@ —5" t,) are two spanning disjoint pDatth. < %} for ¢(x) # s». By induction hypoth-
b esis, there exisﬂ%| — 1 spanning disjoint paths
Theorem 1: Every family {s;, ;}5%2 of hyper- P(s2:6(2)), P((s}), &(t;)) of Qg for 3 < i <
cubeQ,, is connectable ifFy |+ | F, |+ | Kp| + | K| + @ Thus, P(sy,t1), (s2 Plezd(z) o(x), Flets) ta),
EFu| <n, 4|F| + 2| K| + |FL| = 4| Fy| + 2| K| + / o P(@(s7),9(t))) /
IFI §n+|1,|}a| §|n‘—3‘for|n 2‘3. B 0
Proof: We will prove this theorem by induction oMy, istrated in Eig. 1
1. When| Fy| +| Fu| +| Ky + | Ko+ | Fa| < 1, 4| Fy|+ g- =
2|Ky| + | Fy| = 4| Fy| + 2| K|+ |Fo| < n41,|F,| <
n — 3, the proof of(,, is the same as the proof of
@n_1- Thus, we only need to prove that at lest one of
the conditiong Fy| + | Fi, | + | Kp| + | K| + | Fu| = 1,
4| Fy| 4 2|Kp| + |Fu| = 4|Fu| + 2|Ky| + |F.] =
n+1,|F,| =n — 3 holds.
Applying Lemma 1, we can obtain that, — F, is
Hamiltonian laceable and hyper-Hamiltonian lace-

Lt t;) are @ span-

ning disjoint paths of@, for 3 < i < @ as

able for|F,| = n—3. Thus, this theorem is true for Q@ casel 14 Qs Q0 casel 2 Qns
|F,| =n — 3. Itis true forn = 3.
We consider the case for = 4. Applying Lemma Fig. 1. lllustration ofCase 1.1.1 and Case 1.1.2

2, we can also obtain th&, has the property 2H.
Applying Lemma 3, we can construct two spanningase 1.1.2:|K'| > 2 and s;,t; € K" for some
disjoint pathsP (s, ;) and P(s, t,) of Q, for K, = 1 <7 < &L,



Without loss of generality, we can assume that;,s!) be edges of@Q® , for s/, ¢(s)) ¢ (K U
st € Q). Let to be vertex of Q)_, with {# ¢, o(t)), d(t5)}), for 3 < i < 5L By induction
{s1,t1,ta} ¢ Ky and {sy,t1,t2} ¢ K,. Without hypothesis, there exist two spanning disjoint paths
loss of generality, we can assume thatt;, € P(sy, ¢(t))) and P(sy, ¢(th)) of Q° | — {s;, 5|3 <

Ky, t € K,. Letay € K for ¢(zz) ¢ K'. Let ; < 1K} By induction hypothesis, there also
K=K - {s1,t1, 12}, N(K') be the free ne'ghborexist% — 2 spanning disjoint path®(¢(s}), ;) of

set of K. .Applyllng Lemma 3, we can constructQ}L_1 = {t1, ), s, t,}. Therefore, we can construct
two spanning disjoint path® (s, ¢;) and P(zs, t5) K| _ o P(sid() o\

of Q_, — K’ — N(K’). By induction hypothesis, 2 SPanning disjoint pathgs; ~—"" ¢(t}). t;, ti),
there exist'—fz{‘ — 1 spanning disjoint paths betweer(s;, s/, ¢(s/) P th)yof @, for1 <i<23<
(¢(N(K)) UK’ U{g(22)}) of Q,,_,. Therefore, we j < Il as jllustrated in Fig. 2(b).

can construct@ spanning disjoint paths betweerCase 1.2:|F,| > 1 and|E!| = 0.

K,U K, of @, as illustrated in Fig. 1. Case 1.2.1|K'| = 0.
Case 1.1.31; andt; in different subcubes for everyWe can infer that{ K| > 2 and |K,| > 2 since
1<i< & |Fy| = |F,] = 0 and |F,| < n — 4. Without

Without loss of generality, we can that € Q°_,, loss of generality, we can assume thatt; € Vj
andt; € QL_, for1 <i < &l Suppose that(s;, ;) and ss,t; € V,. Let (s;,s)), (¢, t;) be edges of
is odd for somel < i < &1 without loss of gener- @, for s,t; ¢ (K U F) for 3 < i < &

ality, we can assume thdts,, ¢;) is odd. Let(t,,t,) Applying Lemma 2, we can construgttlt\t/vo span-
be an edge o, _, for #}, () ¢ K. Let (s;, s}) be ning disjoint paths(s, Crs) g g Pty
edges ofQ, _, for s, o(s! K u{t},¢(t))}) for P(s2,53) P(t) 1)
2 <gz < gﬂ Al\pplying(bl_(er%ria( 1, Wi éagrbfcl())r}litruct a?nd <,82 ?: 8,2.’12 |If Bt1> .og Q%.‘l _hF‘? ;1
Hamiltonian pathP (s, (¢))) of Q°_, —{s;, sil2 < 1% sptitif3 < 0 < 62_}' y induction nypotn-
. K| . . . esis, we can constru izi spanning disjoint paths
i < 5 }. By the induction hypothesis, there ex- | K|

15]° P(o(s3), o(t)) of Q,,_, for 1 < i < 5. Therefore,

ist 5+ — 1 spanning disjoint path®(¢(s;), ;) of Pl R P
! — {t;,t}}. Therefore, we can construék! (si — Siap(qg(sg)) oy o(t) ti, — ti),
. ... s1,0(t 830, K
spanning disjoint pathgs, Plene()) o)), b, 1), (8555, 0(s) == " o(t]), 1), 1;) are 5! span-

ning disjoint paths o), — F, for 1 <i < 2,3 <

P(g(s)),t)) . _ K]
(si, s, o(sh) —= " t)yof Q,for2<i< i as . g : in Ei
ilustated in Fig. 2. 2 Jj< '3, as illustrated in Fig. 3.

) Q% case1.21 Qs Q4 case1.2.2 Q'

Q% case1.1.3(a) Q' Q@ case1.1.3(b) Q'

Fig. 3. lllustration ofCase 1.2.1 and Case 1.2.2
Fig. 2. lllustration ofCase 1.1.3
Case 1.2.2]K° = 0.

Suppose thad(s;, t;) is even for everyt < ; < £l By induction hypothesis,we can constrb‘@i span-

2 h ... .

Without loss of generality, we can assume th&ind disjoint paths betweeR, UK, of Q,,_,. With-

s1 € K, and s, € K,. Let (1), (t,,t,) be outloss of generality, we can denote these paths as
b AN P(s1,u) P(u,ty)

edges of QL | for t,t,, 6(t), 6(ty) ¢ K. Let (s1, —> w,v —= t1), P(s;,t;) for ¢(u), p(v) ¢



FY2 < i < @ Applying Lemma 1, we as illustrated in Fig. 4.
can construct a Hamiltonian path(¢(u), ¢(v)) of Case 1.2.5]K > 2,|K°| > 2.
0 FO Therefore,(s;, ) u, ¢(u) 722" Without IosOs ongeneraIi/ty, we/cag as(sjume tfhat
P(upt . S1,82 € ,_,. Let (s1,57),(s2,s € edges O
o(v).v " 1), Ps.1) are thels spanning 713 C Gy o8 L ) T ) B GO
disjoint paths ofQ, — F, for 2 < i < £l as 4! USRS -
dis) pains ofd, — I'q =0 s K% — {s1,s,} and N(K") be the free neighbor set
illustrated n F(')g' 3. of K’. Applying Lemma 2, we can construct two
\C/:V?tsh?)ult.zlfstKo'f:ggnerality we can assume ths anning disjoint pathd(s,, s,) and P(sy, s3) of
) 0 _ o 1 ! ; H _
s € V0. Letz e VO for z,¢(z) ¢ (KUF). "' Fa = & N<K\)' By |r‘1duct|.o.n -hypOth
b w ’ . /" esis, we can construdf— spanning disjoint paths
Applying Lemma 1, we can construct a Ham”tomaBetweenKl UG(N(K)) U {d(s)), d(s,)} of Q1
path P(s;,z) of Q°_, — F?. By induction hypoth- hog [ en-1
. | . o erefore, we can construéf— spanning disjoint
esis, we can construdf— spanning disjoint pathspaths betweerk, U &, of Q, — F
P(o(x), 1), P(si,ti) of Q) for 2 < i < Bl o0 1.3:|F°| > 1 and|F}| > 1.

Therefore,(gl,PM) z, o(x) Plo)h) t1), P(si,t;)  Without loss of generality, we can assume that

are the'%l spanning disjoint paths of, — F,, as |K°| > |K|.
illustrated in Fig. 4. Case 1.3.1]K'| = 0.
P(s1,u)

there exist@ spanning disjoint pathgs;, —>

U, v PL’tl) t1>,P(8i,ti) of Qg—l — F(? for

o(u),6(v) ¢ FL2 < i < Zl Applying

Lemma 1, we can construct a Hamiltoni?n )path
P(s1,u

P(¢(u),¢(v)) of QL_, — FL. Therefore,(s; —

u, o) "L ) 0 T 1) P(si t;) are K

spanning disjoint paths ap,, — F;, for 2 <i < @
as illustrated in Fig. 5.

Q% case1.2.3 Q' Q% casel.2.4 Q'

Fig. 4. lllustration ofCase 1.2.3 and Case 1.2.4

Case 1.2.4{K'|=1.

Without loss of generality, we can assume that
VY. Since|Vy| > 2,|V,| > 2, we can choose two
black vertices and one white vertex 7. Without
loss of generality, we can assume thatt, €
‘/5,82 eV, and (?(81) §£ t,. Let (82‘,8;), (t;,tz) be " o o o
edges ofQ"_, for s;.t,, ¢(s}), 6(t}) ¢ (K U F) for v casetan S v omsetdz S
3<i < @ Applying Lemma 1, we can construct

iltoni P(s2,8 P(tht
a Hamiltonian path(s, ~ 2% o s, ¢, 722 )

of @, — F? — {sisptiti3 < i < 51} By case 1.3.2]K° > 1 and|K'| > 1
induction hypothesis, there exi§§| spanning dis- Let N(K') be the free neighbor set ok'. By
joint pathsP(¢(s1), t1), P(¢(s7), ¢(t7)) of @,_; for induction hypothesis, we can constrdt spanning
2 < i < 1 Therefore, (s, ¢(s1) Pt 4y - disjoint paths betweeR®Ug(N(K')) of Q5 _, —FY
P(s2.s}) oy P@(sh) (), ., Plthits) and| K| spanning disjoint paths betweéW K!) U
(2 — 82’12&?§<%7¢(t{))_) oto), s — tz}z’ K' of QL_, — F!. Therefore, we can construej!
(si, 85, 9(s7) =S (), 1, 1) are the 1 spanning disjoint paths betwedf U, of Q,, — F,,
spanning disjoint paths a@p,, — F, for 3 <i < @ as illustrated in Fig. 5.

Fig. 5. lllustration ofCase 1.3.1 and Case 1.3.2



Case 2:n — |F,| is odd.

When |F,| + |F,| = 0, the proof of this case is
the same a<),_;. Thus, we only need to prove
this case for|Fy| + |F,,| > 1. We can infer that
4|Fb| + 2|Kb| + |Fa| = 4|Fw| + 2|[(w| + |Fa| =

n + 1. By symmetry of hypercube, we can assume
that |[F°| + |K?| > 1 and |F}| + |KL| > 1 when
|F,| = 0. Without loss of generality, we can assume

0 0 0 1 1 1 Qs case2.1.1 Qs Q°,, Q'
that4|F |—|—2|K |—|—|Fa| 24|F |—|—2|K |—|—|Fa| A i case2.1.2 n
and |FY| > [F?).

Case 2'1:4|Fl?‘ + ‘FC?‘ =n+1. Fig. 6. lllustration ofCase 2.1.1 and Case 2.1.2

Sinced| Y|+ |FY| = n+1,|F}| = |F}| = | K| = 0.

Letb € F and F} = F} — {b}.

Case 2.1.1]K!| =0. 2|F!|+|K|—2. By induction hypothesis, thgre ,exist
Let (t,t1) € E(Q,_) for t; ¢ (F U K)- (51 4 |F1)) spanning disjoint pathg, b~ -2
Let u; € V, be the white vertices ofQ)_ ¢(t’)> P(ugi_1,u) of Q°_, — F| — F° — FO for
for 1 < i < 2|F,[. By induction hypOthes'S 1 <i< (&4 |F! - 1). By induction hypothesis,
there  exist % + |F,l spanning disjoint we also can construdiFl| + |K| — 1) spanning
paths (s, 'y by, P(si, ), P(ug;_1,uy;) disjoint paths P(si,d(u1)), P(d(uai), d(ugiv1)),
of 2_1 - Fb - FO - {t17t/} for P(¢(“2|F1\+IK\ 2) Cb(b/)) (SJ> )OfQ _Ful;_
2 < i < B1 < j < |FY. By induction {ti,#;} for 1 < i < (|[F,| + 'K‘ -2),2<j<
hypothesis, we can also constry&}, | +1 spanning X1, Therefore, (s, Pls1,6(u)) cb(ul), P i

disjoint pathsP(¢(b'), ¢(u1)), P(p(ug;), p(ugit1)), Pty 1 451 2)0(0)
P(¢(ugpy)),(t})) of Q. — F, for U2,¢(U2)a"b'> G (U 3|+ K |2 —

] P ,v‘z’tll /
Loo< s R = L Therefore, oy i PRI ) 1, 1), Pisy ) are 1

(s1 Flewt) v, o(b) POE)$u) d(uy), uy Pl ge) spanning disjoint paths of,, — F, — F,, — F, for

P(@luypy )0) 2 < 5 < K1 asillustrated in Fig. 7.
U2,¢(U2),"',UQ‘F&]‘,¢(U2‘F&]‘) 2F_) >7> 2 g

o(th), 1), t1), P(s;t;) are £l spanning disjoint
paths ofQ, — (F, UF, UF,) for 2 <i < &l as
illustrated in Fig. 6.

Case 2.1.2]K° > 1,|K!| > 1.

Without loss of generality, we can assume that
for 1 < i < (2|F}| + |K'| — 1)}. By induction
hypothesis, there exiﬁ%‘ﬂﬂﬂ) spanning disjoint
paths betweefK°UUU{b; }) of QY _, —F}. Without a
loss of generality, we can assume one of thie&er

( s51,0")

Q. Q°

e case2.1.3 n1 case2.2.1

|F'}|) spanning disjoint paths i$s, v, b). Fig. 7. lllustration ofCase 2.1.3 and Case 2.2.1

By induction hypothesis, we also can construct the

|F| + | K| spanning disjoint paths betweén'! U Case 2.2:4|F?| + |F| = 4|F°%| + |F°| = n — 1.
o(U) U {o(th)} of Q._, — F,. Therefore, we can Since4|F?|+ |FO| = 4|FO| + |F°| =n — 1, |F}| =
constructsl spanning disjoint paths betweds, |Fi| = [F}| = 0 and|V;| = |V,| = 1. Let K, =
of Q, — F, — F,, — F,, as illustrated in Fig. 6. {sl} and K, = {t,}. Letb, € F,,w, € F,, F, =
Case 2.1.3]K°| = 0 —{bi} and F! = F,, — {w;}. We wiII construct
Let (#),t1) € E(QL ) for t},¢(t)) ¢ (FUK) the Hamiltonian | pattP(sy,t) of Q,— F,— F,— F,
Let u; € VO for uz,é(uz) ¢ (FUK),1 < i < inthe following cases.



Case 2.2.1]K'| =0. t, € V,. Let (t,t1) € E(Q° ) for t| ¢
By induction hypothesis, we can construct twoKX U F'). By induction hypothesis, there exist

spanning disjoint pathgs; Plet) v, b)) and % _I;\ spanning disjg)int pgﬂhﬂp(si,fi) fOf. 2 <
(wr, wy PLsiyy of QO —F—F . 'S % of Q% , — F® — F? — {t;,t;}. Without

Applying Lemma 1, we can obtaln a Hamlltonlallf)ss Of generallty, we can assume thatis on
PRINg P(siby) the path P(ss,t;). We can denoteP(sy,t;) as

ath P o , of 1. ThUS, =5 52,U v,to
’ ,<¢§D(;>(b,jfgﬁ”g)§ C%" b, S (s "= w510 " 1), By induction hypoth-
by, (b)) - ¢(w1)7w1 — " t1) IS @ esis, we can construct two spanning disjoint paths
Hamiltonian path of),, — [y, — F\, — F,, as illustrated  p(¢(s,), ¢(t})) andp( ( ),6(v)) of QL_,. There-
in Fig. 7. P(¢(s1) d> N 52,u
J- fore, (s1, é(s1) ~CELED) iy wn Y, (sy T2

Case 2.2.2]K'| = 1. P(9(.60) PO
Without loss of generality, we can assume th It%‘éf’( ) P(v),v == ta), P(s;t;) are
s; € V° andt, € V!. By induction hypothesis, 5 Spanning disjoint paths @, , — F, — F,, — F,

s1,w IK\
we can construct a Hamiltonian path, Plorun) for 3 <i <5, as illustrated in Fig. 9.
wi,wy) of Q° | — F, — F, — F! and a Hamilto-
nian pathP(¢(w}),t;) of QL ;. Thus, (s, Plovwi)
W b(w)) T 4y s a Hamiltonian path of
Q. — F,— F, — F,, as illustrated in Fig. 8.

Qo

Qo Q%1 case2.32 Qs

n1 case2.3.1

Fig. 9. lllustration ofCase 2.3.1 and Case 2.3.2

Case 2.3.2)F! =0 and|F'| > 1 and (F}| =0

1 1 or Fl = .

Qi case2.22 e Qi case2.23 A | w‘ 0) )
Without loss of generality, we can assume
that [Fj| = 0 and t;, € V). Let

Fig. 8. lllustration ofCase 2.2.2 and Case 2.2.3 (t/17t1) c E( 0 1) for t/1 §é (K U F) Let

U = {wwy; € V2 and u;,¢(u;) ¢ (K U F)
for 1 < i < (2\F1| — 1)}. By induction
hypothesis, there eX|s(1[UK‘ + |Fl| — 1) spanning

Case 2.2.3|K!| =2

Let (b, b1), (wi, wi) € E(Q,_y) for th, wi, ¢(by),
o(w)) ¢ (FUK). Let (b}, u), (v,w)) € E(Q°_,) for
u,vlgé (F,UF,UF,). éy induction hypothe;is, we disioint - paths P(Sl’%”) P(ug“uz”l)’]),(sj’tj)
can construct a Hamiltonian path(u, v) of Q° | — of Q”—P - b . by = Fo = {tl’tl} |£?\r
F, — F! — (F, U {by,b},w;,w}}) and two span-1 < o< [Fl-12 < j < 5

nina disioint pathsP b)) and P "y ¢,y By induction hypothesis, we also can
g as] P (1;9(18’1%;,/11)2) (¢(wr g(ult?) construct the |F!| spanning disjoint paths
of Q. ;. Thus, (s;

/ /
s, s OO0 = Py, Glua)), P(o(ugrgy-1. 0()of
v,wi, o(w})  —%"" t;) is a Hamiltonian path of @, _;, — F} for 1 < ¢ < |F} — 1.
Q. — F, — F, — F,, as illustrated in Fig. 8. Therefore, (s; Plsium) w1, ¢(ur) P(9(u1),¢(u2))
Case 2.34|FP|+|F?| <n—1and4|F?| +|F?| < P(§uoy 1 |_y):6(t1) o
- ¢(t1)7t17

n—3 and|K*'| = 0. P(uz), -+, P(ug|ry|—1
Case 2.3.1]F!| =0 and|F"| = 0. t1), P(sj,t;) are % spanning disjoint paths of
Sinced|FY| +|F°| <n—1and|K'|=0,|K)| > 1. Q,— F,— F, — F, for 2 < j < &l as illustrated
Without loss of generality, we can assume that Fig. 9.



Case 2.3.3|F}| > 1or|F| = |F}! > 1. |K}| + |F}| + |FY = 0. Let b be a faulty vertex
By induction hypothesis, there exisk! spanning of Fg). Letm = |KL| +2|F}|. Let U = {u;|u; €
disjoint pathsP(s;,t;) of Q° |, — F) — FO — FY V0 u; ¢ (K°UFCUFEY) forl < i < m— 1}
for1 <1 < 'K‘ Without Ioss of generality, we By mductlon hypothesis, there ex@:? spannlng
can assume thaP(sl,tl) — (s P(s1,u) wv P(.t)  disjoint paths betweer® U U U {b} of QY ,
t1) for ¢(u),p(v) ¢ E!. Applying Lemma 1, we Fo— F,, —(F;, — {b}) whereP(s,, b) is one of these
can construct a Hamiltonian paﬂﬁ(¢( ) ¢(v)) of spannlrI\D%l(ZBJo,lnt paths.. We.can denofés.l,b)
1 _ ! Therefore,(s, P(s1,u) w, é(w) P(¢(w):¢(v)  as (s b 1>. By 1|nduct|0r‘1 hyp.o.th.eS|s, we
P(v ) \KI can constructK || + |F,,| spanning disjoint paths
¢(v),v =" 1), P(s;,t;) are 5 spanning disjoint petweens(17) U K U {¢(F)} of Q1_, — F!. Thus,
paths ofQ, — F, — F,, — F, for 2<i< Ul as we can constructs! spanning disjoint paths of
illustrated in Fig. 10. Q. — F, — F,, — F,, as illustrated in Fig. 11.

Qo

n1 case2.3.3 Q' Q@ case2.3.4 Qo Qo

Q' Q°

n1 case2.4.1 n1 case2.4.2

Fig. 10. lllustration ofCase 2.3.3 and Case 2.3.4 Fig. 11. lllustration ofCase 2.4.1 and Case 2.4.2

|l 1 1 1
Case 2.3.4|F)|+|F)| > 1 and |E}| + |EL| > 1 Case 2.4.2:[K}| + [F}| + [F| > 1 and |KL| +

and || # [F, . )

Lol + [Fy > 1.
Without loss of generality, we can assume th thout loss of generality we can assume that
IFl| > |F}. Let m = |F!| — |F}|. Let g Y,

21 FQ|+|KP| > 2|FO|+|KD|. Letm = 2| FP|+| K} |—
2|F°|—|K?|. Let X = {[s;, t;]|s; andt; in different
subcubes} and | X| be the number of pairs ak.
Suppose thatn > |X|. Let U, = {u;|u; € V2, for
1 <i < m} andU, = . Suppose thatn < |z|.

U = {wlu; € V2 and u;,é(u;)) ¢ (K U
F) for 1 < i < 2m}. By induction hy-
pothesis, there exis([@ + m) spanning disjoint
pathSO P(sl,u(l)),P(uogi,u%rol),P(u2m,t1),P(sj,tj)
of @y — B ‘;le “Rofor s i< om— g t U, = {ufu; € V2, for 1 < i < Xy gnd
1,2 < j < 454 By induction hypothesis, we

_ X|4m
also can construct the: spannlng disjoint paths = {uilu € V), for 1+ 552 < ‘ZH; ‘L)g'
P(¢(uzi1), d(uz))of QL —F}—Fl'forl< By induction hypotheS|s there emM

i < m. Therefore.(s, P(s;,u)l) . () P(o(uw) ¢(uz) spanning OdISJOIOnt paghs bﬁwﬁe'fgf‘ﬁlg U Uy pf
P(6(0s2m-1) 6(uzm)) w1 — Iy — F, — F, and =—5=== spanning
P(uz), -+, ¢(Uzm—1 ¢(u2m), u2m  disjoint paths of betweenk™ U ¢(Uy,) U ¢(U,)
Pluzmh) t1), P(sj,t;) are‘K| spanning disjoint pathsof Q! _, — F} — Fl — F,. Therefore, we can
of Q,— F,— F, — F, for 2 < j <X, asillustrated construct 1 spanning disjoint paths between of

in Fig. 10. Q. — Fy, — F — F,, as illustrated in Fig. 11. O
Case 2.44|FP| +|FY| <n—1and4|F°| +|F?] <
1> 1. IV. VERTICES FAULFTOLERANCE FOR
Case 2'4'1:|}{I}| —|—|Fb1|—|—|F1| —0or |K1|—|—|F1|—|— EDGE-BIPANCYCLICITY OF HYPERCUBE
|FY = 0. In this section, we prove the vertices fault-

Without loss of generality, we can assume th&tlerance for edge bipancyclicity of hypercube. The



following lemma is proved in [4]. [4] S. Y. Hsieh, "Fault-tolerant cycle embedding in the hyqebe

Lemma 4: Every edge inQ — F. — F. lies on with more both faulty vertices and faulty edgePdrallel Com-
' " N ¢ puting, vol. 32, pp.84-91, (2006).

a CyCI_e of every even |ength from 4 @& — 2|Fv| [5] Sun-Yuan Hsieh, Tzu-Hsiung Shen, "Edge-bipancygliaiff a
even if |Fv| + |Fe| <n-—2, for n > 3. hypercube with faulty vertices and edge®Jiscrete Applied
Mathematics , vol. 156, pp.1802-1808, (2008).

Theorem 2: Let F, and F, be the sets of faulty [s] chun-Nan Hung, Y. H. Chang, and C. M. Sun, “Longest paths

black vertices and faulty while vertices, respectively, ?QSD%S"GS Igozaliliohy(zgroc%besif’roceedlngs of the IASTED
: ) , Pp.101-110, :
OT hyperC_Ub@”' The grap[gl” — Iy =1y 18 edge [7] Chun-Nan Hung and Guan-Yu Shi, Vertex fault tolerance fo
bipancyclic if | 3|, || < |*7] for n > 3. multiple spanning paths in hypercubisoceedings of the 24th
Proof: Let ¢ = (S,t) be an arbitrary edge of Workshop on Combinatorial Mathematics and Computational
F, — F,, for V. Applying Lemma 4, we ., 110, pp-241-250, 2007.
) T Hw s € b pplying o ' [8] Tseng-Kuei Li , Chang-Hsiung Tsai , Jimmy J.M.Tan , and
can obtain that there exist cycle containing the edge Lih-Hsing Hsu, "Bipanconnectivity and edge-fault-toletabi-
e with even length from 4 t@" — 2(|Fb‘ + ‘Fw‘) pancyclicity of hypercubesnformation Processing Letters, 87,
o B pp.107-110, (2003).

of @Qn — Iy — Fy. Let I, — {01,b2, -+, by, } an_d [9] C.D. Park and K. Y. Chwa, "Hamiltonian properties on thass
F, = {wy,wy, -, wy,}. Without loss of generality, ~ of hypercube-like networksnformation Processing Letters, 91,
we can assume that > f,. Let F, = {b;, z;| for 0 p/r;ghll;ﬂé(ZOM)- on 1 edding s hu

. ] ijit Sengupta, "On ring embedding in hypercubes hwit
(b“xl) EE(Q”) and L ¢ (Fb U Fw U {S’t}) f_or faulty nodes and links,”Information Processing Letters, 68,
fo+1<i< f1} and|F,| be the number of pair of  pp.207-214, (1998).
adjacently vertices of,. Let F,, = {b;, z;,w;,y;| [11] Wen-Yan Suand Chun-Nan Hung, The longest ring embegidin
for (bl x) (w ) c E(Q ) aﬁd T ¢ (F U in faulty hypercube,Proceedings of the 23rd Workshop on

by /o A y% . n v y? b Combinatorial Mathematics and Computational Theory, pp.262-

F,U{s,t}) for j <i < fo} for1 < j < f, and 272, 2006.
| F,,;| be the number of pair of adjacently vertices df2] Y. C. Tseng, "Embedding a ring in a hypercube with both

r_ . faulty links and faulty nodes,Information Processing Letters,
Fy;. Let Fy = {b1,by,---, by, }. We can check that 50, pp.217-222, (1996).

|Fo| + | Fou| +| Fy|+ | Fo, | +2 = fi+ fo+2 < %2 <n [13] C. H. Tsai, J.J.M. Tan, T.Liang, and L.H. Hsu, "Faulteiant

and4|Fb"_|_2+|Fa‘_|_‘Faj| = 4|Fw‘+2+|Fa|+|Fa]~‘ < Hamiltonian laceability of hypercubesihformation Processing
: : Letters, 83, pp.301-306, (2002).

n+1 for 1 < J s f2' Appl.ylng Theorem 1, [14] Chang-Hsiung Tsai, "Fault-tolerant cycles embeddethyper-

we can construct a Hamiltonian path(s,t) of cubes with mixed link and node failuresipplied Mathematics

Qn—Fy—F,—F,— I, for1 <j < f,. Thus, we Letters, 21, pp.855-860, (2008).

can construct the cycles Pled) t, s) containing the

edgee with even length from2” — 2(| Fy| + |F,|) to
2" —2max{|Fy|, | F|} of Q. — F, — F,,.. Therefore,
Q. — F, — F, is edge-bipancyclic. O

V. CONCLUSION

In this paper, we show that every family
{si, t:}10. of hypercubeR, — F, is connectable if
|Fy| + | F |+ K|+ | Ku| + | Fa| < n, 4| Fy| +2| K|+
|F,| = 4|Fy| + 2| K| + |Fo| < n+ 1, for n > 3.
Applying this result, we show th&p,, — F, — F, is
edge-bipancyclic i £, | F,| < [27].
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