Vertex fault tolerance for edge-bipancyclicity of hypercube

Chun-Nan Hung
Department of Computer Science and Information Engineering
Da-Yet University, Changhua, Taiwan 51505, R.O.C
Email:spring@mail.dyu.edu.tw

Yu-Chun Lin
Department of Computer Science and Information Engineering
Da-Yet University, Changhua,
Taiwan 51505, R.O.C
Email:r9506041@mail.dyu.edu.tw

Abstract

A bipartite graph $G=(V, E)$ edgebipancyclic if every edge lies on the cycles of every even length from 4 to $|V|$. Let $Q_{n}=\left(V_{b} \cup V_{w}, E\right)$ be an n dimensional hypercube where V_{b} and V_{w} are the sets of black and white vertices, respectively. Let $F_{b}\left(\right.$ resp. $\left.F_{w}\right)$ be the set of black (resp. white) faulty vertices. In this paper, we will show that $Q_{n}-F_{b}-F_{w}$ is edge-bipancyclic if $\left|F_{b}\right|,\left|F_{w}\right| \leq\left\lfloor\frac{n-1}{4}\right\rfloor$.

Index Terms-hypercube, edge-bipancyclic, bipartite graph, vertices fault-tolerance

I. Introduction

The hypercube network is one of the most popular interconnection networks. It has many attractive properties, such as regularity, symmetry, small degree and diameter, maximum fault tolerance, easy routing algorithms.

An interconnection network is usually represented by a graph where vertices represent processors and edges represent links between processors. Let $G=\left(V_{b} \cup V_{w}, E\right)$ be a bipartite graph where V_{b} and V_{w} are two disjoint vertex sets such that each edge of E consists of one vertex from each set. Let $d(u, v)$ be the distance of the vertices u and v. A bipartite graph $G=\left(V_{b} \cup V_{w}, E\right)$ is Hamiltonian laceable if there exists a Hamiltonian path between x, y for any $x \in V_{b}, y \in V_{w}$. The graph $G=\left(V_{b} \cup V_{w}, E\right)$ is hyper-Hamiltonian laceable if $\forall v \in V_{b}$ (resp. V_{w}), there exists a Hamiltonian path of $G-\{v\}$ between each pair of vertices of $V_{w}\left(\right.$ resp. $\left.V_{b}\right)$. In [13], Tsai et al. proved that $Q_{n}-F_{e}$ is Hamiltonian laceable for $F_{e} \subset E\left(Q_{n}\right),\left|F_{e}\right| \leq n-2$ and hyper-Hamiltonian laceable for $F_{e} \subset E\left(Q_{n}\right),\left|F_{e}\right| \leq n-3$. A bipartite graph $G=(V, E)$ is edge-bipancyclic if every edge
of E lies on cycles of every even length from 4 to $|V|$. In [8], Li et al. proved that $Q_{n}-F_{e}$ is edgebipancyclic for $F_{e} \subset E\left(Q_{n}\right),\left|F_{e}\right| \leq n-2$.

There is little literature about general vertex fault tolerant Hamiltonian properties of hypercube $Q_{n}=$ $\left(V_{b} \cup V_{w}, E\right)$. Some literatures concern embedding fault-free cycles or paths for hypercube with faulty vertices. The upper bound of longest fault-free cycle of $Q_{n}-F_{v}$ is $2^{n}-2 f$ where F_{v} is the faulty set of vertices of Q_{n} and $f=\max \left\{\left|F_{v} \cap V_{w}\right|,\left|F_{v} \cap V_{b}\right|\right\}$. In [2], [4], [10], [12], the authors showed that a faultfree cycle of length $2^{n}-2 f_{v}$ can be constructed with f_{v} faulty vertices. In [5], [14], the authors showed that every edge in $Q_{n}-F_{v}-F_{e}$ lies on cycles of every even length from 4 to $2^{n}-2\left|F_{v}\right|$ if $\left|F_{v}\right|+$ $\left|F_{e}\right| \leq n-2$. When all faulty vertices are in the same partite set, this result is the vertices fault tolerance for edge-bipancyclicity of Q_{n}. However, there exist longer cycles when both partite vertex sets contain some faulty vertices.

In [1], Caha et al. proposed the multiple spanning paths problem for hypercube. Let s_{i}, t_{i}, for $1 \leq i \leq k$, be vertices of Q_{n}. The $\left\{s_{i}, t_{i}\right\}_{i=1}^{k}$ is a connectable family if there exists k spanning paths $P\left(s_{i}, t_{i}\right)$ of Q_{n} for $1 \leq i \leq k$. The $\left\{s_{i}, t_{i}\right\}_{i=1}^{k}$ is balanced if it has the same number of vertices in each partite set. Caha showed that every balanced family $\left\{s_{i}, t_{i}\right\}_{i=1}^{n}$ is connectable in $Q_{2 n}$ if $d\left(s_{i}, t_{i}\right)$ is odd for $1 \leq i \leq n$. Caha also showed that every balanced family $\left\{s_{i}, t_{i}\right\}_{i=1}^{n}$ is connectable in $Q_{6 n}$. In [7], Hung et al. investigated the fault tolerance for connectable family of bipartite graph.

Let the family $\left\{s_{i}, t_{i}\right\}_{F_{w}, K_{w}}^{F_{b}, K_{b}}$ of Q_{n} be the vertex set $K_{b} \cup K_{w}=\left\{s_{i}, t_{i} \mid\right.$ for $\left.1 \leq i \leq\left(\left|K_{b}\right|+\left|K_{w}\right|\right) / 2\right\}$ of $Q_{n}-F_{b}-F_{w}$. The family $\left\{s_{i}, t_{i}\right\}_{F_{w}, K_{w}}^{F_{b}, K_{b}}$ is balanced if $2\left|F_{b}\right|+\left|K_{b}\right|=2\left|F_{w}\right|+\left|K_{w}\right|$. The family $\left\{s_{i}, t_{i}\right\}_{F_{w}, K_{b}}^{F_{w}, K_{b}}$ is connectable if there exit $\left(\left|K_{b}\right|+\left|K_{w}\right|\right) / 2$ spanning disjoint paths $P\left(s_{i}, t_{i}\right)$ for $1 \leq i \leq\left(\left|K_{b}\right|+\left|K_{w}\right|\right) / 2$ of $Q_{n}-F_{b}-F_{w}$. The authors showed that every family $\left\{s_{i}, t_{i}\right\}_{F_{w}, K_{w}}^{F_{b}} K_{b}^{w}$. of Q_{n} is connectable if $\left|K_{b}\right|+\left|K_{w}\right|+\left|F_{b}\right|+\left|F_{w}\right| \leq n$ and $4\left|F_{b}\right|+2\left|K_{b}\right|=4\left|F_{w}\right|+2\left|K_{w}\right| \leq n+1$.

In this paper, we incorporate the adjacently faulty vertices into the vertex fault tolerance of multiple spanning paths of hypercube. Let $\left\{s_{i}, t_{i}\right\}_{F_{w}, K_{w}}^{F_{b}, K_{b}}$ be a family of $G=\left(V_{b} \cup V_{w}, E\right)-F_{a}$ where $K_{b} \cup$ $K_{w}=\left\{s_{i}, t_{i} \mid 1 \leq i \leq\left(\left|K_{b}\right|+\left|K_{w}\right|\right) / 2\right\}$ is the set of fault-free vertices, F_{a} is the set of $\left|F_{a}\right|$ pairs of adjacently faulty vertices, $F_{b} \subset V_{b}$ and $F_{w} \subset V_{w}$ are sets of faulty vertices. In this paper, we will show that every family $\left\{s_{i}, t_{i}\right\}_{F_{w}, K_{w}}^{F_{b}, K_{b}}$ of hypercube $Q_{n}-F_{a}$ is connectable if $\left|F_{b}\right|+\left|F_{w}\right|+\left|K_{b}\right|+\left|K_{w}\right|+\left|F_{a}\right| \leq n$, $4\left|F_{b}\right|+2\left|K_{b}\right|+\left|F_{a}\right|=4\left|F_{w}\right|+2\left|K_{w}\right|+\left|F_{a}\right| \leq n+1$, for $n \geq 3$. Applying this result, we can obtain that $Q_{n}-F_{b}-F_{w}$ is edge-bipancyclic if $\left|F_{b}\right|,\left|F_{w}\right| \leq$ $\left\lfloor\frac{n-1}{4}\right\rfloor$.

The rest of this paper is organized as follows. In Section 2, we introduce some important definitions and lemmas. Section 3 shows the vertex fault tolerance for multiple spanning paths. The vertex fault-tolerance for edge-bipancyclicity is introduced in Section 4. We finally give some conclusion in Section 5.

II. Preliminaries

An n-dimensional hypercube $Q_{n}=\left(V_{b} \cup V_{w}, E\right)$ is a bipartite graph whose vertices are labeled by distinct n-bit binary strings. Two vertices are linked by an edge if and only if their labels differ exactly in one bit. The hypercube Q_{n} can be constructed recursively as $Q_{n}=Q_{n-1} \times K_{2}$. We can partition Q_{n} as two subgraphs Q_{n-1}^{0} and Q_{n-1}^{1} by choosing any one bit of binary string.

We call the V_{b} black vertex set and V_{w} white vertex set. Let V_{b}^{j} and V_{w}^{j} be the black and white vertex set of Q_{n-1}^{j} for $j=0,1$. And let $V^{j}=V_{b}^{j} \cup V_{w}^{j}$ for $j=0,1$. Thus, $V_{b}=V_{b}^{0} \cup V_{b}^{1}, V_{w}=V_{w}^{0} \cup V_{w}^{1}, V=$ $V_{b} \cup V_{w}=V^{0} \cup V^{1}$ 。

Let F_{b} be the set of black faulty vertices and F_{w} be the set of white faulty vertices of Q_{n}. Similarly, we also use F_{b}^{j} and F_{w}^{j} to denote the black and white faulty vertex set of Q_{n-1}^{j}, respectively, for $j=0,1$. Thus, $F_{b}=F_{b}^{0} \cup F_{b}^{1}, F_{w}=F_{w}^{0} \cup F_{w}^{1}, F^{0}=$ $F_{b}^{0} \cup F_{w}^{0}, F^{1}=F_{b}^{1} \cup F_{w}^{1}$.

Let F_{a} be the set of adjacently faulty vertices of Q_{n}. Similarly, we also use F_{a}^{j} to denote the adjacently faulty vertex set of Q_{n-1}^{j}, respectively, for $j=0,1$. Thus, $F_{a}=F_{a}^{0} \cup F_{a}^{1}$. We further define $F=F_{b} \cup F_{w} \cup F_{a}$.

Let K_{b} and K_{w} be the black and white fault-free vertex set. Let $K=K_{b} \cup K_{w}=\left\{s_{i}, t_{i} \left\lvert\, 1 \leq i \leq \frac{|K|}{2}\right.\right\}$. And let $K_{b}^{j}=K_{b} \cap V^{j}, K_{w}^{j}=K_{w} \cap V^{j}$, for $j=0,1$.

Let $\phi(v)$ be a vertex of V^{i} for every $v \in V^{j}$ such that $(v, \phi(v)) \in E$ and $\{i, j\}=\{0,1\}$. Let $X=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be a vertex subset of Q_{n-1}^{i} for $i=0,1$. We define the free neighbor set of X is $N(X)=\left\{u_{j} \mid\left(x_{j}, u_{j}\right) \in E\left(Q_{n-1}^{i}\right)\right.$ and $\phi\left(u_{j}\right) \notin$ $(F \cup K)$ for $1 \leq j \leq k, i=0,1\}$. Let $\phi(X)=$ $\{\phi(v) \mid v \in X\}$ be a vertex subset of V^{j} for $X \subset V^{i}$ for $\{i, j\}=\{0,1\}$.

We need some previous results for our proofs. The following lemma is proposed in [6].

Lemma 1: The graph Q_{n} is f-adjacency ($n-2-$ f) edges Hamiltonian for $0 \leq f \leq(n-2)$, f adjacency $(n-2-f)$ edges Hamiltonian laceable for $0 \leq f \leq(n-3)$, and f-adjacency $(n-3-f)$ edges hyper-Hamiltonian laceable for $0 \leq f \leq(n-3)$.

A bipartite graph $G=\left(V_{b} \cup V_{w}, E\right)$ has property $2 H$ if for any $s_{1}, s_{2} \in V_{b}$ and $t_{1}, t_{2} \in V_{w}$ there exist two spanning disjoint paths $P\left(s_{1}, t_{1}\right)$ and $P\left(s_{2}, t_{2}\right)$ of G. Su et al. proved the following lemma in [11].

Lemma 2: The graph $Q_{n}-F_{a}-F_{e}$ has property 2 H where F_{a} is the set of $\left|F_{a}\right|$ pairs adjacently faulty vertices and F_{e} is the set of faulty edges and $0 \leq$ $\left|F_{a}\right|+\left|F_{e}\right| \leq n-3$.

III. Vertex fault tolerance for multiple SPANNING PATHS IN HYPERCUBE

In this section, we will prove the vertex fault tolerance for multiple spanning disjoint paths of
hypercube. The following lemma is the proof for some property for Q_{4}.

Lemma 3: Let $s_{1}, t_{1} \in V_{w}$ and $s_{2}, t_{2} \in V_{b}$ be two pairs of fault-free vertices. there exist two spanning disjoint paths $P\left(s_{1}, t_{1}\right)$ and $P\left(s_{2}, t_{2}\right)$ of Q_{4}.
Proof. By symmetry of hypercube, we can arrange s_{1} in Q_{3}^{0} and t_{1} in Q_{3}^{1}. We will prove this lemma in the following cases.
Case 1. s_{2} and t_{2} in the same subcube.
Without loss of generality, we can assume that s_{2}, t_{2} are in Q_{3}^{1}. We can construct a Hamiltonian path $\left\langle s_{2} \xrightarrow{P\left(s_{2}, t_{2}\right)} t_{2}, x \xrightarrow{P\left(x, t_{1}\right)} t_{1}\right\rangle$ of Q_{3}^{1}. We can also construct a Hamiltonian path $P\left(s_{1}, \phi(x)\right)$ of Q_{3}^{0}. Thus, $P\left(s_{2}, t_{2}\right)$ and $\left\langle s_{1} \xrightarrow{P\left(s_{1}, \phi(x)\right)} \phi(x), x \xrightarrow{P\left(x, t_{1}\right)} t_{1}\right\rangle$ are two spanning disjoint paths of Q_{4}.
Case 2. s_{2} and t_{2} in different subcubes.
Without loss of generality, we can assume that $s_{2} \in$ Q_{3}^{1} and $t_{2} \in Q_{3}^{0}$. We can construct a Hamiltonian path $\left\langle s_{1} \xrightarrow{P\left(s_{1}, x_{1}\right)} x_{1}, x_{2} \xrightarrow{P\left(x_{2}, t_{2}\right)} t_{2}\right\rangle$ of Q_{3}^{0} for $x_{1} \in V_{w}^{0}$ and $\left\{\phi\left(x_{1}\right), \phi\left(x_{2}\right)\right\} \cap\left\{s_{2}, t_{1}\right\}=\emptyset$. Applying Lemma 2 , we can further construct two spanning disjoint paths $P\left(\phi\left(x_{1}\right), t_{1}\right)$ and $P\left(s_{2}, \phi\left(x_{2}\right)\right)$ of Q_{3}^{1}. Thus, $\left\langle s_{1} \xrightarrow{P\left(s_{1}, x_{1}\right)} x_{1}, \phi\left(x_{1}\right) \xrightarrow{P\left(\phi\left(x_{1}\right), t_{1}\right)} t_{1}\right\rangle$ and $\left\langle s_{2} \xrightarrow{P\left(s_{2}, \phi\left(x_{2}\right)\right)}\right.$ $\left.\phi\left(x_{2}\right), x_{2} \xrightarrow{P\left(x_{2}, t_{2}\right)} t_{2}\right\rangle$ are two spanning disjoint paths of Q_{4}.

Theorem 1: Every family $\left\{s_{i}, t_{i}\right\}_{F_{w}, K_{w}}^{F_{b}, K_{b}}$ of hypercube Q_{n} is connectable if $\left|F_{b}\right|+\left|F_{w}\right|+\left|K_{b}\right|+\left|K_{w}\right|+$ $\left|F_{a}\right| \leq n, 4\left|F_{b}\right|+2\left|K_{b}\right|+\left|F_{a}\right|=4\left|F_{w}\right|+2\left|K_{w}\right|+$ $\left|F_{a}\right| \leq n+1,\left|F_{a}\right| \leq n-3$ for $n \geq 3$.
Proof: We will prove this theorem by induction on n. When $\left|F_{b}\right|+\left|F_{w}\right|+\left|K_{b}\right|+\left|K_{w}\right|+\left|F_{a}\right|<n, 4\left|F_{b}\right|+$ $2\left|K_{b}\right|+\left|F_{a}\right|=4\left|F_{w}\right|+2\left|K_{w}\right|+\left|F_{a}\right|<n+1,\left|F_{a}\right|<$ $n-3$, the proof of Q_{n} is the same as the proof of Q_{n-1}. Thus, we only need to prove that at lest one of the conditions $\left|F_{b}\right|+\left|F_{w}\right|+\left|K_{b}\right|+\left|K_{w}\right|+\left|F_{a}\right|=n$, $4\left|F_{b}\right|+2\left|K_{b}\right|+\left|F_{a}\right|=4\left|F_{w}\right|+2\left|K_{w}\right|+\left|F_{a}\right|=$ $n+1,\left|F_{a}\right|=n-3$ holds.
Applying Lemma 1 , we can obtain that $Q_{n}-F_{a}$ is Hamiltonian laceable and hyper-Hamiltonian laceable for $\left|F_{a}\right|=n-3$. Thus, this theorem is true for $\left|F_{a}\right|=n-3$. It is true for $n=3$.
We consider the case for $n=4$. Applying Lemma 2 , we can also obtain that Q_{4} has the property 2 H . Applying Lemma 3, we can construct two spanning disjoint paths $P\left(s_{1}, t_{1}\right)$ and $P\left(s_{2}, t_{2}\right)$ of Q_{4} for $K_{b}=$
$\left\{s_{1}, t_{1}\right\}, K_{w}=\left\{s_{2}, t_{2}\right\}$. Thus, this theorem is true for $n=4$.
We will prove the induction step for $\left|F_{a}\right| \leq n-4$ and $n \geq 5$ with the following cases. By the symmetry of hypercube, we can assume that every pair of adjacently vertices is either in Q_{n-1}^{0} or Q_{n-1}^{1}. We draw Q_{12} in figures of some cases for illustration.

Case 1: $n-\left|F_{a}\right|$ is even.
When $\left|F_{b}\right|+\left|F_{w}\right| \geq 1$, the proof of this case is the same as the case of Q_{n-1}. Thus, we only need to prove this case for $\left|F_{b}\right|=\left|F_{w}\right|=0$. We can infer that $\left|K_{b}\right|+\left|K_{w}\right|+\left|F_{a}\right|=n$. Without loss of generality, we can assume that $\left|F_{a}^{0}\right| \geq\left|F_{a}^{1}\right|$.
Case 1.1: $\left|F_{a}\right|=0$.
Without loss of generality, we can assume that $\left|K^{0}\right| \geq\left|K^{1}\right| \geq 1$ and $\left|K_{b}^{0}\right| \geq\left|K_{w}^{0}\right| \geq 1$.
Case 1.1.1: $\left|K^{1}\right|=1$.
Without loss of generality, we can assume that $s_{2} \in V^{1}$ and $d\left(s_{1}, t_{2}\right)$ is odd. Let $\left(s_{i}, s_{i}^{\prime}\right)$ and $\left(t_{i}, t_{i}^{\prime}\right)$ be edges of Q_{n-1}^{0} for $3 \leq i \leq \frac{|K|}{2}$ such that $t_{2} \notin\left\{\phi\left(s_{i}^{\prime}\right), \phi\left(t_{i}^{\prime}\right) \mid\right.$ for $\left.3 \leq i \leq \frac{|K|}{2}\right\}$. Applying Lemma 1, we can construct a Hamiltonian path $\left\langle s_{1} \xrightarrow{P\left(s_{1}, t_{1}\right)} t_{1}, x \xrightarrow{P\left(x, t_{2}\right)} t_{2}\right\rangle$ of $Q_{n-1}^{0}-\left\{s_{i}, s_{i}^{\prime}, t_{i}, t_{i}^{\prime} \mid 3 \leq\right.$ $\left.i \leq \frac{|K|}{2}\right\}$ for $\phi(x) \neq s_{2}$. By induction hypothesis, there exist $\frac{|K|}{2}-1$ spanning disjoint paths $P\left(s_{2}, \phi(x)\right), P\left(\phi\left(s_{i}^{\prime}\right), \phi\left(t_{i}^{\prime}\right)\right)$ of Q_{n-1}^{1} for $3 \leq i \leq$ $\frac{|K|}{2}$. Thus, $P\left(s_{1}, t_{1}\right),\left\langle s_{2} \xrightarrow{P\left(s_{2}, \phi(x)\right)} \phi(x), x \xrightarrow{P\left(x, t_{2}\right)} t_{2}\right\rangle$, $\left\langle s_{i}, s_{i}^{\prime}, \phi\left(s_{i}^{\prime}\right) \xrightarrow{P\left(\phi\left(s_{i}^{\prime}\right), \phi\left(t_{i}^{\prime}\right)\right)} \phi\left(t_{i}^{\prime}\right), t_{i}^{\prime}, t_{i}\right\rangle$ are $\frac{|K|}{2}$ spanning disjoint paths of Q_{n} for $3 \leq i \leq \frac{|K|}{2}$, as illustrated in Fig. 1.

Fig. 1. Illustration of Case 1.1.1 and Case 1.1.2
Case 1.1.2: $\left|K^{1}\right| \geq 2$ and $s_{i}, t_{i} \in K^{0}$ for some $1 \leq i \leq \frac{|K|}{2}$.

Without loss of generality, we can assume that $s_{1}, t_{1} \in Q_{n-1}^{0}$. Let t_{2} be vertex of Q_{n-1}^{0} with $\left\{s_{1}, t_{1}, t_{2}\right\} \not \subset K_{b}$ and $\left\{s_{1}, t_{1}, t_{2}\right\} \not \subset K_{w}$. Without loss of generality, we can assume that $s_{1}, t_{1} \in$ $K_{b}, t_{2} \in K_{w}$. Let $x_{2} \in K_{w}^{0}$ for $\phi\left(x_{2}\right) \notin K^{1}$. Let $K^{\prime}=K^{0}-\left\{s_{1}, t_{1}, t_{2}\right\}, N\left(K^{\prime}\right)$ be the free neighbor set of K^{\prime}. Applying Lemma 3, we can construct two spanning disjoint paths $P\left(s_{1}, t_{1}\right)$ and $P\left(x_{2}, t_{2}\right)$ of $Q_{n-1}^{0}-K^{\prime}-N\left(K^{\prime}\right)$. By induction hypothesis, there exist $\frac{|K|}{2}-1$ spanning disjoint paths between $\left(\phi\left(N\left(K^{\prime}\right)\right) \cup K^{1} \cup\left\{\phi\left(x_{2}\right)\right\}\right)$ of Q_{n-1}^{1}. Therefore, we can construct $\frac{|K|}{2}$ spanning disjoint paths between $K_{b} \cup K_{w}$ of Q_{n} as illustrated in Fig. 1.
Case 1.1.3: s_{i} and t_{i} in different subcubes for every $1 \leq i \leq \frac{|K|}{2}$.
Without loss of generality, we can that $s_{i} \in Q_{n-1}^{0}$, and $t_{i} \in Q_{n-1}^{1}$ for $1 \leq i \leq \frac{|K|}{2}$. Suppose that $d\left(s_{i}, t_{i}\right)$ is odd for some $1 \leq i \leq \frac{|K|}{2}$. Without loss of generality, we can assume that $d\left(s_{1}, t_{1}\right)$ is odd. Let $\left(t_{1}^{\prime}, t_{1}\right)$ be an edge of Q_{n-1}^{1} for $t_{1}^{\prime}, \phi\left(t_{1}^{\prime}\right) \notin K$. Let $\left(s_{i}, s_{i}^{\prime}\right)$ be edges of Q_{n-1}^{0} for $s_{i}^{\prime}, \phi\left(s_{i}^{\prime}\right) \notin\left(K \cup\left\{t_{1}^{\prime}, \phi\left(t_{1}^{\prime}\right)\right\}\right)$ for $2 \leq i \leq \frac{|K|}{2}$. Applying Lemma 1, we can construct a Hamiltonian path $P\left(s_{1}, \phi\left(t_{1}^{\prime}\right)\right)$ of $Q_{n-1}^{0}-\left\{s_{i}, s_{i}^{\prime} \mid 2 \leq\right.$ $\left.i \leq \frac{|K|}{2}\right\}$. By the induction hypothesis, there exist $\frac{|K|}{2}-1$ spanning disjoint paths $P\left(\phi\left(s_{i}^{\prime}\right), t_{i}\right)$ of $Q_{n-1}^{1}-\left\{t_{1}, t_{1}^{\prime}\right\}$. Therefore, we can construct $\frac{|K|}{2}$ spanning disjoint paths $\left\langle s_{1} \xrightarrow{P\left(s_{1}, \phi\left(t_{1}^{\prime}\right)\right)} \phi\left(t_{1}^{\prime}\right), t_{1}^{\prime}, t_{1}\right\rangle$, $\left\langle s_{i}, s_{i}^{\prime}, \phi\left(s_{i}^{\prime}\right) \xrightarrow{P\left(\phi\left(s_{i}^{\prime}\right), t_{i}^{\prime}\right)} t_{i}^{\prime}\right\rangle$ of Q_{n} for $2 \leq i \leq \frac{|K|}{2}$, as illustrated in Fig. 2.

Fig. 2. Illustration of Case 1.1.3
Suppose that $d\left(s_{i}, t_{i}\right)$ is even for every $1 \leq i \leq \frac{|K|}{2}$. Without loss of generality, we can assume that $s_{1} \in K_{b}$ and $s_{2} \in K_{w}$. Let $\left(t_{1}^{\prime}, t_{1}\right),\left(t_{2}^{\prime}, t_{2}\right)$ be edges of Q_{n-1}^{1} for $t_{2}^{\prime}, t_{2}^{\prime}, \phi\left(t_{1}^{\prime}\right), \phi\left(t_{2}^{\prime}\right) \notin K$. Let
$\left(s_{i}, s_{i}^{\prime}\right)$ be edges of Q_{n-1}^{0} for $s_{i}^{\prime}, \phi\left(s_{i}^{\prime}\right) \notin(K \cup$ $\left.\left\{t_{1}^{\prime}, t_{2}^{\prime}, \phi\left(t_{1}^{\prime}\right), \phi\left(t_{2}^{\prime}\right)\right\}\right)$, for $3 \leq i \leq \frac{|K|}{2}$. By induction hypothesis, there exist two spanning disjoint paths $P\left(s_{1}, \phi\left(t_{1}^{\prime}\right)\right)$ and $P\left(s_{2}, \phi\left(t_{2}^{\prime}\right)\right)$ of $Q_{n-1}^{0}-\left\{s_{i}, s_{i}^{\prime} \mid 3 \leq\right.$ $\left.i \leq \frac{|K|}{2}\right\}$. By induction hypothesis, there also exist $\frac{|K|}{2}-2$ spanning disjoint paths $P\left(\phi\left(s_{i}^{\prime}\right), t_{i}\right)$ of $Q_{n-1}^{1}-\left\{t_{1}, t_{1}^{\prime}, t_{2}, t_{2}^{\prime}\right\}$. Therefore, we can construct $\frac{|K|}{2}$ spanning disjoint paths $\left\langle s_{i} \xrightarrow{P\left(s_{i}, \phi\left(t_{i}^{\prime}\right)\right)} \phi\left(t_{i}^{\prime}\right), t_{i}^{\prime}, t_{i}\right\rangle$, $\left\langle s_{j}, s_{j}^{\prime}, \phi\left(s_{j}^{\prime}\right) \xrightarrow{P\left(\phi\left(s_{j}^{\prime}\right), t_{j}^{\prime}\right)} t_{j}^{\prime}\right\rangle$ of Q_{n} for $1 \leq i \leq 2,3 \leq$ $j \leq \frac{|K|}{2}$, as illustrated in Fig. 2(b).
Case 1.2: $\left|F_{a}\right| \geq 1$ and $\left|F_{a}^{1}\right|=0$.
Case 1.2.1: $\left|K^{1}\right|=0$.
We can infer that $\left|K_{b}\right| \geq 2$ and $\left|K_{w}\right| \geq 2$ since $\left|F_{b}\right|=\left|F_{w}\right|=0$ and $\left|F_{a}\right| \leq n-4$. Without loss of generality, we can assume that $s_{1}, t_{1} \in V_{b}$ and $s_{2}, t_{2} \in V_{w}$. Let $\left(s_{i}, s_{i}^{\prime}\right),\left(t_{i}^{\prime}, t_{i}\right)$ be edges of Q_{n-1}^{0} for $s_{i}^{\prime}, t_{i}^{\prime} \notin(K \cup F)$ for $3 \leq i \leq \frac{|K|}{2}$. Applying Lemma 2, we can construct two spanning disjoint paths $\left\langle s_{1} \xrightarrow{P\left(s_{1}, s_{1}^{\prime}\right)} s_{1}^{\prime}, t_{2}^{\prime} \xrightarrow{P\left(t_{2}^{\prime}, t_{2}\right)} t_{2}\right\rangle$ and $\left\langle s_{2} \xrightarrow{P\left(s_{2}, s_{2}^{\prime}\right)} s_{2}^{\prime}, t_{1}^{\prime} \xrightarrow{P\left(t_{1}^{\prime}, t_{1}\right)} t_{1}\right\rangle$ of $Q_{n-1}^{0}-F_{a}^{0}-$ $\left\{s_{i}, s_{i}^{\prime}, t_{i}, t_{i}^{\prime} \left\lvert\, 3 \leq i \leq \frac{|K|}{2}\right.\right\}$. By induction hypothesis, we can construct $\frac{|K|}{2}$ spanning disjoint paths $P\left(\phi\left(s_{i}^{\prime}\right), \phi\left(t_{i}^{\prime}\right)\right)$ of Q_{n-1}^{1} for $1 \leq i \leq \frac{|K|}{2}$. Therefore, $\left\langle s_{i} \xrightarrow{P\left(s_{i}, s_{i}^{\prime}\right)} s_{i}^{\prime}, \phi\left(s_{i}^{\prime}\right) \xrightarrow{P\left(\phi\left(s_{i}^{\prime}\right), \phi\left(t_{i}^{\prime}\right)\right)} \phi\left(t_{i}^{\prime}\right), t_{i}^{\prime}, \xrightarrow{P\left(t_{i}^{\prime}, t_{i}\right)} t_{i}\right\rangle$, $\left\langle s_{j}, s_{j}^{\prime}, \phi\left(s_{j}^{\prime}\right) \xrightarrow{P\left(\phi\left(s_{j}^{\prime}\right), \phi\left(t_{j}^{\prime}\right)\right)} \phi\left(t_{j}^{\prime}\right), t_{j}^{\prime}, t_{j}\right\rangle$ are $\frac{|K|}{2}$ spanning disjoint paths of $Q_{n}-F_{a}$ for $1 \leq i \leq 2,3 \leq$ $j \leq \frac{|K|}{2}$, as illustrated in Fig. 3.

Fig. 3. Illustration of Case 1.2.1 and Case 1.2.2
Case 1.2.2: $\left|K^{0}\right|=0$.
By induction hypothesis, we can construct $\frac{|K|}{2}$ spanning disjoint paths between $K_{b} \cup K_{w}$ of Q_{n-1}^{1}. Without loss of generality, we can denote these paths as $\left\langle s_{1}, \xrightarrow{P\left(s_{1}, u\right)} u, v \xrightarrow{P\left(v, t_{1}\right)} t_{1}\right\rangle, P\left(s_{i}, t_{i}\right)$ for $\phi(u), \phi(v) \notin$
$F_{a}^{0}, 2 \leq i \leq \frac{|K|}{2}$. Applying Lemma 1, we can construct a Hamiltonian path $P(\phi(u), \phi(v))$ of $Q_{n-1}^{0}-F_{a}^{0}$. Therefore, $\left\langle s_{1}, \xrightarrow{P\left(s_{1}, u\right)} u, \phi(u) \xrightarrow{P(\phi(u), \phi(v))}\right.$ $\left.\phi(v), v \xrightarrow{P\left(v, t_{1}\right)} t_{1}\right\rangle, P\left(s_{i}, t_{i}\right)$ are the $\frac{|K|}{2}$ spanning disjoint paths of $Q_{n}-F_{a}$ for $2 \leq i \leq \frac{|K|}{2}$, as illustrated in Fig. 3.
Case 1.2.3: $\left|K^{0}\right|=1$.
Without loss of generality, we can assume that $s_{1} \in V_{b}^{0}$. Let $x \in V_{w}^{0}$ for $x, \phi(x) \notin(K \cup F)$. Applying Lemma 1, we can construct a Hamiltonian path $P\left(s_{1}, x\right)$ of $Q_{n-1}^{0}-F_{a}^{0}$. By induction hypothesis, we can construct $\frac{|K|}{2}$ spanning disjoint paths $P\left(\phi(x), t_{1}\right), P\left(s_{i}, t_{i}\right)$ of Q_{n-1}^{1} for $2 \leq i \leq \frac{|K|}{2}$. Therefore, $\left\langle s_{1}, \xrightarrow{P\left(s_{1}, x\right)} x, \phi(x) \xrightarrow{P\left(\phi(x), t_{1}\right)} t_{1}\right\rangle, P\left(s_{i}, t_{i}\right)$ are the $\frac{|K|}{2}$ spanning disjoint paths of $Q_{n}-F_{a}$, as illustrated in Fig. 4.

Fig. 4. Illustration of Case 1.2.3 and Case 1.2.4
Case 1.2.4: $\left|K^{1}\right|=1$.
Without loss of generality, we can assume that $t_{1} \in$ V_{w}^{0}. Since $\left|V_{b}\right| \geq 2,\left|V_{w}\right| \geq 2$, we can choose two black vertices and one white vertex of K^{0}. Without loss of generality, we can assume that $s_{1}, t_{2} \in$ $V_{b}, s_{2} \in V_{w}$ and $\phi\left(s_{1}\right) \neq t_{1}$. Let $\left(s_{i}, s_{i}^{\prime}\right),\left(t_{i}^{\prime}, t_{i}\right)$ be edges of Q_{n-1}^{0} for $s_{i}^{\prime}, t_{i}^{\prime}, \phi\left(s_{i}^{\prime}\right), \phi\left(t_{i}^{\prime}\right) \notin(K \cup F)$ for $3 \leq i \leq \frac{|K|}{2}$. Applying Lemma 1, we can construct a Hamiltonian path $\left\langle s_{2} \xrightarrow{P\left(s_{2}, s_{2}^{\prime}\right)} s_{2}^{\prime}, s_{1}, t_{2}^{\prime} \xrightarrow{P\left(t_{2}^{\prime}, t_{2}\right)} t_{2}\right\rangle$ of $Q_{n-1}^{0}-F_{a}^{0}-\left\{s_{i}, s_{i}^{\prime}, t_{i}, t_{i}^{\prime} \left\lvert\, 3 \leq i \leq \frac{|K|}{2}\right.\right\}$. By induction hypothesis, there exist $\frac{|K|}{2}$ spanning disjoint paths $P\left(\phi\left(s_{1}\right), t_{1}\right), P\left(\phi\left(s_{i}^{\prime}\right), \phi\left(t_{i}^{\prime}\right)\right)$ of Q_{n-1}^{1} for $2 \leq i \leq \frac{|K|}{2}$. Therefore, $\left\langle s_{1}, \phi\left(s_{1}\right) \xrightarrow{P\left(\phi\left(s_{1}\right), t_{1}\right)} t_{1}\right\rangle$, $\left\langle s_{2} \xrightarrow{P\left(s_{2}, s_{2}^{\prime}\right)} s_{2}^{\prime}, \phi\left(s_{2}^{\prime}\right) \xrightarrow{P\left(\phi\left(s_{2}^{\prime}\right), \phi\left(t_{2}^{\prime}\right)\right)} \phi\left(t_{2}^{\prime}\right), t_{2}^{\prime} \xrightarrow{P\left(t_{2}^{\prime}, t_{2}\right)} t_{2}\right\rangle$, $\left\langle s_{i}, s_{i}^{\prime}, \phi\left(s_{i}^{\prime}\right) \xrightarrow{P\left(\phi\left(s_{i}^{\prime}\right), \phi\left(t_{i}^{\prime}\right)\right)} \phi\left(t_{i}^{\prime}\right), t_{i}^{\prime}, t_{i}\right\rangle$ are the $\frac{|K|}{2}$ spanning disjoint paths of $Q_{n}-F_{a}$ for $3 \leq i \leq \frac{|K|}{2}$,
as illustrated in Fig. 4.
Case 1.2.5: $\left|K^{1}\right| \geq 2,\left|K^{0}\right| \geq 2$.
Without loss of generality, we can assume that $s_{1}, s_{2} \in Q_{n-1}^{0}$. Let $\left(s_{1}, s_{1}^{\prime}\right),\left(s_{2}, s_{2}^{\prime}\right)$ be edges of Q_{n-1}^{0} and $s_{1}^{\prime}, \phi\left(s_{1}^{\prime}\right), s_{2}^{\prime}, \phi\left(s_{2}^{\prime}\right) \notin(F \cup K)$. Let $K^{\prime}=$ $K^{0}-\left\{s_{1}, s_{2}\right\}$ and $N\left(K^{\prime}\right)$ be the free neighbor set of K^{\prime}. Applying Lemma 2, we can construct two spanning disjoint paths $P\left(s_{1}, s_{1}^{\prime}\right)$ and $P\left(s_{2}, s_{2}^{\prime}\right)$ of $Q_{n-1}^{0}-F_{a}-K^{\prime}-N\left(K^{\prime}\right)$. By induction hypothesis, we can construct $\frac{|K|}{2}$ spanning disjoint paths between $K^{1} \cup \phi\left(N\left(K^{\prime}\right)\right) \cup\left\{\phi\left(s_{1}^{\prime}\right), \phi\left(s_{2}^{\prime}\right)\right\}$ of Q_{n-1}^{1}. Therefore, we can construct $\frac{|K|}{2}$ spanning disjoint paths between $K_{b} \cup K_{w}$ of $Q_{n}-F_{a}$.
Case 1.3: $\left|F_{a}^{0}\right| \geq 1$ and $\left|F_{a}^{1}\right| \geq 1$.
Without loss of generality, we can assume that $\left|K^{0}\right| \geq\left|K^{1}\right|$.
Case 1.3.1: $\left|K^{1}\right|=0$.
there exist $\frac{|K|}{2}$ spanning disjoint paths $\left\langle s_{1} \xrightarrow{P\left(s_{1}, u\right)}\right.$ $\left.u, v \xrightarrow{P\left(v, t_{1}\right)} t_{1}\right\rangle, P\left(s_{i}, t_{i}\right) \quad$ of $\quad Q_{n-1}^{0}-F_{a}^{0}$ for $\phi(u), \phi(v) \notin F_{a}^{1}, 2 \leq i \leq \frac{|K|}{2}$. Applying Lemma 1, we can construct a Hamiltonian path $P(\phi(u), \phi(v))$ of $Q_{n-1}^{1}-F_{a}^{1}$. Therefore, $\left\langle s_{1} \xrightarrow{P\left(s_{1}, u\right)}\right.$ $\left.u, \phi(u) \xrightarrow{P(\phi(u), \phi(v)} \phi(v), v \xrightarrow{P\left(v, t_{1}\right)} t_{1}\right\rangle, P\left(s_{i}, t_{i}\right)$ are $\frac{|K|}{2}$ spanning disjoint paths of $Q_{n}-F_{a}$ for $2 \leq i \leq \frac{|K|}{2}$, as illustrated in Fig. 5.

Fig. 5. Illustration of Case 1.3.1 and Case 1.3.2
Case 1.3.2: $\left|K^{0}\right| \geq 1$ and $\left|K^{1}\right| \geq 1$
Let $N\left(K^{1}\right)$ be the free neighbor set of K^{1}. By induction hypothesis, we can construct $\frac{|K|}{2}$ spanning disjoint paths between $K^{0} \cup \phi\left(N\left(K^{1}\right)\right)$ of $Q_{n-1}^{0}-F_{a}^{0}$ and $\left|K^{1}\right|$ spanning disjoint paths between $N\left(K^{1}\right) \cup$ K^{1} of $Q_{n-1}^{1}-F_{a}^{1}$. Therefore, we can construct $\frac{|K|}{2}$ spanning disjoint paths between $K_{b} \cup K_{w}$ of $Q_{n}-F_{a}$, as illustrated in Fig. 5.

Case 2: $n-\left|F_{a}\right|$ is odd.
When $\left|F_{b}\right|+\left|F_{w}\right|=0$, the proof of this case is the same as Q_{n-1}. Thus, we only need to prove this case for $\left|F_{b}\right|+\left|F_{w}\right| \geq 1$. We can infer that $4\left|F_{b}\right|+2\left|K_{b}\right|+\left|F_{a}\right|=4\left|F_{w}\right|+2\left|K_{w}\right|+\left|F_{a}\right|=$ $n+1$. By symmetry of hypercube, we can assume that $\left|F_{w}^{0}\right|+\left|K_{w}^{0}\right| \geq 1$ and $\left|F_{w}^{1}\right|+\left|K_{w}^{1}\right| \geq 1$ when $\left|F_{a}\right|=0$. Without loss of generality, we can assume that $4\left|F^{0}\right|+2\left|K^{0}\right|+\left|F_{a}^{0}\right| \geq 4\left|F^{1}\right|+2\left|K^{1}\right|+\left|F_{a}^{1}\right|$ and $\left|F_{b}^{0}\right| \geq\left|F_{w}^{0}\right|$.
Case 2.1: $4\left|F_{b}^{0}\right|+\left|F_{a}^{0}\right|=n+1$.
Since $4\left|F_{b}^{0}\right|+\left|F_{a}^{0}\right|=n+1,\left|F_{b}^{1}\right|=\left|F_{a}^{1}\right|=\left|K_{b}\right|=0$.
Let $b \in F_{b}^{0}$ and $F_{b}^{\prime}=F_{b}^{1}-\{b\}$.
Case 2.1.1: $\left|K^{1}\right|=0$.
Let $\left(t_{1}^{\prime}, t_{1}\right) \in E\left(Q_{n-1}^{0}\right)$ for $t_{1}^{\prime} \notin(F \cup K)$. Let $u_{i} \in V_{b}$ be the white vertices of Q_{n-1}^{0} for $1 \leq i \leq 2\left|F_{w}^{1}\right|$. By induction hypothesis, there exist $\frac{|K|}{2}+\left|F_{w}^{1}\right| \quad$ spanning disjoint paths $\left\langle s_{1} \xrightarrow{P\left(s_{1}, b^{\prime}\right)} b^{\prime}, b\right\rangle, P\left(s_{i}, t_{i}\right), P\left(u_{2 j-1}, u_{2 j}\right)$ of $Q_{n-1}^{0}-F_{b}^{\prime}-F_{w}^{0}-\left\{t_{1}, t_{1}^{\prime}\right\} \quad$ for $2 \leq i \leq \frac{|K|}{2}, 1 \leq j \leq\left|F_{w}^{1}\right|$. By induction hypothesis, we can also construct $\left|F_{w}^{1}\right|+1$ spanning disjoint paths $P\left(\phi\left(b^{\prime}\right), \phi\left(u_{1}\right)\right), P\left(\phi\left(u_{2 j}\right), \phi\left(u_{2 j+1}\right)\right)$, $P\left(\phi\left(u_{2\left|F_{w}^{1}\right|}\right), \phi\left(t_{1}^{\prime}\right)\right) \quad$ of $\quad Q_{n-1}^{1} \quad-\quad F_{w}^{1} \quad$ for $1 \underset{P\left(\xrightarrow{\left(s_{1}, b^{\prime}\right)}\right.}{\leq} \leq \underset{P\left(F_{w}^{1} \mid\right.}{ } \leq 1$. Therefore, $\left\langle s_{1} \xrightarrow{P\left(s_{1}, b^{\prime}\right)} b^{\prime}, \phi\left(b^{\prime}\right) \xrightarrow{P\left(\phi\left(b^{\prime}\right), \phi\left(u_{1}\right)\right)} \phi\left(u_{1}\right), u_{1} \xrightarrow{P\left(u_{1}, u_{2}\right)}\right.$ $u_{2}, \phi\left(u_{2}\right), \cdots, u_{2\left|F_{w}^{1}\right|}, \phi\left(u_{2\left|F_{w}^{1}\right|}\right)$
$\left.\phi\left(t_{1}^{\prime}\right), t_{1}^{\prime}, t_{1}\right\rangle, P\left(s_{i}, t_{i}\right)$ are $\frac{|K|}{2}$ spanning disjoint paths of $Q_{n}-\left(F_{b} \cup F_{w} \cup F_{a}\right)$ for $2 \leq i \leq \frac{|K|}{2}$, as illustrated in Fig. 6.
Case 2.1.2: $\left|K^{0}\right| \geq 1,\left|K^{1}\right| \geq 1$.
Without loss of generality, we can assume that $s_{1} \in$ V_{w}^{0}. Let $U=\left\{u_{i} \mid u_{i} \in V_{w}^{0}\right.$ and $u_{i}, \phi\left(u_{i}\right) \notin(K \cup F)$ for $\left.1 \leq i \leq\left(2\left|F_{w}^{1}\right|+\left|K^{1}\right|-1\right)\right\}$. By induction hypothesis, there exist $\left(\frac{|K|}{2}+\left|F_{w}^{1}\right|\right)$ spanning disjoint paths between $\left(K^{0} \cup U \cup\left\{b_{1}\right\}\right)$ of $Q_{n-1}^{0}-F_{b}^{\prime}$. Without loss of generality, we can assume one of these $\left(\frac{|K|}{2}+\right.$ $\left.\left|F_{w}^{1}\right|\right)$ spanning disjoint paths is $\left\langle s_{1} \xrightarrow{P\left(s_{1}, b^{\prime}\right)} b^{\prime}, b\right\rangle$. By induction hypothesis, we also can construct the $\left|F_{w}^{1}\right|+\left|K^{1}\right|$ spanning disjoint paths between $K^{1} \cup$ $\phi(U) \cup\left\{\phi\left(b_{1}^{\prime}\right)\right\}$ of $Q_{n-1}^{1}-F_{w}^{1}$. Therefore, we can construct $\frac{|K|}{2}$ spanning disjoint paths between K_{w} of $Q_{n}-F_{b}^{2}-F_{w}-F_{a}$, as illustrated in Fig. 6.
Case 2.1.3: $\left|K^{0}\right|=0$.
Let $\left(t_{1}^{\prime}, t_{1}\right) \in E\left(Q_{n-1}^{1}\right)$ for $t_{1}^{\prime}, \phi\left(t_{1}^{\prime}\right) \notin(F \cup K)$. Let $u_{i} \in V_{w}^{0}$ for $u_{i}, \phi\left(u_{i}\right) \notin(F \cup K), 1 \leq i \leq$

Fig. 6. Illustration of Case 2.1.1 and Case 2.1.2
$2\left|F_{w}^{1}\right|+|K|-2$. By induction hypothesis, there exist $\left(\frac{|K|}{2}+\left|F_{w}^{1}\right|\right)$ spanning disjoint paths $\left\langle b, b^{\prime} \xrightarrow{P\left(b^{\prime}, \phi\left(t_{1}^{\prime}\right)\right)}\right.$ $\left.\phi\left(t_{1}^{\prime}\right)\right\rangle, P\left(u_{2 i-1}, u_{2 i}\right)$ of $Q_{n-1}^{0}-F_{b}^{\prime}-F_{a}^{0}-F_{w}^{0}$ for $1 \leq i \leq\left(\frac{|K|}{2}+\left|F_{w}^{1}\right|-1\right)$. By induction hypothesis, we also can construct $\left(\left|F_{w}^{1}\right|+|K|-1\right)$ spanning disjoint paths $P\left(s_{1}, \phi\left(u_{1}\right)\right), \quad P\left(\phi\left(u_{2 i}\right), \phi\left(u_{2 i+1}\right)\right)$, $P\left(\phi\left(u_{2\left|F_{w}^{1}\right|+|K|-2}\right), \phi\left(b^{\prime}\right)\right), P\left(s_{j}, t_{j}\right)$ of $Q_{n-1}^{1}-F_{w}^{1}-$ $\left\{t_{1}, t_{1}^{\prime}\right\}$ for $1 \leq i \leq\left(\left|F_{w}^{1}\right|+\frac{|K|}{2}-2\right), 2 \leq j \leq$ $\frac{|K|}{2}$. Therefore, $\left\langle s_{1} \xrightarrow{P\left(s_{1}, \phi\left(u_{1}\right)\right)} \phi\left(u_{1}\right), u_{1} \xrightarrow{P\left(u_{1}, u_{2}\right)}\right.$
$u_{2}, \phi\left(u_{2}\right), \cdots, \quad \phi\left(u_{2\left|F_{w}^{1}\right|+|K|-2} \xrightarrow{P\left(\phi\left(u_{2\left|F_{w}^{1}\right|+|K|-2}\right), \phi\left(b^{\prime}\right)\right)}\right.$
$\left.\phi\left(b^{\prime}\right), b^{\prime} \xrightarrow{P\left(b^{\prime}, \phi\left(t_{1}^{\prime}\right)\right)} \phi\left(t_{1}^{\prime}\right), t_{1}^{\prime}, t_{1}\right\rangle, P\left(s_{j}, t_{j}\right)$ are $\frac{|K|}{2}$ spanning disjoint paths of $Q_{n}-F_{b}-F_{w}-F_{a}$ for $2 \leq j \leq \frac{|K|}{2}$, as illustrated in Fig. 7.

Fig. 7. Illustration of Case 2.1.3 and Case 2.2.1
Case 2.2: $4\left|F_{b}^{0}\right|+\left|F_{a}^{0}\right|=4\left|F_{w}^{0}\right|+\left|F_{a}^{0}\right|=n-1$.
Since $4\left|F_{b}^{0}\right|+\left|F_{a}^{0}\right|=4\left|F_{w}^{0}\right|+\left|F_{a}^{0}\right|=n-1,\left|F_{b}^{1}\right|=$ $\left|F_{w}^{1}\right|=\left|F_{a}^{1}\right|=0$ and $\left|V_{b}\right|=\left|V_{w}\right|=1$. Let $K_{w}=$ $\left\{s_{1}\right\}$ and $K_{b}=\left\{t_{1}\right\}$. Let $b_{1} \in F_{b}, w_{1} \in F_{w}, F_{b}^{\prime}=$ $F_{b}-\left\{b_{1}\right\}$ and $F_{w}^{\prime}=F_{w}-\left\{w_{1}\right\}$. We will construct the Hamiltonian path $P\left(s_{1}, t_{1}\right)$ of $Q_{n}-F_{b}-F_{w}-F_{a}$ in the following cases.

Case 2.2.1: $\left|K^{1}\right|=0$.
By induction hypothesis, we can construct two spanning disjoint paths $\left\langle s_{1} \xrightarrow{P\left(s_{1}, b_{1}^{\prime}\right)} b_{1}^{\prime}, b_{1}\right\rangle$ and $\left\langle w_{1}, w_{1}^{\prime} \xrightarrow{P\left(w_{1}^{\prime}, t_{1}\right)} t_{1}\right\rangle$ of $Q_{n-1}^{0}-F_{a}^{0}-F_{b}^{\prime}-F_{w}^{\prime}$. Applying Lemma 1, we can obtain a Hamiltonian path $P\left(\phi\left(b_{1}^{\prime}\right), \phi\left(w_{1}^{\prime}\right)\right)$ of Q_{n-1}^{1}. Thus, $\left\langle s_{1} \xrightarrow{P\left(s_{1}, b_{1}^{\prime}\right)}\right.$ $\left.b_{1}^{\prime}, \phi\left(b_{1}^{\prime}\right) \xrightarrow{P\left(\phi\left(b_{1}^{\prime}\right), \phi\left(w_{1}^{\prime}\right)\right)} \phi\left(w_{1}^{\prime}\right), w_{1}^{\prime} \xrightarrow{P\left(w_{1}^{\prime}, t_{1}\right)} t_{1}\right\rangle$ is a Hamiltonian path of $Q_{n}-F_{b}-F_{w}-F_{a}$, as illustrated in Fig. 7.
Case 2.2.2: $\left|K^{1}\right|=1$.
Without loss of generality, we can assume that $s_{1} \in V^{0}$ and $t_{1} \in V^{1}$. By induction hypothesis, we can construct a Hamiltonian path $\left\langle s_{1} \xrightarrow{P\left(s_{1}, w_{1}^{\prime}\right)}\right.$ $\left.w_{1}^{\prime}, w_{1}\right\rangle$ of $Q_{n-1}^{0}-F_{a}-F_{b}-F_{w}^{\prime}$ and a Hamiltonian path $P\left(\phi\left(w_{1}^{\prime}\right), t_{1}\right)$ of Q_{n-1}^{1}. Thus, $\left\langle s_{1} \xrightarrow{P\left(s_{1}, w_{1}^{\prime}\right)}\right.$ $\left.w_{1}^{\prime}, \phi\left(w_{1}^{\prime}\right) \xrightarrow{P\left(\phi\left(w_{1}^{\prime}\right), t_{1}\right)} t_{1}\right\rangle$ is a Hamiltonian path of $Q_{n}-F_{b}-F_{w}-F_{a}$, as illustrated in Fig. 8.

Fig. 8. Illustration of Case 2.2.2 and Case 2.2.3
Case 2.2.3: $\left|K^{1}\right|=2$
Let $\left(b_{1}^{\prime}, b_{1}\right),\left(w_{1}^{\prime}, w_{1}\right) \in E\left(Q_{n-1}^{0}\right)$ for $b_{1}^{\prime}, w_{1}^{\prime}, \phi\left(b_{1}^{\prime}\right)$, $\phi\left(w_{1}^{\prime}\right) \notin(F \cup K)$. Let $\left(b_{1}^{\prime}, u\right),\left(v, w_{1}^{\prime}\right) \in E\left(Q_{n-1}^{0}\right)$ for $u, v \notin\left(F_{b} \cup F_{w} \cup F_{a}\right)$. By induction hypothesis, we can construct a Hamiltonian path $P(u, v)$ of $Q_{n-1}^{0}-$ $F_{b}^{\prime}-F_{w}^{\prime}-\left(F_{a} \cup\left\{b_{1}, b_{1}^{\prime}, w_{1}, w_{1}^{\prime}\right\}\right)$ and two spanning disjoint paths $P\left(s_{1}, \phi\left(b_{1}^{\prime}\right)\right)$ and $P\left(\phi\left(w_{1}^{\prime}\right), t_{1}\right)$ of Q_{n-1}^{1}. Thus, $\left\langle s_{1} \xrightarrow{P\left(s_{1}, \phi\left(b_{1}^{\prime}\right)\right)} \phi\left(b_{1}^{\prime}\right), b_{1}^{\prime}, u \xrightarrow{P(u, v)}\right.$ $\left.v, w_{1}^{\prime}, \phi\left(w_{1}^{\prime}\right) \xrightarrow{P\left(\phi\left(w_{1}^{\prime}\right), t_{1}\right)} t_{1}\right\rangle$ is a Hamiltonian path of $Q_{n}-F_{a}-F_{b}-F_{w}$, as illustrated in Fig. 8.
Case 2.3: $4\left|F_{b}^{0}\right|+\left|F_{a}^{0}\right| \leq n-1$ and $4\left|F_{w}^{0}\right|+\left|F_{a}^{0}\right| \leq$ $n-3$ and $\left|K^{1}\right|=0$.
Case 2.3.1: $\left|F_{a}^{1}\right|=0$ and $\left|F^{1}\right|=0$.
Since $4\left|F_{b}^{0}\right|+\left|F_{a}^{0}\right| \leq n-1$ and $\left|K^{1}\right|=0,\left|K_{b}^{0}\right| \geq 1$. Without loss of generality, we can assume that
$t_{1} \in V_{b}$. Let $\left(t_{1}^{\prime}, t_{1}\right) \in E\left(Q_{n-1}^{0}\right)$ for $t_{1}^{\prime} \notin$ $(K \cup F)$. By induction hypothesis, there exist $\frac{|K|}{2}-1$ spanning disjoint paths $P\left(s_{i}, t_{i}\right)$ for $2 \leq$ $i \leq \frac{|K|}{2}$ of $Q_{n-1}^{0}-F^{0}-F_{a}^{0}-\left\{t_{1}, t_{1}^{\prime}\right\}$. Without loss of generality, we can assume that s_{1} is on the path $P\left(s_{2}, t_{2}\right)$. We can denote $P\left(s_{2}, t_{2}\right)$ as $\left\langle s_{2} \xrightarrow{P\left(s_{2}, u\right)} u, s_{1}, v \xrightarrow{P\left(v, t_{2}\right)} t_{2}\right\rangle$. By induction hypothesis, we can construct two spanning disjoint paths $P\left(\phi\left(s_{1}\right), \phi\left(t_{1}^{\prime}\right)\right)$ and $P(\phi(u), \phi(v))$ of Q_{n-1}^{1}. Therefore, $\left\langle s_{1}, \phi\left(s_{1}\right) \xrightarrow{P\left(\phi\left(s_{1}\right), \phi\left(t_{1}^{\prime}\right)\right)} \phi\left(t_{1}^{\prime}\right), t_{1}^{\prime}, t_{1}\right\rangle,\left\langle s_{2} \xrightarrow{P\left(s_{2}, u\right)}\right.$ $\left.u, \phi(u) \xrightarrow{P(\phi(u), \phi(v))} \phi(v), v \xrightarrow{P\left(v, t_{2}\right)} t_{2}\right\rangle, P\left(s_{i}, t_{i}\right)$ are $\frac{|K|}{2}$ spanning disjoint paths of $Q_{n-1}^{1}-F_{b}-F_{w}-F_{a}$ for $3 \leq i \leq \frac{|K|}{2}$, as illustrated in Fig. 9.

Fig. 9. Illustration of Case 2.3.1 and Case 2.3.2
Case 2.3.2: $\left|F_{a}^{1}\right|=0$ and $\left|F^{1}\right| \geq 1$ and $\left(\left|F_{b}^{1}\right|=0\right.$ or $\left|F_{w}^{1}\right|=0$).
Without loss of generality, we can assume that $\left|F_{b}^{1}\right|=0$ and $t_{1} \in V_{b}^{0}$. Let $\left(t_{1}^{\prime}, t_{1}\right) \in E\left(Q_{n-1}^{0}\right)$ for $t_{1}^{\prime} \notin(K \cup F)$. Let $U=\left\{u_{i} \mid u_{i} \in V_{w}^{0}\right.$ and $u_{i}, \phi\left(u_{i}\right) \notin(K \cup F)$ for $\left.1 \leq i \leq\left(2\left|F_{w}^{1}\right|-1\right)\right\}$. By induction hypothesis, there exist $\left(\frac{|K|}{2}+\left|F_{w}^{1}\right|-1\right)$ spanning disjoint paths $P\left(s_{1}, u_{1}\right), P\left(u_{2 i}, u_{2 i+1}\right), P\left(s_{j}, t_{j}\right)$ of $Q_{n-1}^{0}-F_{b}^{0}-F_{w}^{0}-F_{a}^{0}-\left\{t_{1}, t_{1}^{\prime}\right\}$ for $1 \leq i \leq\left|F_{w}^{1}\right|-1,2 \leq j \leq \frac{|K|}{2}$. By induction hypothesis, we also can construct the $\left|F_{w}^{1}\right|$ spanning disjoint paths $P\left(\phi\left(u_{2 i-1}\right), \phi\left(u_{2 i}\right)\right), P\left(\phi\left(u_{2\left|F_{w}^{1}\right|-1}, \phi\left(t_{1}^{\prime}\right)\right)\right.$ of
$Q_{n-1}^{1}-F_{w}^{1}$ for $1 \leq i \leq\left|F_{w}^{1}\right|-1$. Therefore, $\left\langle s_{1} \xrightarrow{P\left(s_{1}, u_{1}\right)} u_{1}, \phi\left(u_{1}\right) \xrightarrow{P\left(\phi\left(u_{1}\right), \phi\left(u_{2}\right)\right)}\right.$ $\phi\left(u_{2}\right), \cdots, \phi\left(u_{2\left|F_{w}^{1}\right|-1} \xrightarrow{P\left(\phi\left(u_{2\left|F_{w}^{1}\right|-1}\right), \phi\left(t_{1}^{\prime}\right)\right)} \phi\left(t_{1}^{\prime}\right), t_{1}^{\prime}\right.$, $\left.t_{1}\right\rangle, P\left(s_{j}, t_{j}\right)$ are $\frac{|K|}{2}$ spanning disjoint paths of $Q_{n}-F_{b}-F_{w}-F_{a}$ for $2 \leq j \leq \frac{|K|}{2}$, as illustrated in Fig. 9.

Case 2.3.3: $\left|F_{a}^{1}\right| \geq 1$ or $\left|F_{w}^{1}\right|=\left|F_{b}^{1}\right| \geq 1$.
By induction hypothesis, there exist $\frac{|K|}{2}$ spanning disjoint paths $P\left(s_{i}, t_{i}\right)$ of $Q_{n-1}^{0}-F_{b}^{0}-F_{w}^{0}-F_{a}^{0}$ for $1 \leq i \leq \frac{|K|}{2}$. Without loss of generality, we can assume that $P\left(s_{1}, t_{1}\right)=\left\langle s_{1} \xrightarrow{P\left(s_{1}, u\right)} u, v \xrightarrow{P\left(v, t_{1}\right)}\right.$ $\left.t_{1}\right\rangle$ for $\phi(u), \phi(v) \notin F_{a}^{1}$. Applying Lemma 1 , we can construct a Hamiltonian path $P(\phi(u), \phi(v))$ of $Q_{n-1}^{1}-F_{a}^{1}$. Therefore, $\left\langle s_{1} \xrightarrow{P\left(s_{1}, u\right)} u, \phi(u) \xrightarrow{P(\phi(u), \phi(v))}\right.$ $\left.\phi(v), v \xrightarrow{P\left(v, t_{1}\right)} t_{1}\right\rangle, P\left(s_{i}, t_{i}\right)$ are $\frac{|K|}{2}$ spanning disjoint paths of $Q_{n}-F_{b}-F_{w}-F_{a}$ for $2 \leq i \leq \frac{|K|}{2}$, as illustrated in Fig. 10.

Fig. 10. Illustration of Case 2.3.3 and Case 2.3.4
Case 2.3.4: $\left|F_{a}^{1}\right|+\left|F_{b}^{1}\right| \geq 1$ and $\left|F_{a}^{1}\right|+\left|F_{w}^{1}\right| \geq 1$ and $\left|F_{b}^{1}\right| \neq\left|F_{w}^{1}\right|$.
Without loss of generality, we can assume that $\left|F_{w}^{1}\right| \geq\left|F_{b}^{1}\right|$. Let $m=\left|F_{w}^{1}\right|-\left|F_{b}^{1}\right|$. Let $U=\left\{u_{i} \mid u_{i} \in V_{w}^{0}\right.$ and $u_{i}, \phi\left(u_{i}\right) \notin(K \cup$ $F)$ for $1 \leq i \leq 2 m\}$. By induction hypothesis, there exist $\left(\frac{|K|}{2}+m\right)$ spanning disjoint paths $P\left(s_{1}, u_{1}\right), P\left(u_{2 i}, u_{2 i+1}\right), P\left(u_{2 m}, t_{1}\right), P\left(s_{j}, t_{j}\right)$ of $Q_{n-1}^{0}-F_{b}^{0}-F_{w}^{0}-F_{a}^{0}$ for $1 \leq i \leq m-$ $1,2 \leq j \leq \frac{|K|}{2}$. By induction hypothesis, we also can construct the m spanning disjoint paths $P\left(\phi\left(u_{2 i-1}\right), \phi\left(u_{2 i}\right)\right)$ of $Q_{n-1}^{1}-F_{w}^{1}-F_{b}^{1}-F_{a}^{1}$ for $1 \leq$ $i \leq m$. Therefore, $\left\langle s_{1} \xrightarrow{P\left(s_{1}, u_{1}\right)} u_{1}, \phi\left(u_{1}\right) \xrightarrow{P\left(\phi\left(u_{1}\right), \phi\left(u_{2}\right)\right)}\right.$ $\phi\left(u_{2}\right), \cdots, \phi\left(u_{2 m-1} \xrightarrow{P\left(\phi\left(u_{2 m-1}\right), \phi\left(u_{2 m}\right)\right)} \phi\left(u_{2 m}\right), u_{2 m}\right.$ $\left.\xrightarrow{P\left(u_{2 m}, t_{1}\right)} t_{1}\right\rangle, P\left(s_{j}, t_{j}\right)$ are $\frac{|K|}{2}$ spanning disjoint paths of $Q_{n}-F_{b}-F_{w}-F_{a}$ for $2 \leq j \leq \frac{|K|}{2}$, as illustrated in Fig. 10.
Case 2.4: $4\left|F_{b}^{0}\right|+\left|F_{a}^{0}\right| \leq n-1$ and $4\left|F_{w}^{0}\right|+\left|F_{a}^{0}\right| \leq$ $n-3,\left|K^{1}\right| \geq 1$.
Case 2.4.1: $\left|K_{b}^{1}\right|+\left|F_{b}^{1}\right|+\left|F_{a}^{1}\right|=0$ or $\left|K_{w}^{1}\right|+\left|F_{w}^{1}\right|+$ $\left|F_{a}^{1}\right|=0$.
Without loss of generality, we can assume that
$\left|K_{b}^{1}\right|+\left|F_{b}^{1}\right|+\left|F_{a}^{1}\right|=0$. Let b be a faulty vertex of F_{b}^{0}. Let $m=\left|K_{w}^{1}\right|+2\left|F_{w}^{1}\right|$. Let $U=\left\{u_{i} \mid u_{i} \in\right.$ $V_{w}^{0}, u_{i} \notin\left(K^{0} \cup F^{0} \cup F_{a}^{0}\right)$ for $\left.1 \leq i \leq m-1\right\}$. By induction hypothesis, there exist $\frac{|K|}{2}$ spanning disjoint paths between $K^{0} \cup U \cup\{b\}$ of $Q_{n-1}^{0}-$ $F_{a}-F_{w}-\left(F_{b}-\{b\}\right)$ where $P\left(s_{1}, b\right)$ is one of these spanning disjoint paths. We can denote $P\left(s_{1}, b\right)$ as $\left\langle s_{1} \xrightarrow{P\left(s_{1}, b^{\prime}\right)} b^{\prime}, b\right\rangle$. By induction hypothesis, we can construct $\left|K_{w}^{1}\right|+\left|F_{w}^{1}\right|$ spanning disjoint paths between $\phi(U) \cup K_{w}^{1} \cup\left\{\phi\left(b^{\prime}\right)\right\}$ of $Q_{n-1}^{1}-F_{w}^{1}$. Thus, we can construct $\frac{|K|}{2}$ spanning disjoint paths of $Q_{n}-F_{b}-F_{w}-F_{a}$, as illustrated in Fig. 11.

Fig. 11. Illustration of Case 2.4.1 and Case 2.4.2
Case 2.4.2: $\left|K_{b}^{1}\right|+\left|F_{b}^{1}\right|+\left|F_{a}^{1}\right| \geq 1$ and $\left|K_{w}^{1}\right|+$ $\left|F_{w}^{1}\right|+\left|F_{w}^{1}\right| \geq 1$.
Without loss of generality, we can assume that $2\left|F_{b}^{0}\right|+\left|K_{b}^{0}\right| \geq 2\left|F_{w}^{0}\right|+\left|K_{w}^{0}\right|$. Let $m=2\left|F_{b}^{0}\right|+\left|K_{b}^{0}\right|-$ $2\left|F_{w}^{0}\right|-\left|K_{w}^{0}\right|$. Let $X=\left\{\left[s_{i}, t_{i}\right] \mid s_{i}\right.$ and t_{i} in different subcubes $\}$ and $|X|$ be the number of pairs of X. Suppose that $m \geq|X|$. Let $U_{w}=\left\{u_{i} \mid u_{i} \in V_{w}^{0}\right.$, for $1 \leq i \leq m\}$ and $U_{b}=\emptyset$. Suppose that $m<|x|$. Let $U_{w}=\left\{u_{i} \mid u_{i} \in V_{w}^{0}\right.$, for $\left.1 \leq i \leq \frac{|X|+m}{2}\right\}$ and $U_{b}=\left\{u_{i} \mid u_{i} \in V_{b}^{0}\right.$, for $1+\frac{|X|+m}{2} \leq i \leq|X|$. By induction hypothesis, there exist $\frac{\left|K^{0}\right|+\left|U_{w}\right|+\left|U_{b}\right|}{2}$ spanning disjoint paths between $K^{0} \cup U_{w} \cup U_{b}$ of $Q_{n-1}^{0}-F_{b}^{0}-F_{w}^{0}-F_{a}^{0}$ and $\frac{\left|K^{1}\right|+\left|U_{w}\right|+\left|U_{b}\right|}{2}$ spanning disjoint paths of between $K^{1} \cup \phi\left(U_{b}\right) \cup \phi\left(U_{w}\right)$ of $Q_{n-1}^{1}-F_{b}^{1}-F_{w}^{1}-F_{a}^{1}$. Therefore, we can construct $\frac{|K|}{2}$ spanning disjoint paths between of $Q_{n}-F_{b}-F_{w}-F_{a}$, as illustrated in Fig. 11.

IV. VERTICES FAULT-TOLERANCE FOR EDGE-BIPANCYCLICITY OF HYPERCUBE

In this section, we prove the vertices faulttolerance for edge bipancyclicity of hypercube. The
following lemma is proved in [4].
Lemma 4: Every edge in $Q_{n}-F_{v}-F_{e}$ lies on a cycle of every even length from 4 to $2^{n}-2\left|F_{v}\right|$ even if $\left|F_{v}\right|+\left|F_{e}\right| \leq n-2$, for $n \geq 3$.

Theorem 2: Let F_{b} and F_{w} be the sets of faulty black vertices and faulty while vertices, respectively, of hypercube Q_{n}. The graph $Q_{n}-F_{b}-F_{w}$ is edgebipancyclic if $\left|F_{b}\right|,\left|F_{w}\right| \leq\left\lfloor\frac{n-1}{4}\right\rfloor$ for $n \geq 3$.
Proof: Let $e=(s, t)$ be an arbitrary edge of $Q_{n}-F_{b}-F_{w}$ for $s \in V_{b}$. Applying Lemma 4, we can obtain that there exist cycle containing the edge e with even length from 4 to $2^{n}-2\left(\left|F_{b}\right|+\left|F_{w}\right|\right)$ of $Q_{n}-F_{b}-F_{w}$. Let $F_{b}=\left\{b_{1}, b_{2}, \cdots, b_{f_{1}}\right\}$ and $F_{w}=\left\{w_{1}, w_{2}, \cdots, w_{f_{2}}\right\}$. Without loss of generality, we can assume that $f_{1} \geq f_{2}$. Let $F_{a}=\left\{b_{i}, x_{i} \mid\right.$ for $\left(b_{i}, x_{i}\right) \in E\left(Q_{n}\right)$ and $x_{i} \notin\left(F_{b} \cup F_{w} \cup\{s, t\}\right)$ for $\left.f_{2}+1 \leq i \leq f_{1}\right\}$ and $\left|F_{a}\right|$ be the number of pair of adjacently vertices of F_{a}. Let $F_{a_{j}}=\left\{b_{i}, x_{i}, w_{i}, y_{i} \mid\right.$ for $\left(b_{i}, x_{i}\right),\left(w_{i}, y_{i}\right) \in E\left(Q_{n}\right)$ and $x_{i}, y_{i} \notin\left(F_{b} \cup\right.$ $\left.F_{w} \cup\{s, t\}\right)$ for $\left.j \leq i \leq f_{2}\right\}$ for $1 \leq j \leq f_{2}$ and $\left|F_{a_{j}}\right|$ be the number of pair of adjacently vertices of $F_{a_{j}}$. Let $F_{b}^{\prime}=\left\{b_{1}, b_{2}, \cdots, b_{f_{2}}\right\}$. We can check that $\left|F_{a}\right|+\left|F_{w}\right|+\left|F_{b}^{\prime}\right|+\left|F_{a_{j}}\right|+2=f_{1}+f_{2}+2 \leq \frac{n+3}{2}<n$ and $4\left|F_{b}^{\prime}\right|+2+\left|F_{a}\right|+\left|F_{a_{j}}\right|=4\left|F_{w}\right|+2+\left|F_{a}\right|+\left|F_{a_{j}}\right| \leq$ $n+1$ for $1 \leq j \leq f_{2}$. Applying Theorem 1, we can construct a Hamiltonian path $P(s, t)$ of $Q_{n}-F_{b}^{\prime}-F_{w}-F_{a}-F_{a_{j}}$ for $1 \leq j \leq f_{2}$. Thus, we can construct the cycles $\langle s \xrightarrow{P(s, t)} t, s\rangle$ containing the edge e with even length from $2^{n}-2\left(\left|F_{b}\right|+\left|F_{w}\right|\right)$ to $2^{n}-2 \max \left\{\left|F_{b}\right|,\left|F_{w}\right|\right\}$ of $Q_{n}-F_{b}-F_{w}$. Therefore, $Q_{n}-F_{b}-F_{w}$ is edge-bipancyclic.

V. Conclusion

In this paper, we show that every family $\left\{s_{i}, t_{i}\right\}_{F_{w}, K_{w}}^{F_{b}, K_{b}}$ of hypercube $Q_{n}-F_{a}$ is connectable if $\left|F_{b}\right|+\left|F_{w}\right|+\left|K_{b}\right|+\left|K_{w}\right|+\left|F_{a}\right| \leq n, 4\left|F_{b}\right|+2\left|K_{b}\right|+$ $\left|F_{a}\right|=4\left|F_{w}\right|+2\left|K_{w}\right|+\left|F_{a}\right| \leq n+1$, for $n \geq 3$. Applying this result, we show that $Q_{n}-F_{b}-F_{w}$ is edge-bipancyclic if $\left|F_{b}\right|,\left|F_{w}\right| \leq\left\lfloor\frac{n-1}{4}\right\rfloor$.

References

[1] Rostislav Caha and Vclav Koubek, Spanning multi-paths in hypercubes, Discrete Mathematics, Vol. 307, Issue 16, pp.20532066, 2007.
[2] J. S. Fu, "Fault-tolerant cycle embedding in the hypercube," Parallel Computing, 29, pp.821-832, (2003).
[3] J. S. Fu, "Longest fault-free paths in hypercubes with vertex faults," Information Processing Letters, 176, pp. 759-771, (2006)
[4] S. Y. Hsieh, "Fault-tolerant cycle embedding in the hypercube with more both faulty vertices and faulty edges," Parallel Computing, vol. 32, pp.84-91, (2006).
[5] Sun-Yuan Hsieh, Tzu-Hsiung Shen, "Edge-bipancyclicity of a hypercube with faulty vertices and edges," Discrete Applied Mathematics, vol. 156, pp.1802-1808, (2008).
[6] Chun-Nan Hung, Y. H. Chang, and C. M. Sun, "Longest paths and cycles in fault hypercubes," Proceedings of the IASTED ICPDCN, pp.101-110, (2006).
[7] Chun-Nan Hung and Guan-Yu Shi, Vertex fault tolerance for multiple spanning paths in hypercube, Proceedings of the 24th Workshop on Combinatorial Mathematics and Computational Theory, pp.241-250, 2007.
[8] Tseng-Kuei Li, Chang-Hsiung Tsai, Jimmy J.M.Tan, and Lih-Hsing Hsu, "Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes," Information Processing Letters, 87, pp.107-110, (2003).
[9] C. D. Park and K. Y. Chwa, "Hamiltonian properties on the class of hypercube-like networks," Information Processing Letters, 91, pp.11-17, (2004).
[10] Abhijit Sengupta, "On ring embedding in hypercubes with faulty nodes and links," Information Processing Letters, 68, pp.207-214, (1998).
[11] Wen-Yan Su and Chun-Nan Hung, The longest ring embedding in faulty hypercube, Proceedings of the 23rd Workshop on Combinatorial Mathematics and Computational Theory, pp.262272, 2006.
[12] Y. C. Tseng, "Embedding a ring in a hypercube with both faulty links and faulty nodes," Information Processing Letters, 59, pp.217-222, (1996).
[13] C. H. Tsai, J.J.M. Tan, T.Liang, and L.H. Hsu, "Fault-tolerant Hamiltonian laceability of hypercubes," Information Processing Letters, 83, pp.301-306, (2002).
[14] Chang-Hsiung Tsai, "Fault-tolerant cycles embedded in hypercubes with mixed link and node failures," Applied Mathematics Letters, 21, pp.855-860, (2008).

