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Abstract—A bipartite graph G = (V, E) edge-
bipancyclic if every edge lies on the cycles of every even
length from 4 to |V |. Let Qn = (Vb ∪ Vw, E) be an n-
dimensional hypercube whereVb and Vw are the sets of
black and white vertices, respectively. LetFb (resp.Fw) be
the set of black (resp. white) faulty vertices. In this paper,
we will show that Qn − Fb − Fw is edge-bipancyclic if
|Fb|, |Fw| ≤ bn−1

4
c.

Index Terms—hypercube, edge-bipancyclic, bipartite
graph, vertices fault-tolerance

I. INTRODUCTION

The hypercube network is one of the most popular
interconnection networks. It has many attractive
properties, such as regularity, symmetry, small de-
gree and diameter, maximum fault tolerance, easy
routing algorithms.

An interconnection network is usually repre-
sented by a graph where vertices represent proces-
sors and edges represent links between processors.
Let G = (Vb∪Vw, E) be abipartite graph whereVb

and Vw are two disjoint vertex sets such that each
edge ofE consists of one vertex from each set. Let
d(u, v) be the distance of the verticesu andv. A bi-
partite graphG = (Vb∪Vw, E) is Hamiltonian lace-
able if there exists aHamiltonian path betweenx, y
for anyx ∈ Vb, y ∈ Vw. The graphG = (Vb∪Vw, E)
is hyper-Hamiltonian laceable if ∀v ∈ Vb(resp.Vw),
there exists a Hamiltonian path ofG−{v} between
each pair of vertices ofVw(resp.Vb). In [13], Tsai et
al. proved thatQn −Fe is Hamiltonian laceable for
Fe ⊂ E(Qn), |Fe| ≤ n − 2 and hyper-Hamiltonian
laceable forFe ⊂ E(Qn), |Fe| ≤ n − 3. A bipartite
graphG = (V, E) is edge-bipancyclic if every edge

of E lies on cycles of every even length from 4 to
|V |. In [8], Li et al. proved thatQn − Fe is edge-
bipancyclic forFe ⊂ E(Qn), |Fe| ≤ n − 2.

There is little literature about general vertex fault
tolerant Hamiltonian properties of hypercubeQn =
(Vb ∪ Vw, E). Some literatures concern embedding
fault-free cycles or paths for hypercube with faulty
vertices. The upper bound of longest fault-free cycle
of Qn −Fv is 2n − 2f whereFv is the faulty set of
vertices ofQn andf = max{|Fv∩Vw|, |Fv∩Vb|}. In
[2], [4], [10], [12], the authors showed that a fault-
free cycle of length2n−2fv can be constructed with
fv faulty vertices. In [5], [14], the authors showed
that every edge inQn − Fv − Fe lies on cycles of
every even length from 4 to2n − 2|Fv| if |Fv| +
|Fe| ≤ n−2. When all faulty vertices are in the same
partite set, this result is the vertices fault tolerance
for edge-bipancyclicity ofQn. However, there exist
longer cycles when both partite vertex sets contain
some faulty vertices.

In [1], Caha et al. proposed the multiple span-
ning paths problem for hypercube. Letsi, ti, for
1 ≤ i ≤ k, be vertices ofQn. The {si, ti}

k
i=1 is a

connectable family if there existsk spanning paths
P (si, ti) of Qn for 1 ≤ i ≤ k. The {si, ti}

k
i=1 is

balanced if it has the same number of vertices in
each partite set. Caha showed that every balanced
family {si, ti}

n
i=1 is connectable inQ2n if d(si, ti)

is odd for 1 ≤ i ≤ n. Caha also showed that
every balanced family{si, ti}

n
i=1 is connectable

in Q6n. In [7], Hung et al. investigated the fault
tolerance for connectable family of bipartite graph.



Let the family{si, ti}
Fb,Kb

Fw,Kw
of Qn be the vertex set

Kb ∪ Kw = {si, ti| for 1 ≤ i ≤ (|Kb| + |Kw|)/2}
of Qn − Fb − Fw. The family {si, ti}

Fb,Kb

Fw,Kw
is

balanced if 2|Fb| + |Kb| = 2|Fw| + |Kw|. The
family {si, ti}

Fb,Kb

Fw,Kw
is connectable if there exit

(|Kb| + |Kw|)/2 spanning disjoint pathsP (si, ti)
for 1 ≤ i ≤ (|Kb| + |Kw|)/2 of Qn − Fb − Fw.
The authors showed that every family{si, ti}

Fb,Kb

Fw,Kw

of Qn is connectable if|Kb|+|Kw|+|Fb|+|Fw| ≤ n
and4|Fb| + 2|Kb| = 4|Fw| + 2|Kw| ≤ n + 1.

In this paper, we incorporate the adjacently faulty
vertices into the vertex fault tolerance of multiple
spanning paths of hypercube. Let{si, ti}

Fb,Kb

Fw,Kw
be

a family of G = (Vb ∪ Vw, E) − Fa where Kb ∪
Kw = {si, ti|1 ≤ i ≤ (|Kb| + |Kw|)/2} is the set
of fault-free vertices,Fa is the set of|Fa| pairs of
adjacently faulty vertices,Fb ⊂ Vb andFw ⊂ Vw are
sets of faulty vertices. In this paper, we will show
that every family{si, ti}

Fb,Kb

Fw,Kw
of hypercubeQn−Fa

is connectable if|Fb|+|Fw|+|Kb|+|Kw|+|Fa| ≤ n,
4|Fb|+2|Kb|+ |Fa| = 4|Fw|+2|Kw|+ |Fa| ≤ n+1,
for n ≥ 3. Applying this result, we can obtain that
Qn − Fb − Fw is edge-bipancyclic if|Fb|, |Fw| ≤
bn−1

4
c.

The rest of this paper is organized as follows.
In Section 2, we introduce some important defini-
tions and lemmas. Section 3 shows the vertex fault
tolerance for multiple spanning paths. The vertex
fault-tolerance for edge-bipancyclicity is introduced
in Section 4. We finally give some conclusion in
Section 5.

II. PRELIMINARIES

An n-dimensional hypercubeQn = (Vb ∪ Vw, E)
is a bipartite graph whose vertices are labeled by
distinctn-bit binary strings. Two vertices are linked
by an edge if and only if their labels differ exactly
in one bit. The hypercubeQn can be constructed
recursively asQn = Qn−1 × K2. We can partition
Qn as two subgraphsQ0

n−1 andQ1
n−1 by choosing

any one bit of binary string.

We call theVb black vertex set andVw white ver-
tex set. LetV j

b andV j
w be the black and white vertex

set ofQj
n−1 for j = 0, 1. And let V j = V j

b ∪ V j
w for

j = 0, 1. Thus,Vb = V 0
b ∪ V 1

b , Vw = V 0
w ∪ V 1

w , V =
Vb ∪ Vw = V 0 ∪ V 1.

Let Fb be the set of black faulty vertices andFw

be the set of white faulty vertices ofQn. Similarly,
we also useF j

b and F j
w to denote the black and

white faulty vertex set ofQj
n−1, respectively, for

j = 0, 1. Thus,Fb = F 0
b ∪F 1

b , Fw = F 0
w ∪F 1

w, F 0 =
F 0

b ∪ F 0
w, F 1 = F 1

b ∪ F 1
w.

Let Fa be the set of adjacently faulty vertices
of Qn. Similarly, we also useF j

a to denote the
adjacently faulty vertex set ofQj

n−1, respectively,
for j = 0, 1. Thus,Fa = F 0

a ∪F 1
a . We further define

F = Fb ∪ Fw ∪ Fa.

Let Kb andKw be the black and white fault-free
vertex set. LetK = Kb∪Kw = {si, ti|1 ≤ i ≤ |K|

2
}.

And let Kj
b = Kb∩V j , Kj

w = Kw∩V j, for j = 0, 1.

Let φ(v) be a vertex ofV i for every v ∈ V j

such that(v, φ(v)) ∈ E and {i, j} = {0, 1}. Let
X = {x1, x2, · · · , xk} be a vertex subset ofQi

n−1

for i = 0, 1. We define the free neighbor set ofX
is N(X) = {uj|(xj, uj) ∈ E(Qi

n−1) and φ(uj) /∈
(F ∪ K) for 1 ≤ j ≤ k, i = 0, 1}. Let φ(X) =
{φ(v)|v ∈ X} be a vertex subset ofV j for X ⊂ V i

for {i, j} = {0, 1}.

We need some previous results for our proofs.
The following lemma is proposed in [6].

Lemma 1: The graphQn is f -adjacency (n−2−
f ) edges Hamiltonian for0 ≤ f ≤ (n − 2), f -
adjacency (n−2−f ) edges Hamiltonian laceable for
0 ≤ f ≤ (n−3), andf -adjacency (n−3−f ) edges
hyper-Hamiltonian laceable for0 ≤ f ≤ (n − 3).

A bipartite graphG = (Vb ∪ Vw, E) hasproperty
2H if for any s1, s2 ∈ Vb and t1, t2 ∈ Vw there exist
two spanning disjoint pathsP (s1, t1) andP (s2, t2)
of G. Su et al. proved the following lemma in [11].

Lemma 2: The graphQn −Fa −Fe has property
2H whereFa is the set of|Fa| pairs adjacently faulty
vertices andFe is the set of faulty edges and0 ≤
|Fa| + |Fe| ≤ n − 3.

III. V ERTEX FAULT TOLERANCE FOR MULTIPLE

SPANNING PATHS IN HYPERCUBE

In this section, we will prove the vertex fault
tolerance for multiple spanning disjoint paths of



hypercube. The following lemma is the proof for
some property forQ4.

Lemma 3: Let s1, t1 ∈ Vw ands2, t2 ∈ Vb be two
pairs of fault-free vertices. there exist two spanning
disjoint pathsP (s1, t1) andP (s2, t2) of Q4.
Proof. By symmetry of hypercube, we can arrange
s1 in Q0

3 andt1 in Q1
3. We will prove this lemma in

the following cases.
Case 1.s2 and t2 in the same subcube.
Without loss of generality, we can assume thats2, t2
are in Q1

3. We can construct a Hamiltonian path

〈s2
P (s2,t2)
−→ t2, x

P (x,t1)
−→ t1〉 of Q1

3. We can also
construct a Hamiltonian pathP (s1, φ(x)) of Q0

3.

Thus,P (s2, t2) and 〈s1
P (s1,φ(x))
−→ φ(x), x

P (x,t1)
−→ t1〉

are two spanning disjoint paths ofQ4.
Case 2.s2 and t2 in different subcubes.
Without loss of generality, we can assume thats2 ∈
Q1

3 and t2 ∈ Q0
3. We can construct a Hamiltonian

path〈s1
P (s1,x1)
−→ x1, x2

P (x2,t2)
−→ t2〉 of Q0

3 for x1 ∈ V 0
w

and{φ(x1), φ(x2)}∩{s2, t1} = ∅. Applying Lemma
2, we can further construct two spanning disjoint
pathsP (φ(x1), t1) and P (s2, φ(x2)) of Q1

3. Thus,

〈s1
P (s1,x1)
−→ x1, φ(x1)

P (φ(x1),t1)
−→ t1〉 and 〈s2

P (s2,φ(x2))
−→

φ(x2), x2
P (x2,t2)
−→ t2〉 are two spanning disjoint paths

of Q4. 2

Theorem 1: Every family{si, ti}
Fb,Kb

Fw,Kw
of hyper-

cubeQn is connectable if|Fb|+|Fw|+|Kb|+|Kw|+
|Fa| ≤ n, 4|Fb| + 2|Kb| + |Fa| = 4|Fw| + 2|Kw| +
|Fa| ≤ n + 1, |Fa| ≤ n − 3 for n ≥ 3.
Proof: We will prove this theorem by induction on
n. When|Fb|+|Fw|+|Kb|+|Kw|+|Fa| < n, 4|Fb|+
2|Kb|+ |Fa| = 4|Fw|+2|Kw|+ |Fa| < n+1, |Fa| <
n − 3, the proof ofQn is the same as the proof of
Qn−1. Thus, we only need to prove that at lest one of
the conditions|Fb|+ |Fw|+ |Kb|+ |Kw|+ |Fa| = n,
4|Fb| + 2|Kb| + |Fa| = 4|Fw| + 2|Kw| + |Fa| =
n + 1, |Fa| = n − 3 holds.
Applying Lemma 1, we can obtain thatQn − Fa is
Hamiltonian laceable and hyper-Hamiltonian lace-
able for |Fa| = n−3. Thus, this theorem is true for
|Fa| = n − 3. It is true for n = 3.
We consider the case forn = 4. Applying Lemma
2, we can also obtain thatQ4 has the property 2H.
Applying Lemma 3, we can construct two spanning
disjoint pathsP (s1, t1) andP (s2, t2) of Q4 for Kb =

{s1, t1}, Kw = {s2, t2}. Thus, this theorem is true
for n = 4.
We will prove the induction step for|Fa| ≤ n − 4
and n ≥ 5 with the following cases. By the
symmetry of hypercube, we can assume that every
pair of adjacently vertices is either inQ0

n−1 or
Q1

n−1. We drawQ12 in figures of some cases for
illustration.

Case 1:n − |Fa| is even.
When |Fb| + |Fw| ≥ 1, the proof of this case is
the same as the case ofQn−1. Thus, we only need
to prove this case for|Fb| = |Fw| = 0. We can
infer that |Kb| + |Kw| + |Fa| = n. Without loss of
generality, we can assume that|F 0

a | ≥ |F 1
a |.

Case 1.1:|Fa| = 0.
Without loss of generality, we can assume that
|K0| ≥ |K1| ≥ 1 and |K0

b | ≥ |K0
w| ≥ 1.

Case 1.1.1:|K1| = 1.
Without loss of generality, we can assume that
s2 ∈ V 1 andd(s1, t2) is odd. Let(si, s

′
i) and(ti, t

′
i)

be edges ofQ0
n−1 for 3 ≤ i ≤ |K|

2
such that

t2 /∈ {φ(s′i), φ(t′i)| for 3 ≤ i ≤ |K|
2
}. Applying

Lemma 1, we can construct a Hamiltonian path

〈s1
P (s1,t1)
−→ t1, x

P (x,t2)
−→ t2〉 of Q0

n−1−{si, s
′
i, ti, t

′
i|3 ≤

i ≤ |K|
2
} for φ(x) 6= s2. By induction hypoth-

esis, there exist|K|
2

− 1 spanning disjoint paths
P (s2, φ(x)), P (φ(s′i), φ(t′i)) of Q1

n−1 for 3 ≤ i ≤
|K|
2

. Thus,P (s1, t1), 〈s2
P (s2,φ(x))
−→ φ(x), x

P (x,t2)
−→ t2〉,

〈si, s
′
i, φ(s′i)

P (φ(s′
i
),φ(t′

i
))

−→ φ(t′i), t
′
i, ti〉 are |K|

2
span-

ning disjoint paths ofQn for 3 ≤ i ≤ |K|
2

, as
illustrated in Fig. 1.

Fig. 1. Illustration ofCase 1.1.1 and Case 1.1.2

Case 1.1.2:|K1| ≥ 2 and si, ti ∈ K0 for some
1 ≤ i ≤ |K|

2
.



Without loss of generality, we can assume that
s1, t1 ∈ Q0

n−1. Let t2 be vertex of Q0
n−1 with

{s1, t1, t2} 6⊂ Kb and {s1, t1, t2} 6⊂ Kw. Without
loss of generality, we can assume thats1, t1 ∈
Kb, t2 ∈ Kw. Let x2 ∈ K0

w for φ(x2) /∈ K1. Let
K ′ = K0 −{s1, t1, t2}, N(K ′) be the free neighbor
set of K ′. Applying Lemma 3, we can construct
two spanning disjoint pathsP (s1, t1) andP (x2, t2)
of Q0

n−1 − K ′ − N(K ′). By induction hypothesis,
there exist|K|

2
− 1 spanning disjoint paths between

(φ(N(K ′))∪K1∪{φ(x2)}) of Q1
n−1. Therefore, we

can construct|K|
2

spanning disjoint paths between
Kb ∪ Kw of Qn as illustrated in Fig. 1.
Case 1.1.3:si andti in different subcubes for every
1 ≤ i ≤ |K|

2
.

Without loss of generality, we can thatsi ∈ Q0
n−1,

andti ∈ Q1
n−1 for 1 ≤ i ≤ |K|

2
. Suppose thatd(si, ti)

is odd for some1 ≤ i ≤ |K|
2

. Without loss of gener-
ality, we can assume thatd(s1, t1) is odd. Let(t′1, t1)
be an edge ofQ1

n−1 for t′1, φ(t′1) /∈ K. Let (si, s
′
i) be

edges ofQ0
n−1 for s′i, φ(s′i) /∈ (K ∪ {t′1, φ(t′1)}) for

2 ≤ i ≤ |K|
2

. Applying Lemma 1, we can construct a
Hamiltonian pathP (s1, φ(t′1)) of Q0

n−1−{si, s
′
i|2 ≤

i ≤ |K|
2
}. By the induction hypothesis, there ex-

ist |K|
2

− 1 spanning disjoint pathsP (φ(s′i), ti) of
Q1

n−1 − {t1, t
′
1}. Therefore, we can construct|K|

2

spanning disjoint paths〈s1
P (s1,φ(t′

1
))

−→ φ(t′1), t
′
1, t1〉,

〈si, s
′
i, φ(s′i)

P (φ(s′
i
),t′

i
)

−→ t′i〉 of Qn for 2 ≤ i ≤ |K|
2

, as
illustrated in Fig. 2.

Fig. 2. Illustration ofCase 1.1.3

Suppose thatd(si, ti) is even for every1 ≤ i ≤ |K|
2

.
Without loss of generality, we can assume that
s1 ∈ Kb and s2 ∈ Kw. Let (t′1, t1), (t

′
2, t2) be

edges ofQ1
n−1 for t′2, t

′
2, φ(t′1), φ(t′2) /∈ K. Let

(si, s
′
i) be edges ofQ0

n−1 for s′i, φ(s′i) /∈ (K ∪
{t′1, t

′
2, φ(t′1), φ(t′2)}), for 3 ≤ i ≤ |K|

2
. By induction

hypothesis, there exist two spanning disjoint paths
P (s1, φ(t′1)) andP (s2, φ(t′2)) of Q0

n−1 − {si, s
′
i|3 ≤

i ≤ |K|
2
}. By induction hypothesis, there also

exist |K|
2
− 2 spanning disjoint pathsP (φ(s′i), ti) of

Q1
n−1 − {t1, t

′
1, t2, t

′
2}. Therefore, we can construct

|K|
2

spanning disjoint paths〈si

P (si,φ(t′i))−→ φ(t′i), t
′
i, ti〉,

〈sj, s
′
j, φ(s′j)

P (φ(s′
j
),t′

j
)

−→ t′j〉 of Qn for 1 ≤ i ≤ 2, 3 ≤

j ≤ |K|
2

, as illustrated in Fig. 2(b).
Case 1.2:|Fa| ≥ 1 and |F 1

a | = 0.
Case 1.2.1:|K1| = 0.
We can infer that|Kb| ≥ 2 and |Kw| ≥ 2 since
|Fb| = |Fw| = 0 and |Fa| ≤ n − 4. Without
loss of generality, we can assume thats1, t1 ∈ Vb

and s2, t2 ∈ Vw. Let (si, s
′
i), (t

′
i, ti) be edges of

Q0
n−1 for s′i, t

′
i /∈ (K ∪ F ) for 3 ≤ i ≤ |K|

2
.

Applying Lemma 2, we can construct two span-

ning disjoint paths〈s1
P (s1,s′

1
)

−→ s′1, t
′
2

P (t′
2
,t2)

−→ t2〉

and 〈s2
P (s2,s′

2
)

−→ s′2, t
′
1

P (t′
1
,t1)

−→ t1〉 of Q0
n−1 − F 0

a −

{si, s
′
i, ti, t

′
i|3 ≤ i ≤ |K|

2
}. By induction hypoth-

esis, we can construct|K|
2

spanning disjoint paths
P (φ(s′i), φ(t′i)) of Q1

n−1 for 1 ≤ i ≤ |K|
2

. Therefore,

〈si

P (si,s
′
i
)

−→ s′i, φ(s′i)
P (φ(s′

i
),φ(t′

i
))

−→ φ(t′i), t
′
i,

P (t′
i
,ti)

−→ ti〉,

〈sj, s
′
j, φ(s′j)

P (φ(s′
j
),φ(t′

j
))

−→ φ(t′j), t
′
j, tj〉 are |K|

2
span-

ning disjoint paths ofQn − Fa for 1 ≤ i ≤ 2, 3 ≤
j ≤ |K|

2
, as illustrated in Fig. 3.

Fig. 3. Illustration ofCase 1.2.1 and Case 1.2.2

Case 1.2.2:|K0| = 0.
By induction hypothesis,we can construct|K|

2
span-

ning disjoint paths betweenKb∪Kw of Q1
n−1. With-

out loss of generality, we can denote these paths as

〈s1,
P (s1,u)
−→ u, v

P (v,t1)
−→ t1〉, P (si, ti) for φ(u), φ(v) /∈



F 0
a , 2 ≤ i ≤ |K|

2
. Applying Lemma 1, we

can construct a Hamiltonian pathP (φ(u), φ(v)) of

Q0
n−1 −F 0

a . Therefore,〈s1,
P (s1,u)
−→ u, φ(u)

P (φ(u),φ(v))
−→

φ(v), v
P (v,t1)
−→ t1〉, P (si, ti) are the |K|

2
spanning

disjoint paths ofQn − Fa for 2 ≤ i ≤ |K|
2

, as
illustrated in Fig. 3.
Case 1.2.3:|K0| = 1.
Without loss of generality, we can assume that
s1 ∈ V 0

b . Let x ∈ V 0
w for x, φ(x) /∈ (K ∪ F ).

Applying Lemma 1, we can construct a Hamiltonian
pathP (s1, x) of Q0

n−1 − F 0
a . By induction hypoth-

esis, we can construct|K|
2

spanning disjoint paths
P (φ(x), t1), P (si, ti) of Q1

n−1 for 2 ≤ i ≤ |K|
2

.

Therefore,〈s1,
P (s1,x)
−→ x, φ(x)

P (φ(x),t1)
−→ t1〉, P (si, ti)

are the |K|
2

spanning disjoint paths ofQn − Fa, as
illustrated in Fig. 4.

Fig. 4. Illustration ofCase 1.2.3 and Case 1.2.4

Case 1.2.4:|K1| = 1.
Without loss of generality, we can assume thatt1 ∈
V 0

w . Since |Vb| ≥ 2, |Vw| ≥ 2, we can choose two
black vertices and one white vertex ofK0. Without
loss of generality, we can assume thats1, t2 ∈
Vb, s2 ∈ Vw and φ(s1) 6= t1. Let (si, s

′
i), (t

′
i, ti) be

edges ofQ0
n−1 for s′i, t

′
i, φ(s′i), φ(t′i) /∈ (K ∪ F ) for

3 ≤ i ≤ |K|
2

. Applying Lemma 1, we can construct

a Hamiltonian path〈s2
P (s2,s′

2
)

−→ s′2, s1, t
′
2

P (t′
2
,t2)

−→ t2〉
of Q0

n−1 − F 0
a − {si, s

′
i, ti, t

′
i|3 ≤ i ≤ |K|

2
}. By

induction hypothesis, there exist|K|
2

spanning dis-
joint pathsP (φ(s1), t1), P (φ(s′i), φ(t′i)) of Q1

n−1 for

2 ≤ i ≤ |K|
2

. Therefore,〈s1, φ(s1)
P (φ(s1),t1)
−→ t1〉,

〈s2
P (s2,s′

2
)

−→ s′2, φ(s′2)
P (φ(s′

2
),φ(t′

2
))

−→ φ(t′2), t
′
2

P (t′
2
,t2)

−→ t2〉,

〈si, s
′
i, φ(s′i)

P (φ(s′
i
),φ(t′

i
))

−→ φ(t′i), t
′
i, ti〉 are the |K|

2

spanning disjoint paths ofQn −Fa for 3 ≤ i ≤ |K|
2

,

as illustrated in Fig. 4.
Case 1.2.5:|K1| ≥ 2, |K0| ≥ 2.
Without loss of generality, we can assume that
s1, s2 ∈ Q0

n−1. Let (s1, s
′
1), (s2, s

′
2) be edges of

Q0
n−1 and s′1, φ(s′1), s

′
2, φ(s′2) /∈ (F ∪ K). Let K ′ =

K0 − {s1, s2} andN(K ′) be the free neighbor set
of K ′. Applying Lemma 2, we can construct two
spanning disjoint pathsP (s1, s

′
1) and P (s2, s

′
2) of

Q0
n−1 − Fa − K ′ − N(K ′). By induction hypoth-

esis, we can construct|K|
2

spanning disjoint paths
betweenK1 ∪ φ(N(K ′)) ∪ {φ(s′1), φ(s′2)} of Q1

n−1.
Therefore, we can construct|K|

2
spanning disjoint

paths betweenKb ∪ Kw of Qn − Fa.
Case 1.3:|F 0

a | ≥ 1 and |F 1
a | ≥ 1.

Without loss of generality, we can assume that
|K0| ≥ |K1|.
Case 1.3.1:|K1| = 0.

there exist |K|
2

spanning disjoint paths〈s1,
P (s1,u)
−→

u, v
P (v,t1)
−→ t1〉, P (si, ti) of Q0

n−1 − F 0
a for

φ(u), φ(v) /∈ F 1
a , 2 ≤ i ≤ |K|

2
. Applying

Lemma 1, we can construct a Hamiltonian path

P (φ(u), φ(v)) of Q1
n−1 − F 1

a . Therefore,〈s1
P (s1,u)
−→

u, φ(u)
P (φ(u),φ(v)

−→ φ(v), v
P (v,t1)
−→ t1〉, P (si, ti) are |K|

2

spanning disjoint paths ofQn −Fa for 2 ≤ i ≤ |K|
2

,
as illustrated in Fig. 5.

Fig. 5. Illustration ofCase 1.3.1 and Case 1.3.2

Case 1.3.2:|K0| ≥ 1 and |K1| ≥ 1
Let N(K1) be the free neighbor set ofK1. By
induction hypothesis, we can construct|K|

2
spanning

disjoint paths betweenK0∪φ(N(K1)) of Q0
n−1−F 0

a

and |K1| spanning disjoint paths betweenN(K1)∪
K1 of Q1

n−1 − F 1
a . Therefore, we can construct|K|

2
spanning disjoint paths betweenKb∪Kw of Qn−Fa,
as illustrated in Fig. 5.



Case 2:n − |Fa| is odd.
When |Fb| + |Fw| = 0, the proof of this case is
the same asQn−1. Thus, we only need to prove
this case for|Fb| + |Fw| ≥ 1. We can infer that
4|Fb| + 2|Kb| + |Fa| = 4|Fw| + 2|Kw| + |Fa| =
n + 1. By symmetry of hypercube, we can assume
that |F 0

w| + |K0
w| ≥ 1 and |F 1

w| + |K1
w| ≥ 1 when

|Fa| = 0. Without loss of generality, we can assume
that 4|F 0| + 2|K0| + |F 0

a | ≥ 4|F 1| + 2|K1| + |F 1
a |

and |F 0
b | ≥ |F 0

w|.
Case 2.1:4|F 0

b | + |F 0
a | = n + 1.

Since4|F 0
b |+ |F 0

a | = n+1, |F 1
b | = |F 1

a | = |Kb| = 0.
Let b ∈ F 0

b andF ′
b = F 1

b − {b}.
Case 2.1.1:|K1| = 0.
Let (t′1, t1) ∈ E(Q0

n−1) for t′1 /∈ (F ∪ K).
Let ui ∈ Vb be the white vertices ofQ0

n−1

for 1 ≤ i ≤ 2|F 1
w|. By induction hypothesis,

there exist |K|
2

+ |F 1
w| spanning disjoint

paths 〈s1
P (s1,b′)
−→ b′, b〉, P (si, ti), P (u2j−1, u2j)

of Q0
n−1 − F ′

b − F 0
w − {t1, t

′
1} for

2 ≤ i ≤ |K|
2

, 1 ≤ j ≤ |F 1
w|. By induction

hypothesis, we can also construct|F 1
w|+1 spanning

disjoint pathsP (φ(b′), φ(u1)), P (φ(u2j), φ(u2j+1)),
P (φ(u2|F 1

w|), φ(t′1)) of Q1
n−1 − F 1

w for
1 ≤ j ≤ |F 1

w| − 1. Therefore,

〈s1
P (s1,b′)
−→ b′, φ(b′)

P (φ(b′),φ(u1))
−→ φ(u1), u1

P (u1,u2)
−→

u2, φ(u2), · · · , u2|F 1
w|, φ(u2|F 1

w|)
P (φ(u

2|F1
w|

),φ(t′
1
))

−→

φ(t′1), t
′
1, t1〉, P (si, ti) are |K|

2
spanning disjoint

paths ofQn − (Fb ∪ Fw ∪ Fa) for 2 ≤ i ≤ |K|
2

, as
illustrated in Fig. 6.
Case 2.1.2:|K0| ≥ 1, |K1| ≥ 1.
Without loss of generality, we can assume thats1 ∈
V 0

w . Let U = {ui|ui ∈ V 0
w andui, φ(ui) /∈ (K ∪ F )

for 1 ≤ i ≤ (2|F 1
w| + |K1| − 1)}. By induction

hypothesis, there exist( |K|
2

+|F 1
w|) spanning disjoint

paths between(K0∪U∪{b1}) of Q0
n−1−F ′

b. Without
loss of generality, we can assume one of these( |K|

2
+

|F 1
w|) spanning disjoint paths is〈s1

P (s1,b′)
−→ b′, b〉.

By induction hypothesis, we also can construct the
|F 1

w| + |K1| spanning disjoint paths betweenK1 ∪
φ(U) ∪ {φ(b′1)} of Q1

n−1 − F 1
w. Therefore, we can

construct |K|
2

spanning disjoint paths betweenKw

of Qn − Fb − Fw − Fa, as illustrated in Fig. 6.
Case 2.1.3:|K0| = 0.
Let (t′1, t1) ∈ E(Q1

n−1) for t′1, φ(t′1) /∈ (F ∪ K).
Let ui ∈ V 0

w for ui, φ(ui) /∈ (F ∪ K), 1 ≤ i ≤

Fig. 6. Illustration ofCase 2.1.1 and Case 2.1.2

2|F 1
w|+|K|−2. By induction hypothesis, there exist

( |K|
2

+ |F 1
w|) spanning disjoint paths〈b, b′

P (b′,φ(t′
1
))

−→
φ(t′1)〉, P (u2i−1, u2i) of Q0

n−1 − F ′
b − F 0

a − F 0
w for

1 ≤ i ≤ ( |K|
2

+ |F 1
w| − 1). By induction hypothesis,

we also can construct(|F 1
w| + |K| − 1) spanning

disjoint paths P (s1, φ(u1)), P (φ(u2i), φ(u2i+1)),
P (φ(u2|F 1

w|+|K|−2), φ(b′)), P (sj, tj) of Q1
n−1 −F 1

w −

{t1, t
′
1} for 1 ≤ i ≤ (|F 1

w| + |K|
2

− 2), 2 ≤ j ≤
|K|
2

. Therefore, 〈s1
P (s1,φ(u1))

−→ φ(u1), u1
P (u1,u2)
−→

u2, φ(u2), · · · , φ(u2|F 1
w|+|K|−2

P (φ(u
2|F1

w |+|K|−2
),φ(b′))

−→

φ(b′), b′
P (b′,φ(t′

1
))

−→ φ(t′1), t
′
1, t1〉, P (sj, tj) are |K|

2
spanning disjoint paths ofQn − Fb − Fw − Fa for
2 ≤ j ≤ |K|

2
, as illustrated in Fig. 7.

Fig. 7. Illustration ofCase 2.1.3 and Case 2.2.1

Case 2.2:4|F 0
b | + |F 0

a | = 4|F 0
w| + |F 0

a | = n − 1.
Since4|F 0

b |+ |F 0
a | = 4|F 0

w|+ |F 0
a | = n− 1, |F 1

b | =
|F 1

w| = |F 1
a | = 0 and |Vb| = |Vw| = 1. Let Kw =

{s1} and Kb = {t1}. Let b1 ∈ Fb, w1 ∈ Fw, F ′
b =

Fb − {b1} andF ′
w = Fw − {w1}. We will construct

the Hamiltonian pathP (s1, t1) of Qn−Fb−Fw−Fa

in the following cases.



Case 2.2.1:|K1| = 0.
By induction hypothesis, we can construct two

spanning disjoint paths〈s1
P (s1,b′

1
)

−→ b′1, b1〉 and

〈w1, w
′
1

P (w′
1
,t1)

−→ t1〉 of Q0
n−1 − F 0

a − F ′
b − F ′

w.
Applying Lemma 1, we can obtain a Hamiltonian

path P (φ(b′1), φ(w′
1)) of Q1

n−1. Thus, 〈s1
P (s1,b′

1
)

−→

b′1, φ(b′1)
P (φ(b′

1
),φ(w′

1
))

−→ φ(w′
1), w

′
1

P (w′
1
,t1)

−→ t1〉 is a
Hamiltonian path ofQn−Fb−Fw−Fa, as illustrated
in Fig. 7.
Case 2.2.2:|K1| = 1.
Without loss of generality, we can assume that
s1 ∈ V 0 and t1 ∈ V 1. By induction hypothesis,

we can construct a Hamiltonian path〈s1
P (s1,w′

1
)

−→
w′

1, w1〉 of Q0
n−1 − Fa − Fb − F ′

w and a Hamilto-

nian pathP (φ(w′
1), t1) of Q1

n−1. Thus, 〈s1
P (s1,w′

1
)

−→

w′
1, φ(w′

1)
P (φ(w′

1
),t1)

−→ t1〉 is a Hamiltonian path of
Qn − Fb − Fw − Fa, as illustrated in Fig. 8.

Fig. 8. Illustration ofCase 2.2.2 and Case 2.2.3

Case 2.2.3:|K1| = 2
Let (b′1, b1), (w

′
1, w1) ∈ E(Q0

n−1) for b′1, w
′
1, φ(b′1),

φ(w′
1) /∈ (F∪K). Let (b′1, u), (v, w′

1) ∈ E(Q0
n−1) for

u, v /∈ (Fb ∪Fw ∪Fa). By induction hypothesis, we
can construct a Hamiltonian pathP (u, v) of Q0

n−1−
F ′

b − F ′
w − (Fa ∪ {b1, b

′
1, w1, w

′
1}) and two span-

ning disjoint pathsP (s1, φ(b′1)) and P (φ(w′
1), t1)

of Q1
n−1. Thus, 〈s1

P (s1,φ(b′
1
))

−→ φ(b′1), b
′
1, u

P (u,v)
−→

v, w′
1, φ(w′

1)
P (φ(w′

1
),t1)

−→ t1〉 is a Hamiltonian path of
Qn − Fa − Fb − Fw, as illustrated in Fig. 8.
Case 2.3:4|F 0

b |+ |F 0
a | ≤ n− 1 and4|F 0

w|+ |F 0
a | ≤

n − 3 and |K1| = 0.
Case 2.3.1:|F 1

a | = 0 and |F 1| = 0.
Since4|F 0

b |+ |F 0
a | ≤ n−1 and|K1| = 0, |K0

b | ≥ 1.
Without loss of generality, we can assume that

t1 ∈ Vb. Let (t′1, t1) ∈ E(Q0
n−1) for t′1 /∈

(K ∪ F ). By induction hypothesis, there exist
|K|
2

− 1 spanning disjoint pathsP (si, ti) for 2 ≤

i ≤ |K|
2

of Q0
n−1 − F 0 − F 0

a − {t1, t
′
1}. Without

loss of generality, we can assume thats1 is on
the path P (s2, t2). We can denoteP (s2, t2) as

〈s2
P (s2,u)
−→ u, s1, v

P (v,t2)
−→ t2〉. By induction hypoth-

esis, we can construct two spanning disjoint paths
P (φ(s1), φ(t′1)) andP (φ(u), φ(v)) of Q1

n−1. There-

fore, 〈s1, φ(s1)
P (φ(s1),φ(t′

1
))

−→ φ(t′1), t
′
1, t1〉, 〈s2

P (s2,u)
−→

u, φ(u)
P (φ(u),φ(v))

−→ φ(v), v
P (v,t2)
−→ t2〉, P (si, ti) are

|K|
2

spanning disjoint paths ofQ1
n−1 −Fb −Fw −Fa

for 3 ≤ i ≤ |K|
2

, as illustrated in Fig. 9.

Fig. 9. Illustration ofCase 2.3.1 and Case 2.3.2

Case 2.3.2:|F 1
a | = 0 and |F 1| ≥ 1 and (|F 1

b | = 0
or |F 1

w| = 0).
Without loss of generality, we can assume
that |F 1

b | = 0 and t1 ∈ V 0
b . Let

(t′1, t1) ∈ E(Q0
n−1) for t′1 /∈ (K ∪ F ). Let

U = {ui|ui ∈ V 0
w and ui, φ(ui) /∈ (K ∪ F )

for 1 ≤ i ≤ (2|F 1
w| − 1)}. By induction

hypothesis, there exist( |K|
2

+ |F 1
w| − 1) spanning

disjoint paths P (s1, u1), P (u2i, u2i+1), P (sj, tj)
of Q0

n−1 − F 0
b − F 0

w − F 0
a − {t1, t

′
1} for

1 ≤ i ≤ |F 1
w| − 1, 2 ≤ j ≤ |K|

2
.

By induction hypothesis, we also can
construct the |F 1

w| spanning disjoint paths
P (φ(u2i−1), φ(u2i)), P (φ(u2|F 1

w|−1, φ(t′1))of
Q1

n−1 − F 1
w for 1 ≤ i ≤ |F 1

w| − 1.

Therefore, 〈s1
P (s1,u1)
−→ u1, φ(u1)

P (φ(u1),φ(u2))
−→

φ(u2), · · · , φ(u2|F 1
w|−1

P (φ(u
2|F1

w|−1
),φ(t′

1
))

−→ φ(t′1), t
′
1,

t1〉, P (sj, tj) are |K|
2

spanning disjoint paths of
Qn − Fb − Fw − Fa for 2 ≤ j ≤ |K|

2
, as illustrated

in Fig. 9.



Case 2.3.3:|F 1
a | ≥ 1 or |F 1

w| = |F 1
b | ≥ 1.

By induction hypothesis, there exist|K|
2

spanning
disjoint pathsP (si, ti) of Q0

n−1 − F 0
b − F 0

w − F 0
a

for 1 ≤ i ≤ |K|
2

. Without loss of generality, we

can assume thatP (s1, t1) = 〈s1
P (s1,u)
−→ u, v

P (v,t1)
−→

t1〉 for φ(u), φ(v) /∈ F 1
a . Applying Lemma 1, we

can construct a Hamiltonian pathP (φ(u), φ(v)) of

Q1
n−1 − F 1

a . Therefore,〈s1
P (s1,u)
−→ u, φ(u)

P (φ(u),φ(v))
−→

φ(v), v
P (v,t1)
−→ t1〉, P (si, ti) are |K|

2
spanning disjoint

paths ofQn − Fb − Fw − Fa for 2 ≤ i ≤ |K|
2

, as
illustrated in Fig. 10.

Fig. 10. Illustration ofCase 2.3.3 and Case 2.3.4

Case 2.3.4:|F 1
a | + |F 1

b | ≥ 1 and |F 1
a | + |F 1

w| ≥ 1
and |F 1

b | 6= |F 1
w|.

Without loss of generality, we can assume that
|F 1

w| ≥ |F 1
b |. Let m = |F 1

w| − |F 1
b |. Let

U = {ui|ui ∈ V 0
w and ui, φ(ui) /∈ (K ∪

F ) for 1 ≤ i ≤ 2m}. By induction hy-
pothesis, there exist( |K|

2
+ m) spanning disjoint

paths P (s1, u1), P (u2i, u2i+1), P (u2m, t1), P (sj, tj)
of Q0

n−1 − F 0
b − F 0

w − F 0
a for 1 ≤ i ≤ m −

1, 2 ≤ j ≤ |K|
2

. By induction hypothesis, we
also can construct them spanning disjoint paths
P (φ(u2i−1), φ(u2i))of Q1

n−1−F 1
w−F 1

b −F 1
a for 1 ≤

i ≤ m. Therefore,〈s1
P (s1,u1)
−→ u1, φ(u1)

P (φ(u1),φ(u2))
−→

φ(u2), · · · , φ(u2m−1
P (φ(u2m−1),φ(u2m))

−→ φ(u2m), u2m
P (u2m,t1)
−→ t1〉, P (sj, tj) are |K|

2
spanning disjoint paths

of Qn−Fb−Fw −Fa for 2 ≤ j ≤ |K|
2

, as illustrated
in Fig. 10.
Case 2.4:4|F 0

b |+ |F 0
a | ≤ n− 1 and4|F 0

w|+ |F 0
a | ≤

n − 3, |K1| ≥ 1.
Case 2.4.1:|K1

b |+ |F 1
b |+ |F 1

a | = 0 or |K1
w|+ |F 1

w|+
|F 1

a | = 0.
Without loss of generality, we can assume that

|K1
b | + |F 1

b | + |F 1
a | = 0. Let b be a faulty vertex

of F 0
b . Let m = |K1

w| + 2|F 1
w|. Let U = {ui|ui ∈

V 0
w , ui /∈ (K0 ∪ F 0 ∪ F 0

a ) for 1 ≤ i ≤ m − 1}.
By induction hypothesis, there exist|K|

2
spanning

disjoint paths betweenK0 ∪ U ∪ {b} of Q0
n−1 −

Fa−Fw − (Fb−{b}) whereP (s1, b) is one of these
spanning disjoint paths. We can denoteP (s1, b)

as 〈s1
P (s1,b′)
−→ b′, b〉. By induction hypothesis, we

can construct|K1
w| + |F 1

w| spanning disjoint paths
betweenφ(U)∪K1

w ∪ {φ(b′)} of Q1
n−1 −F 1

w. Thus,
we can construct|K|

2
spanning disjoint paths of

Qn − Fb − Fw − Fa, as illustrated in Fig. 11.

Fig. 11. Illustration ofCase 2.4.1 and Case 2.4.2

Case 2.4.2:|K1
b | + |F 1

b | + |F 1
a | ≥ 1 and |K1

w| +
|F 1

w| + |F 1
w| ≥ 1.

Without loss of generality, we can assume that
2|F 0

b |+|K0
b | ≥ 2|F 0

w|+|K0
w|. Letm = 2|F 0

b |+|K0
b |−

2|F 0
w|− |K0

w|. Let X = {[si, ti]|si andti in different
subcubes} and |X| be the number of pairs ofX.
Suppose thatm ≥ |X|. Let Uw = {ui|ui ∈ V 0

w , for
1 ≤ i ≤ m} and Ub = ∅. Suppose thatm < |x|.
Let Uw = {ui|ui ∈ V 0

w , for 1 ≤ i ≤ |X|+m

2
} and

Ub = {ui|ui ∈ V 0
b , for 1 + |X|+m

2
≤ i ≤ |X|.

By induction hypothesis, there exist|K
0|+|Uw|+|Ub|

2
spanning disjoint paths betweenK0 ∪ Uw ∪ Ub of
Q0

n−1 − F 0
b − F 0

w − F 0
a and |K1|+|Uw|+|Ub|

2
spanning

disjoint paths of betweenK1 ∪ φ(Ub) ∪ φ(Uw)
of Q1

n−1 − F 1
b − F 1

w − F 1
a . Therefore, we can

construct |K|
2

spanning disjoint paths between of
Qn − Fb − Fw − Fa, as illustrated in Fig. 11. 2

IV. VERTICES FAULT-TOLERANCE FOR

EDGE-BIPANCYCLICITY OF HYPERCUBE

In this section, we prove the vertices fault-
tolerance for edge bipancyclicity of hypercube. The



following lemma is proved in [4].
Lemma 4: Every edge inQn − Fv − Fe lies on

a cycle of every even length from 4 to2n − 2|Fv|
even if |Fv| + |Fe| ≤ n − 2, for n ≥ 3.

Theorem 2: Let Fb and Fw be the sets of faulty
black vertices and faulty while vertices, respectively,
of hypercubeQn. The graphQn −Fb −Fw is edge-
bipancyclic if |Fb|, |Fw| ≤ bn−1

4
c for n ≥ 3.

Proof: Let e = (s, t) be an arbitrary edge of
Qn − Fb − Fw for s ∈ Vb. Applying Lemma 4, we
can obtain that there exist cycle containing the edge
e with even length from 4 to2n − 2(|Fb| + |Fw|)
of Qn − Fb − Fw. Let Fb = {b1, b2, · · · , bf1

} and
Fw = {w1, w2, · · · , wf2

}. Without loss of generality,
we can assume thatf1 ≥ f2. Let Fa = {bi, xi| for
(bi, xi) ∈ E(Qn) and xi /∈ (Fb ∪ Fw ∪ {s, t}) for
f2 + 1 ≤ i ≤ f1} and |Fa| be the number of pair of
adjacently vertices ofFa. Let Faj

= {bi, xi, wi, yi|
for (bi, xi), (wi, yi) ∈ E(Qn) and xi, yi /∈ (Fb ∪
Fw ∪ {s, t}) for j ≤ i ≤ f2} for 1 ≤ j ≤ f2 and
|Faj

| be the number of pair of adjacently vertices of
Faj

. Let F ′
b = {b1, b2, · · · , bf2

}. We can check that
|Fa|+|Fw|+|F ′

b|+|Faj
|+2 = f1+f2+2 ≤ n+3

2
< n

and4|F ′
b|+2+|Fa|+|Faj

| = 4|Fw|+2+|Fa|+|Faj
| ≤

n + 1 for 1 ≤ j ≤ f2. Applying Theorem 1,
we can construct a Hamiltonian pathP (s, t) of
Qn −F ′

b −Fw −Fa −Faj
for 1 ≤ j ≤ f2. Thus, we

can construct the cycles〈s
P (s,t)
−→ t, s〉 containing the

edgee with even length from2n −2(|Fb|+ |Fw|) to
2n −2 max{|Fb|, |Fw|} of Qn −Fb −Fw. Therefore,
Qn − Fb − Fw is edge-bipancyclic. 2

V. CONCLUSION

In this paper, we show that every family
{si, ti}

Fb,Kb

Fw,Kw
of hypercubeQn−Fa is connectable if

|Fb|+ |Fw|+ |Kb|+ |Kw|+ |Fa| ≤ n, 4|Fb|+2|Kb|+
|Fa| = 4|Fw| + 2|Kw| + |Fa| ≤ n + 1, for n ≥ 3.
Applying this result, we show thatQn −Fb −Fw is
edge-bipancyclic if|Fb|, |Fw| ≤ bn−1

4
c.
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