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Abstract—A graph G = (V, E) is called a probe graph
of graph class G if V can be partitioned into two sets P

(probes) and N (nonprobes), where N is an independent
set, such that G can be embedded into a graph of G
by adding edges between certain nonprobes. A graph
is distance hereditary if the distance between any two
vertices remains the same in every connected induced
subgraph. Bipartite distance-hereditary graphs are both
bipartite and distance hereditary. In this paper we give
an O(nm)-time algorithm for recognizing probe graphs
of bipartite distance-hereditary graphs.

I. INTRODUCTION

A probe graph P is a two-tuple (G, L) where G
is a graph and L is a function from VG to the set
{P, N, U} of labels. We use PG and PL for the
first and second tuple of P , respectively, and
use PV and PE for the sets of vertices and edges
of PG, respectively. We also use PP, PN, and PU

for the sets of vertices v ∈ PV with PL(v) = P,
PL(v) = N, and PL(v) = U, respectively. A
probe graph P is fully (resp. partially) partitioned
if PU = ∅ (resp. PU 6= ∅). A probe graph P
is unpartitioned if PP = PN = ∅. We call probe
graph P ′ a subgraph of a probe graph P if P ′

G is
a subgraph of PG and P ′

L(v) = PL(v) for v ∈ P ′
V .

Let X be a subset of PV . A subgraph of P induced
by X is the subgraph P ′ of P with P ′

G = PG[X],
i.e., P ′

G is the subgraph of PG induced by X .
For v ∈ PV , use P − v to denote the probe
subgraph of P induced by PV − v. We also
use P − X for the subgraph of probe graph
P induced by PV −X for a subset X of PV . We
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call a vertex v ∈ PV a probe, a nonprobe, and a
prime if PL(v) = P, PL(v) = N, and PL(v) = U,
respectively.

A probe graph P is feasible if PN is an inde-
pendent set of PG. We say a probe graph P ∗

is an embedding of probe graph P if P ∗
V = PV ,

PE ⊆ P ∗
E, PN ⊆ P ∗

N
, PP ⊆ P ∗

P
, P ∗ is fully

partitioned, i.e., P ∗
U

= ∅, P ∗
N

is an independent
set of PG, and for (u, v) ∈ P ∗

E − PE we have
P ∗

L(u) = P ∗
L(v) = N. Let G be a class of

graphs. We call probe graph P a probe G graph
if there exists an embedding P ∗ of P such that
P ∗

G ∈ G. If probe graph P is not feasible, then
it does not have any embedding by definition
and hence it is not a probe G graph for any
graph class G. The recognition of fully parti-
tioned (resp. unpartitioned) probe G graphs is
to determine whether a fully partitioned (resp.
unpartitioned) probe graph has an embedding
in G.

The concept of probe graphs starts in
1989 [17]. Hertz introduced slim graphs, the
probe graph of Meyneil graphs, and showed that
slim graphs are perfect. Later Zhang et al. [22]
introduced the recognition of fully partitioned
probe interval graphs for solving the problem
called physical mapping with connection of the
human genome project. Since then the recogni-
tion of probe graphs of different graph classes
appeals to many researchers [2], [4]–[11], [15],
[18], [20], [21]. For the list of results on the
recognition of probe graphs in different graph
classes, please refer to Table 1 in [12].

The recognition of fully partitioned probe G
graphs is a special case of the graph sand-
wich problem [14]. Given G1 = (V, E1) and



G2 = (V, E2) where E1 ⊆ E2, the graph sand-
wich problem asks whether there exists a graph
G = (V, E), E1 ⊆ E ⊆ E2, where G is in a
specific graph class G. For example, the interval
sandwich problem asks ”Is there an interval
graph G = (V, E) where E1 ⊆ E ⊆ E2?”.
The partitioned probe graph recognition prob-
lem is equivalent to the graph sandwich prob-
lem in which G1 = G and E2 = E1 + {(u, v) |
PL(u) = PL(v) = N}.

Instead of studying the recognition of fully
partitioned (or unpartitioned) probe G graphs
directly, we study the recognition of partially
partitioned probe G graphs. The recognition of
partially partitioned probe G graphs is equiv-
alent to the recognition of fully partitioned G
graphs if PU = ∅ and is equivalent to the
recognition of unpartitioned probe G graphs if
PP = PN = ∅. In this paper, we give an O(nm)-
time algorithm to recognize partially partitioned
probe bipartite distance-hereditary graphs.

II. PRELIMINARIES

For a vertex v of G, the open neighborhood
of v, denoted by NG(v), consists of all vertices
adjacent to v in G. We use NG[v] for NG(v) + v,
called the closed neighborhood of v. For a subset
X of V , we use NG(X) = ∪x∈XNG(x) − X to
denote the neighborhood of X in G. A subset
X of V is called a module in G if for every x ∈ X
NG(x) − X = NG(X). Two vertices u 6= v are
false twins in G if NG(u) = NG(v) and are true
twins if NG[u] = NG[v]. We say they are twins
if NG(u) − v = NG(v) − u. A vertex v in G is
called a pendant vertex if the degree of v is one.
A vertex v in G is called a universal vertex if the
degree of v is |V |−1. In a graph G = (V, E), two
disjoint subsets S and T of V are fully adjacent if
every vertex of S is adjacent to all vertices in T .
Two sets A and B are incomparable if A∩B 6= ∅,
A − B 6= ∅, and B − A 6= ∅. For two vertices
u, v ∈ V , we use dG(u, v) to denote the distance
of u and v in a graph G = (V, E).

We say a graph G is a distance-hereditary graph
(DHG for short) if the distance between any
two vertices remains the same in every con-
nected induced subgraph of G. It is a classical
result that distance-hereditary graphs can be

captured by forbidden induced subgraphs [1].
For the house, hole, domino, and gem, we refer
to Fig. 1. A hole is a k-cycle where k ≥ 5.
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Figure 1: A house, a hole, a domino, and a gem.

Theorem 1. [1] Let G be a graph. The following
conditions are equivalent:

1) G is distance hereditary.
2) G contains no house, hole, domino, or gem as

an induced subgraph.
3) Every connected induced subgraph of G with

at least two vertices has a pendant vertex or
a twin.

4) For every pair of vertices x and y with
d(x, y) = 2, there is no induced x, y-path of
length greater than 2.

Corollary 1. A bipartite graph G is a bipartite
distance-hereditary graph if and only if it has no
induced domino nor induced hole.

Corollary 2. A graph G is a bipartite distance-
hereditary graph if and only if every connected
induced subgraph of G with at least two vertices
has a pendant vertex or a false twin.

Definition 1. [13] The hanging Φ of G = (V, E)
by v is an (ℓ + 1)-tuple (L0, L1, . . . , Lℓ) where ℓ =
maxu∈V dG(u, v), L0 = {v}, and Li = {u ∈ V |
dG(u, v) = i} for 1 ≤ i ≤ ℓ.

Definition 2. Let Φ = (L0, L1, . . . , Lℓ) be a hang-
ing of G. For x ∈ Li, 0 < i ≤ ℓ, use N−

Φ
(x) for

NG(x) ∩ Li−1. Denote the subgraph of G induced
by ∪i≤j≤ℓLj by Gi for 0 ≤ i ≤ ℓ. By definition,
G = G0. Let x and y be vertices in Li with
1 ≤ i ≤ ℓ. We say that (i) x properly contains
y, denoted by x ≫ y, if N−

Φ
(x) properly contains

N−
Φ

(y); (ii) x and y are equivalent, denoted by
x ≡ y, if N−

Φ
(x) = N−

Φ
(y); and (iii) x is minimal

(resp. maximal) if there does not exist any other
vertex z ∈ Li such that x ≫ z (resp. z ≫ x).

Remark 1. Let C be a component of Gi where 0 <
i ≤ ℓ. By definition of hanging, NG(C) ⊆ Li−1.



Theorem 2. [13] A connected graph G is dis-
tance hereditary if and only if for every hanging
Φ = (L0, L1, . . . , Lℓ) of G and every pair of vertices
x, y ∈ Li (1 ≤ i ≤ ℓ) that are in the same
component of Gi, we have N−

Φ
(x) = N−

Φ
(y). In

other words, for a component C of Gi, NG(C) and
C ∩ Li are fully adjacent.

Theorem 3. [16] Suppose Φ = (L0, L1, . . . , Lℓ) is a
hanging of a connected distance-hereditary graph G.
For any two vertices x, y ∈ Li with 1 ≤ i ≤ ℓ,
N−

Φ
(x) and N−

Φ
(y) are disjoint or N−

Φ
(x) ⊆ N−

Φ
(y)

or N−
Φ

(y) ⊆ N−
Φ

(x).

The following corollary can be seen from the
above two theorems.

Corollary 3. Suppose Φ = (L0, L1, . . . , Lℓ) is a
hanging of a connected bipartite distance-hereditary
graph G. L0, L1, . . . , Lℓ are independent sets of G.
For any two components C1 and C2 of Gi with
1 ≤ i ≤ ℓ, NG(C1) and NG(C2) are disjoint or
NG(C1) ⊆ NG(C2) or NG(C2) ⊆ NG(C1).

Theorem 4. [16] Suppose Φ = (L0, L1, . . . , Lℓ) is a
hanging of a connected distance-hereditary graph G.
For each 1 ≤ i ≤ ℓ, there exists a minimal vertex v.
In addition, if v is minimal then NG(x)−N−

Φ
(v) =

NG(y) − N−
Φ

(v) for every pair of vertices x and y
in N−

Φ
(v).

By Theorem 2 and 4, we get the corollary.

Corollary 4. Suppose Φ = (L0, L1, . . . , Lℓ) is a
hanging of a connected bipartite distance-hereditary
graph G. For each 1 ≤ i ≤ ℓ, Gi has a minimal
component C, i.e., NG(C) does not properly contain
NG(C ′) for any component C ′ of Gi. In addition, if
C is a minimal component of Gi then NG(C) is a
module of G.

Corollary 5. Suppose G is a biconnected bipartite
distance-hereditary graph and Φ = (L0, L1, . . . , Lℓ)
is a hanging of G. Let C be a component of Gi

where 1 < i ≤ ℓ. NG(C) contains two vertices that
are false twins in G.

Proof: For every component C of Gi, there
exists a minimal component C∗ such that
NG(C∗) ⊆ NG(C). For every component C of
Gi, NG(C) is an independent set of G. Because

G is biconnected, |NG(C∗)| > 1. By Corollary 4,
NG(C∗) is a module of G. Since NG(C∗) is
an independent set of G, any two vertices in
NG(C∗) are false twins in G.

III. SOME CHARACTERISTICS OF PROBE

BIPARTITE DISTANCE-HEREDITARY GRAPHS

In this section, we give some observations on
a probe bipartite distance-hereditary graph and
its bipartite distance-hereditary embedding.

Lemma 1. Probe bipartite distance-hereditary
graphs are hole-free.

Proof: Assume that P = (PG, PL) is a probe
bipartite distance-hereditary graph and P ∗ =
(P ∗

G, P ∗
L) is an embedding of P . Notice that PG

is a bipartite graph, there is no induced odd
hole in PG. Assume that PG is not hole-free,
i.e., there is a large even hole in G with length
greater than or equal to six.
Let Ck = v1v2 . . . vkv1, k ≥ 6, be an even
hole of length k in PG. Suppose that in PG

there are two adjacent vertices in Ck which
are probes in P ∗. If there are no consecutive
probes in P ∗[Ck], we have alternating probes
and nonprobes in Ck. It means all nonprobes
are in the same color class of G. We can not
add any edge between nonprobes to destroy
Ck. Without loss of generality, assume that v1

and v2 are two consecutive probes in Ck. Let
P be a shortest path from v3 to vk in PG

with internal vertices in Ck − {v1, v2, v3, vk}. If
|P| > 3, then v1v2Pv1 is a cycle of length
greater than or equal to six in P ∗

G. It contradicts
the assumption that P ∗ is an embedding of P .
If |P| = 2, v3 and vk must be nonprobes; v4

and vk−1 must be probes. Let P′ be a shortest
path from v3 to vk, P′ 6= P, with internal
vertices in Ck − {v1, v2, v3, vk}. If |P′| = 4 with
P′ = v3vivjvk, then {v1, v2, v3, vi, vj , vk} induces
a domino in PG. If |P′| > 4, it implies P′ ≥ 6.
P′v3 forms a hole of length greater than or
equal to six, where P′ = v3 . . . vk. It contradicts
the assumption that P ∗ is an embedding of P .
Therefore, probe bipartite distance-hereditary
graphs are hole-free.
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Figure 2: Some forbidden subgraphs of probe
bipartite distance-hereditary graphs.

Lemma 2. If P is probe bipartite distance-
hereditary and the subgraph of G induced by a set
D of six vertices is a domino, then D has exactly
two nonprobes which are at distance three and the
two vertices of degree three in the subgraph of PG

induced by D are probes.

Proof: It can be shown by analyzing all
cases.

In Fig. 2, we list three forbidden subgraphs of
probe bipartite distance-hereditary graphs. By
Lemma 1, we see that Fig. 2(a) is a forbidden
subgraph of probe bipartite distance-hereditary
graphs. By Lemma 2, both vertices of degree
three in an induced domino are probes. In
Fig. 2(b), the four vertices of degree three must
be probes, it is impossible to add any edge to
destroy the induced dominos in it. In Fig 2(c),
let the five vertices in the left-hand side from
the bottom up be u1, u2, u3, u4, u5, let the
other five vertices in the right-hand side from
the bottom up be v1, v2, v3, v4, v5. Since the
vertices of degree three in any induced domino
are probes, u2, v2, u4, and v4 are probes. Since
{u3, u2, u4, v4, u5, v5} induces a domino, u4 and
v4 are of degree three and u2 is a probe, u3 and
v5 must be nonprobes. Also {u1, v1, u2, v2, v4, v3}
induces a domino, u2 and v2 are of degree three
and v4 is a probe, v3 and v1 must be nonprobes.
We see that (u3, v3) is an edge in the graph, but
they have to be labeled as nonprobes in any
probe bipartite distance-hereditary embedding,
a contradiction. This shows that Fig. 2(c) is
also a forbidden subgraph of probe bipartite
distance-hereditary graphs.

Proposition 1. Suppose P is a probe bipartite
distance-hereditary graph and P ∗ is a bipartite
distance-hereditary embedding of P . Then the fol-
lowing statements are true:

1) Any two probes in P ∗ that are false twins in
P ∗ are false twins in P .

2) Any two nonprobes in P ∗ that are false twins
in P ∗ are false twins in P .

Definition 3. Two disjoint vertex sets X and Y
are called probe adjacent if X can be partitioned
into two non-empty sets X1 and X2 and Y can
be partitioned into two non-empty sets Y1 and
Y2 such that every vertex in X1 (resp. Y1) is
adjacent to all vertices of Y (resp. X) and every
vertex in X2 (resp. Y2) is adjacent to all vertices
of Y1 (resp. X1) but not adjacent to any vertex of
Y2 (resp. X2).

According the definition of probe adjacent,
we have the following lemma.

Lemma 3. Let P be a probe graph and P ∗ be a
bipartite distance-hereditary embedding of P . Sup-
pose X and Y are two disjoint vertex sets of PG

of size greater than one and X and Y are fully
adjacent in P ∗

G. If both X and Y have vertices with
labels both P and N in P ∗, then X and Y are probe
adjacent in G. Besides, a vertex x ∈ X (resp. Y )
is a probe in P ∗ if and only if x is adjacent to all
vertices in Y (resp. X).

IV. THE ALGORITHM

In this section, we give an O(nm)-time al-
gorithm to recognize probe bipartite distance-
hereditary graphs. This algorithm is a recursive
one. We denote the input probe graph by P .
The algorithm first check whether P is a bi-
partite graph. If P is not bipartite, then it has
no bipartite distance-hereditary embedding. If
P is bipartite, the algorithm checks whether P
is feasible. If P is not feasible, then it is not a
probe bipartite distance-hereditary graph. Set
PL(u) = P for all vertices of u ∈ PU that is
adjacent to v ∈ PV with PL(v) = N. This can be
done in linear time. In the following assume
P is bipartite and feasible, i.e., all neighbors
of a nonprobe must be probes. The algorithm
checks to which of the following classes the



input probe graph P does belong and takes
action accordingly:

P 1 PG has false twins. If it has one, reduce
the size of P according to Corollary 6
and solve the problem recursively. The
corollary and the reduction steps will be
described in Section IV-A.

P 2 |PV | ≤ c for some constant c. Solve the
problem by brute force in O(1) time.

P 3 P is fully partitioned. Use the O(n2)-time
algorithm in [4].

P 4 PG is biconnected and without false
twins. Call Algorithm B, to be given in
Section IV-B,

P 5 PG is not biconnected and without false
twins. Call Algorithm R, to be given in
Section IV-C to solve the problem recur-
sively.

It is easy to see the correctness of the algo-
rithm if the algorithm for each class of input
is correct. We analyze the time complexity of
the algorithm in Section IV-D.

A. False twins

In this subsection we first prove a lemma
and show how to use it to solve the problem
recursively.

Theorem 5. [12] Suppose P is a probe graph and
u and v are false twins in PG satisfying one of the
following conditions.

1) PL(u) = PL(v) = P, N, or U.
2) PL(u) = P, PL(v) = N or U.
3) PL(u) = N, PL(v) = U.

Then P is a probe distance-hereditary graph if and
only if P − v is a probe distance-hereditary graph.

Corollary 6. Suppose P is a probe graph and u and
v are false twins in PG satisfying one of the three
conditions of Theorem 5. Then P is a probe bipartite
distance-hereditary graph if and only if P − v is a
probe bipartite distance-hereditary graph.

Proof: If P has a bipartite distance-
hereditary embedding P ∗, then P ∗ − v is a bi-
partite distance-hereditary embedding of P −v.
Next we show that P has a bipartite distance-
hereditary embedding if P−v has one. Suppose

P−v has a bipartite distance-hereditary embed-
ding P ′. We then obtain P ∗ from P ′ by attach-
ing v as a false twin of u. Let P ∗

L(v) = P ′
L(u) if

PL(v) = U. If P ∗
L(u) = P, we see NP (u) = NP ∗(u)

and NP (v) = NP ∗(v). Suppose P ∗
L(u) = N and

PL(v) = N or U. Assume NP ∗(u) = NP (u) + X ,
all vertices in X are nonprobes. We obtain P ∗

from P ′ by attaching v as a false twin of u
and letting P ∗

L(v) = N if PL(v) = U. Hence
NP ∗(v) = NP ∗(u) = NP (u) + X . By Corollary 2,
we see P ∗ is a bipartite distance-hereditary
embedding of P .

The proof of the above corollary explicitly
points out how to reduce the size of input
probe graph P and implies the problem can
be solved recursively.

In [19], an O(n2)-time algorithm was devel-
oped to remove all false twins in a given graph.
We end the subsection by the following lemma.

Lemma 4. Given a graph, removing vertices that
have a false twin until it is not possible can be done
in O(n2) time.

B. Kernel probe graphs and Algorithm B

In the subsection we deal with the case that
input graph P is of class P 4. This is the
most crucial part of the algorithm. We will
show that whether such a probe graph P is a
probe bipartite distance-hereditary graph can
be recognized in O(n2) time. First arbitrarily
pick an edge (x, y) of PE. In any bipartite
distance-hereditary embedding of P , either x
is a probe or y is a probe. Hence we reduce
the problem to the case that there is a vertex
p ∈ PV with PL(p) = P. We call a probe graph
P satisfying the following three conditions a
kernel probe graph: (i) PG is biconnected, (ii) PG

has no false twins, and (iii) there is a vertex
p ∈ PV with PL(p) = P. Given a kernel probe
graph P and a probe p, our goal is to deter-
mine whether P is a probe bipartite distance-
hereditary graph. We say that a kernel probe
graph P is well-labeled if there is a vertex p such
that PL(p) = P and PL(x) 6= U for every vertex
x in the open neighborhood of p in PG. Let
Φ = (L0, L1, . . . , Lℓ) be the hanging of PG by p.
Since L0, L1, . . . , Lℓ are independent sets of PG



and PG are biconnected, ℓ > 1. For clarity of the
notation, use G for PG. Algorithm B checks to
which class of probe graphs the input kernel
probe graph P does belong and takes action
accordingly:

C 1. P is well-labeled.
C 2. P is not well-labeled.

To handle the case that P is of class C 2, we
have the following three subcases.

D 1. ℓ > 2.
D 2. ℓ = 2 and there is a vertex q ∈ L2 with

PL(q) = P.
D 3. ℓ = 2 and every vertex in L2 is not a

probe.

In the following assume that P is a ker-
nel probe graph and P ∗ is a minimal bi-
partite distance-hereditary embedding of P .
For simplicity, use G and G∗ for PG and P ∗

G,
respectively. Let p be a probe of P ∗, Φ =
(L0, L1, . . . , Lℓ) and Ψ = (Z0, Z1, . . . , Zh) be the
hangings of G and G∗ by vertex p, respectively.
The above notation will be used in lemmas
and theorems in the rest of this subsection.
Now we give some observations on both the
hangings of G and G∗ by a probe p. Since P ∗

is also a distance-hereditary embedding of P ,
P ∗ has all properties of the distance-hereditary
embedding of P that are shown in [12].

Theorem 6. [12] Suppose P = (G, PL) is a
probe bipartite distance-hereditary graph and P ∗ =
(G∗, P ∗

L) is a minimal embedding of P . Let p be
a probe of P ∗, Φ = (L0, L1, . . . , Lℓ) and Ψ =
(Z0, Z1, . . . , Zh) be the hangings of G and G∗ by
vertex p, respectively. Then the following statements
hold.

1) Suppose C is a component of G∗
i with 1 <

i ≤ h. Then NG∗(C) contains probes and non-
probes in P ∗. In addition, if |C∩Zi| > 1 then
C ∩Zi also contains probes and nonprobes in
P ∗.

2) For x ∈ Zi where 1 < i ≤ h, N−
Ψ

(x) contains
probes and nonprobes in P ∗.

3) ℓ = h > 1 and Li = Zi for 0 ≤ i ≤ ℓ = h.
4) For 1 < i ≤ ℓ and x ∈ Li, x is a probe in

P ∗ if and only if in G x is adjacent to some
vertices in Li−1 that are nonprobes in P ∗.

Algorithm W
Now we are ready to show the algorithm for

the case that P is of class C 1, i.e., a well-labeled
kernel probe graph. We refer to the algorithm
for handling this case as Algorithm W. We
will see that Algorithm W serves as a major
subroutine to be used later. The algorithm is as
follows. By definition, the labels of vertices in
NG[p] are either P or N. Compute P ′ from P as
follows. Let P ′

G = PG and let P ′
L(y) = PL(y) for

all y ∈ NG[p]. For every i from i = 2 to i = ℓ and
every y ∈ Li with PL(y) = U, let P ′

L(y) = P if
in G y is adjacent to some vertex z ∈ Li−1 with
P ′

L(z) = N; and let P ′
L(y) = N otherwise. By

Theorem 6, we see that P is a probe bipartite
distance-hereditary graph if and only if P ′ is a
probe bipartite distance-hereditary graph. Ap-
parently P ′ is fully partitioned. Use the O(n2)-
time algorithm in [4] to determine whether P ′

is a probe bipartite distance-hereditary graph.
It is not hard to see that Algorithm W runs in
O(n2) time.

In the following we give observations to be
used for handling probe graphs of class C 2.

Lemma 5. Suppose P ∗ is a minimal bipartite
distance-hereditary embedding of P . Then the fol-
lowing statements hold:

1) A component of Gi is a component of G∗
i for

0 ≤ i ≤ ℓ.
2) For any component C of Gi with 1 ≤ i ≤ ℓ,

C ∩ Li = C ∩ Zi.
3) For any component C of Gi with 1 ≤ i ≤ ℓ

and |C ∩ Li| > 1, NG(C) = NG∗(C).

Proof: First we prove Statement (1). By
Theorem 6, h = ℓ and Li = Zi for 0 ≤ i ≤ h = ℓ.
In addition, G∗ is obtained from G by adding
edges. Hence a component of G∗

i , 0 ≤ i ≤ h,
is a component of Gi or the union of some
components of Gi. Since both G and G∗ are bi-
connected, all G0, G1, G∗

0
, and G∗

1
have only one

component. Hence the lemma holds for i = 0
and i = 1. For 1 < i ≤ ℓ, we prove the statement
by contradiction showing that if some compo-
nent C of G∗

i is not a component of Gi then P ∗

is not a minimal bipartite distance-hereditary
embedding of P . Suppose C is a component
of G∗

i that properly contains a component D



of Gi. Let P ′ be an embedding of P obtained
from P ∗ by removing edges connecting a vertex
in C − D and another vertex in D. Use G′

for P ′
G. Clearly NG∗(C) = NG∗(D) ∩ Zi−1 =

NG∗(C − D) ∩ Zi−1 = NG′(D) = NG′(C − D).
If P ′ is still a bipartite distance-hereditary em-
bedding of P , then P ∗ is not minimal. In the
following we prove that P ′ is still a bipartite
distance-hereditary embedding of P by contra-
diction again. Assume that P ′ is not a bipartite
distance-hereditary embedding of P , i.e., G′ is
not a bipartite distance-hereditary graph. There
is an induced forbidden subgraph in G′. Let F
be the set of vertices that induces an even hole
or a domino in G′. Because the induced for-
bidden subgraph is formed by removing edges
connecting a vertex in D and another vertex in
C−D, |D∩F | ≥ 1 and |(C−D)∩F | ≥ 1. Since all
induced forbidden subgraph are biconnected,
|F ∩ NG′(C)| = |F ∩ NG∗(C)| ≥ 2. Without
loss generality assume that x1, x2, x3, and x4 are
vertices in F where x1 ∈ (C − D), x2 ∈ D, and
x3, x4 ∈ NG∗(C). By definition, x1 and x2 are
not adjacent in G′. By assumption, x1, x2 ∈ Zi

and x3, x4 ∈ Zi−1. Clearly {x1, x2} and {x3, x4}
are fully adjacent both in G∗ and in G′. In G′

the four vertices x1, x2, x3, and x4 induce a cycle
of length four. Therefore it is impossible for F
to induce a hole. Thus F induces a domino.
The fifth vertex x5 and the sixth vertex x6 of F
are adjacent and one of them is adjacent to a
vertex in Zi and the other is adjacent to a vertex
in Zi−1. Thus at least one of them is in Zi or in
Zi−1. In G′ if it is in Zi then it is adjacent to both
x3 and x4 and if it is in Zi−1 then it is adjacent
to both x1 and x2. In other words, F does not
induce a domino, a contradiction.

Next we prove Statement (2). By State-
ment (1), C is also a component of G∗

i . By
Theorem 6, Zi = Li for 0 ≤ i ≤ ℓ. Hence
C ∩ Zi ⊆ C ∩ Li. Since G∗ is obtained from G
by adding edges, C ∩ Li ⊆ C ∩ Zi. Therefore
C ∩ Zi = C ∩ Li.

Finally, we prove Statement (3). Clearly the
statement is true if i = 1. In the following
assume 1 < i ≤ ℓ. By Statement (1) of this
lemma, C is also a component of G∗

i . By State-
ment (2) of this lemma, C ∩ Zi = C ∩ Li.

Since |C ∩ Zi| > 1, by Theorem 6 both NG∗(C)
and C ∩ Zi contains probes and nonprobes.
Let x ∈ C ∩ Zi be a probe in G∗. Since G∗ is
bipartite distance-hereditary, NG∗(C) = N−

Ψ
(x)

by Theorem 2. Because Zi = Li for 0 ≤ i ≤
ℓ (see Theorem 6) and x is a probe in P ∗,
N−

Ψ
(x) = N−

Φ
(x). Since G∗ is obtained from

G by adding edges, NG(C) ⊆ NG∗(C). Thus
NG∗(C) = N−

Ψ
(x) = N−

Φ
(x) ⊆ NG(C) ⊆ NG∗(C).

This proves the statement.

Theorem 7. Suppose P ∗ is a minimal bipartite
distance-hereditary embedding of P and C is a
component of Gi with |C ∩ Li| > 1 and 1 < i < ℓ.
A vertex x ∈ C ∩ Li (resp. NG(C)) is a probe in
P ∗ if and only if x is a adjacent to all vertices in
NG(C) (resp. C).

Proof: By Statement (2) of Lemma 5, C ∩
Zi = C∩Li. Hence |C∩Zi| > 1. By Statement (3)
of Lemma 5, NG(C) = NG∗(C). Since G∗ is
biconnected, |NG∗(C)| > 1. Since G∗ is distance
hereditary, by Theorem 2 NG∗(C) and C∩Zi are
fully adjacent. By Lemma 3, the theorem holds.

Next we show how to use the above lemmas
and theorems to handle the case that P is of
class C 2.
Algorithm for D 1. In this case there is a com-
ponent C in G2 with |C ∩L2| ≥ 2. By Lemma 5
and Theorem 7, a vertex x ∈ C ∩ L2 (resp.
NG(C)) is a probe in P ∗ if and only if x is a
adjacent to all vertices in NG(C) (resp. C). Com-
pute P ′ from P as follows. Let P ′

G = PG and
P ′

L(y) = PL(y) for every y ∈ PV − (C ∪ NG(C)).
For every y ∈ (C ∪ NG(C)), let P ′

L(y) = PL(y)
if PL(y) 6= U. For every y ∈ NG(C) with
PL(y) = U, let P ′

L(y) = P if in G y is adjacent
to all vertices z ∈ C ∩ L2 and let P ′

L(y) = N

otherwise. If we let P ′
L(y) = PL(y) for all primes

y ∈ C, we see that P is a probe bipartite
distance-hereditary graph if and only if P ′ is
a probe bipartite distance-hereditary graph by
Theorem 7. But we will go further. Clearly all
vertices in NG(C) are not primes now. From
i = 2 to i = ℓ, for every y ∈ C ∩ Li with
PL(y) = U, let P ′

L(y) = P if in G y is adjacent
to some nonprobes in Li−1 and let P ′

L(y) = N

otherwise. By Theorem 6 and 7, we see that P



is a probe bipartite distance-hereditary graph
if and only if P ′ is a probe bipartite distance-
hereditary graph after we relabel primes of P
in C. In P ′, there must be a probe p′ in C ∩L2.
Besides P ′

L(y) 6= U for every y ∈ NG(p′). Thus P ′

is a well-labeled kernel probe graph. We then
call Algorithm W to determine whether P ′ is
a probe bipartite distance-hereditary graph. It
takes linear time to find a component C of G2

with |C ∩ L2| > 1 and obtain P ′ in linear time.
Thus the algorithm for D 1 runs in O(n2) time.

Algorithm for D 2. In this case ℓ = 2 and there
is a vertex q ∈ L2 with PL(q) = P. If NG(q) =
L1, then q is a false twin of p, a contradiction.
Thus L1 −NG(q) 6= ∅. Let (L′

0
, L′

1
, . . . , L′

k) be the
hanging of G by q. Then p and all vertices in
L1 − NG(q) are in L′

2
+ L′

3
and are in the same

component of G−NG[q]. Hence P is also of class
D 1 and the algorithm is finished by calling the
algorithm for D 1. Thus the algorithm for D 2
runs in O(n2) time.

Algorithm for D 3. In this case ℓ = 2 and every
vertex in L2 is not a probe. Let q be a vertex in
L2 and be of minimum degree among vertices
in L2. By definition, PL(q) = U or PL(q) = N. Let
P̂ be the probe graph (PG, P̂L) where P̂L(q) = P

and P̂L(x) = PL(x) for x ∈ PV − q. Let P̌ be
the probe graph (PG, P̌L) where P̌L(q) = N,
P̌L(y) = P for y ∈ NG(q), and P̌L(x) = PL(x)
for x ∈ PV − NG[q]. If PL(q) = U, then P
is a probe bipartite distance-hereditary graph
if and only if one of P̂ and P̌ is a probe
bipartite distance-hereditary graph. It is easy
to see that we can use the algorithm for D 2
to test whether P̂ is a probe bipartite distance-
hereditary graph. In the following we focus
on checking whether P̌ is a probe bipartite
distance-hereditary graph. For simplifying the
notation, we use G to refer to PG. Since G has
no false twins, N−

Φ
(q) 6= N−

Φ
(q′) for any q′ ∈ L2

and q′ 6= q. If for all q′ ∈ L2, q′ 6= q, either
N−

Φ
(q) ⊂ N−

Φ
(q′), or N−

Φ
(q) and N−

Φ
(q′) are dis-

joint, then any two vertices in N−
Φ

(q) are false
twins in G. Thus there exists a vertex q′ ∈ L2,
q′ 6= q, that N−

Φ
(q′) and N−

Φ
(q) are incomparable,

i.e., N−
Φ

(q′)∩N−
Φ

(q) 6= ∅, N−
Φ

(q′)−N−
Φ

(q) 6= ∅, and
N−

Φ
(q) − N−

Φ
(q′) 6= ∅. Let y1, y2 ∈ N−

Φ
(q) where

y2 ∈ N−
Φ

(q′) and y1 /∈ N−
Φ

(q′). Let z ∈ N−
Φ

(q′) but
z /∈ N−

Φ
(q). Notice that y1 and y2 must be probes

in any bipartite distance-hereditary embedding
of P̌ . Consider the hanging (Ľ0, Ľ1, . . . , Ľk) of
G by y1. By definition, dG(y1, q

′) = 3. Since
dG(y1, q

′) = 3, k > 2. We see that P̌ is of
class D 1. Hence whether P̌ is a probe bipartite
distance-hereditary graph can be determined in
O(n2).

The following lemma summarizes the results
of this subsection.

Lemma 6. Whether a probe graph of class P 4 is
a probe bipartite distance-hereditary graph can be
determined in O(n2) time.

C. Non-biconnected probe graphs without false
twins and Algorithm R

In this subsection we show how to solve
the problem recursively when the input probe
graph P is bipartite without false twins and is
non-biconnected. Our algorithm is based upon
the following two theorems.

Theorem 8. [12] Suppose P is a connected probe
graph and P ∗ is a minimal distance-hereditary
embedding of P . Then a vertex is a cut vertex of
P ∗ if and only if it is a cut vertex of P .

Corollary 7. Suppose P is a connected probe graph
and P ∗ is a minimal bipartite distance-hereditary
embedding of P . Then a vertex is a cut vertex of
P ∗ if and only if it is a cut vertex of P .

Proof: Suppose P has k biconnected com-
ponents C1, C2, . . . , Ck. Let P ∗

G be the graph
(P ∗

V ,∪k
j=1

P ∗
E [Ci])). It is easy to see that a vertex

is a cut vertex of P ∗ if and only if it is a cut
vertex of P . We then prove the corollary by
showing that P ∗ is indeed a bipartite distance-
hereditary embedding of P . If P ′ is a bipartite
distance-hereditary embedding of P and P ′ 6=
P ∗, then P ′ is not minimal, a contradiction.
Thus P ′ = P ∗ if P ∗ is a bipartite distance-
hereditary embedding of P .
Now we prove that P ∗ is a bipartite distance-
hereditary embedding of P . Suppose that P ∗ is
not a bipartite distance-hereditary embedding
of P . That is, P ∗ has a forbidden induced sub-
graph of bipartite distance-hereditary graphs.



Let F be the vertex set of a forbidden induced
subgraph. Since P ∗[Ci] is a bipartite distance-
hereditary embedding of P [Ci], F is not a
subset of any Ci for 1 ≤ i ≤ k. Notice that F
induces an even hole or a domino. Both forbid-
den induced subgraphs are biconnected. Thus
F must be a subset of some Ci, a contradiction.
This completes the proof.

Theorem 9. [12] Let P be a probe graph. If there
exists a cut vertex v in P and C is a component of
PG−v, then P is a probe distance-hereditary graph
if and only if P − C has a distance-hereditary em-
bedding P ′ and P [C + v] has a distance-hereditary
embedding P ′′ where either P ′

L(v) = P ′′
L(v) = P or

P ′
L(v) = P ′′

L(v) = N.

Remark 2. The above theorem also holds for probe
bipartite distance-hereditary graphs.

Theorem 9 points out a recursive way to
solve the problem. We now describe Algo-
rithm R in detail. Let v be a cut vertex of PG

and C be a component of PG − v such that C
does not contain any other cut vertex of PG.
In other words, C + v induces a biconnected
component of PG. There are two cases:
1. PL(v) = P or N. By Theorem 9, P is a probe
bipartite distance-hereditary graph if and only
if both P [C + v] and P − C are probe bipartite
distance-hereditary graphs. Call Algorithm C
to check whether P [C + v] has an embedding
and recursively call the main algorithm to
check whether P − C has an embedding.
2. PL(v) = U. Let P̂ be the probe graph (PG[C+
v], P̂L) where P̂L(v) = P and P̂L(x) = PL(x) for
x ∈ C. Let P̌ be the probe graph (PG[C +v], P̌L)
where P̌L(v) = N, P̌L(x) = P for x ∈ NPG

(v)∩C,
and P̌L(x) = PL(x) for x ∈ C−NPG

(v). Let P ′ be
the probe graph (PG[V −C], P ′

L) where P ′
L(v) =

P and P ′
L(x) = PL(x) for x ∈ V − C − v. Let

P ′′ be the probe graph (PG[V − C], P ′′
L) where

P ′′
L(v) = N, P ′′

L(x) = P for x ∈ NPG
(v)∩ (V −C),

and P ′′
L(x) = PL(x) for x ∈ V −C −NPG

[v]. Call
Algorithm C to check whether P̂ and P̌ have
embeddings. There are four subcases:

(1) If neither P̂ nor P̌ is a probe bipartite
distance-hereditary graph, then P is not a
probe bipartite distance-hereditary graph.

(2) If both P̂ and P̌ are probe bipartite
distance-hereditary graphs, then P is a
probe bipartite distance-hereditary graph
if and only if P − C is a probe bipartite
distance-hereditary graph. Recursively call
the main algorithm to check whether P−C
has an embedding.

(3) If P̂ is a probe bipartite distance-hereditary
graph but P̌ is not, then P is a probe bipar-
tite distance-hereditary graph if and only if
P ′ is a probe bipartite distance-hereditary
graph. Recursively call the main algorithm
to check whether P ′ has an embedding.

(4) If P̂ is not a probe bipartite distance-
hereditary graph but P̌ is, then P is a probe
bipartite distance-hereditary graph if and
only if P ′′ is a probe bipartite distance-
hereditary graph. Recursively call the main
algorithm to check whether P ′′ has an
embedding.

Definition 4. A bipartite probe graph P is called
a pseudo-kernel probe graph if it satisfies one of
the following three conditions:

1) P is biconnected without false twins.
2) P is biconnected and has only one pair of false

twins. One of the pair of false twins is not a
prime.

3) P is non-biconnected without false twins and
has only one cut vertex. The cut vertex is not
a prime.

Suppose v is the cut vertex of PG used to
decompose PG into PG[C + v] and PG − C in
Algorithm R. We use G and GC + v to denote
PG and PG[C + v] respectively.

Theorem 10. Suppose G is a non-biconnected
graph without false twins. There exists a bicon-
nected component GC + v of G that only contains
a cut vertex v of G. Then one of the following
statements holds.

(i) There are no false twins in GC + v.
(ii) GC+v contains exactly one pair of false twins,

v is one of the false twins. After removing one
of the false twins from GC + v, the resulting
graph has no false twins and either it is
biconnected or has only one cut vertex which
is one of the pair of false twins in GC + v.



Proof: Since G has no false twins, no x, y ∈
GC are false twins in GC + v. After the de-
composition, only the neighborhood of the ver-
tex used to decompose the graph is changed.
Hence v must be one of the pair of false twins,
and there exists only one vertex u in GC that u
and v are false twins in GC + v.

Suppose there exists a pair of false twins
x and y in GC . Removing v from GC + v
only changes the neighborhood of vertices in
NGC

(u), where u and v are false twins in GC +v.
Hence one of x, y ∈ NGC

(u). If x, y ∈ NGC
(u),

they are false twins in GC + v, a contradiction.
If x ∈ NGC

(u) but y 6∈ NGC
[u], then they are

not false twins in GC since y is not adjacent to
u, a contradiction. Similarly, we can show that
there are no false twins in GC + v − u.

Suppose GC is non-biconnected. If u is not a
cut vertex, let x 6= u be a cut vertex of GC . Let
C1 and C2 be two components of GC −x. Since
GC + v is biconnected, v is adjacent to some
vertex of C1 and some vertex of C2 in GC + v.
Since u and v are false twins in GC + v, in GC

u is adjacent to some vertex of C1 and some
vertex of C2, a contradiction to the assumption
that x 6= u is a cut vertex. Hence u is the only
cut vertex in GC . Similarly, we can show v is
the only cut vertex of GC + v − u.

Corollary 8. The probe graph P [C + v] produced
in Case 1. of Algorithm R and the probe graphs
P̂ and P̌ produced in Case 2. of Algorithm R are
pseudo-kernel probe graphs. In addition, if u and v
are the only pair of false twins in PG[C + v], after
removing a false twin according to Corollary 6 from
P [C + v], P̂ , and P̌ , the resulting probe graph R is
a pseudo-kernel probe graph.

Proof: Note that PG[C + v] satisfies one of
the conditions of Theorem 10 and v is not a
prime. Assume u is the false twin of v. By
the steps of removing false twins according to
Corollary 6, if v is a probe, we remove u; if v is
a nonprobe and u is a nonprobe or a prime, we
remove u; if v is a nonprobe and u is a probe,
we remove v. After removing false twins, if
the resulting probe graph R is biconnected, by
Theorem 10 it is a kernel probe graph. Assume
R is non-biconnected, by Theorem 10 one of u

and v is the only cut vertex of R. Moreover, the
only cut vertex in R is not a prime.

Now we are ready to describe Algorithm C.
The input of Algorithm C is a two-tuple (P, v)
where P is a pseudo-kernel probe graph and v
is a vertex in P with PL(v) = P or N. Note that
if PG is biconnected, it has at most one pair of
false twins and v is one of the false twins. If
PG is non-biconnected, v is the only cut vertex
in PG.
Algorithm C. We distinguish the following
four classes of the input graphs.
E 1. |PV | ≤ c for some constant c. Solve the
problem by brute force in O(1) time.
E 2. P is biconnected without false twins. Call
Algorithm B to solve the problem in O(n2)
time.
E 3. PG is biconnected and v has a false twin u.
It is easy to see that u can be found in linear
time by simply checking whether the open
neighborhood of the other vertices is the same
as the neighborhood of v. By Corollary 6, we
can remove one of u and v from P , and check
whether the resulting probe graph is a probe
bipartite distance-hereditary graph. We have
the following two cases:

(1) PL(v) = P. Recursively call Algorithm C to
check (P − u, v).

(2) PL(v) = N. If PL(u) = N or U, recursively
call Algorithm C to check (P − u, v). If
PL(u) = P, recursively call Algorithm C to
check (P − v, u).

E 4. PG is non-biconnected without false twins,
v is the only cut vertex in PG. Let C1, C2, . . . , Cr

be biconnected components of PG. Since v is
the only cut vertex in PG, Ci ∩ Cj = {v} for
1 ≤ i < j ≤ r. For each Ci, i = 1, 2, . . . , r, call
Algorithm C to check (P [Ci], v).

Lemma 7. Whether a pseudo-kernel probe graph is
a probe bipartite distance-hereditary graph can be
checked in O(nm) time.

Proof: Let g(n) denote the time complexity
of Algorithm C. We claim that g(n) ≤ c1nm.
The input graph of class E 1 can be recognized
in O(1) time. The input graph of class E 2 can
be recognized in O(n2) time. The input graph of



class E 3 can be recognized in g(n−1)+c0(n+m)
time where c0(n + m) is the time spent for
decomposing the input graph into biconnected
components and removing a false twin from it.
It is easy to see that g(n − 1) + c0(n + m) ≤
c1nm if c1 ≥ 2c0. The input of class E 4
can be recognized in Σr

i=1
g(ni) + c0(n + m)

time where ni = |Ci| and C1, C2, . . . , Cr are
biconnected components in PG. Assume that Cr

has the maximum number of vertices among
C1, C2, . . . , Cr.

g(n) = Σr
i=1

g(ni) + c0(n + m)

≤ Σr
i=1

c1nimi + c0(n + m)

≤ c1nrΣ
r
i=1

mi + c0(n + m)

= c1nrm + c0(n + m)

≤ c1(n − 1)m + c0(m + m)

≤ c1nm − (c1 − 2c0)m

≤ c1nm where c1 ≥ 2c0.

This completes the proof.

D. Time complexity

In this subsection we analyze the time com-
plexity of the algorithm.

Theorem 11. There exists an O(nm)-time algo-
rithm to check if a probe graph P is a probe bipartite
distance-hereditary graph.

Proof: By using the data structure described
in [19], we can repeat the step of removing false
twins until input probe graph P has no false
twins in O(n2) time. If P is biconnected after
removing all false twins, then call Algorithm B
to complete the algorithm. Suppose P is not
biconnected after removing all false twins. We
go on performing the recursive step that de-
composes P into two subgraphs PG[C + v] and
PG−C (Algorithm R). The algorithm calls Algo-
rithm C to test P [C+v] (Case 1 of Algorithm R)
or P̂ and P̌ (Case 2 of Algorithm R) and goes
on testing the subgraph P −C obtained recur-
sively. Note that removing all false twins from
P−C only takes O(n+m) time. After removing
C from P only the neighborhood of the cut
vertex v is changed. Since P has no false twins,
there is only one pair of false twins in P−C and

v is one of the false twins. Let t(n) be the time of
the whole algorithm. Then t(n) = t1(n

′)+O(n2)
where n′ is the number of vertices in the in-
put probe graph after removing all false twins
and t1(n

′) is the time spent by the algorithm
after removing all false twins. Let C1, C2, . . . Ck

be the biconnected components produced by
Algorithm R in each recursive call. For each
Ci we call Algorithm C at most two times.
Assume |Ci| = ni for i = 1, . . . , k. Let mi denote
the number of edges in PG[Ci]. We use g(ni)
to denote the time spent by Algorithm C for
i = 1, . . . , k.

t1(n
′) = 2g(n1) + t1(n

′ − n1 + 1) + c0(n
′ + m′)

= 2g(n1) + · · ·+ 2g(nk) + c0k(n′ + m′)

= 2Σk
i=1

g(nimi) + c0k(n′ + m′)

≤ 2Σk
i=1

c1nimi + c0k(n′ + m′)

≤ 2c1n
′Σk

i=1
mi + c0k(n′ + m′)

≤ 2c1n
′m′ + c0n

′(m′ + m′)

≤ c2n
′m′ where c2 ≥ 4c1

= O(n′m′)

Since t(n) = t1(n
′)+O(n2) and t1(n

′) = O(n′m′),
we have t(n) = O(nm). This completes the
proof of the theorem.
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