
Tools and Algorithms for Protein Structures
Comparison with Various Initial Configurations

Hong-Shin Chen Wei-De Jiang Yaw-Ling Lin∗

Department of Computer Science and Information Engineering,
Providence University,

200 Chung Chi Road, Shalu, Taichung County, Taiwan 433.
hongxin0118@gmail.com, winderek@gmail.com, yllin@pu.edu.tw

Abstract. Comparison of protein structures pro-
vide the opportunity to recognize homology that is
undetectable by sequence comparison, and it rep-
resents a powerful means of discovering functions,
yielding direct insight into the molecular mech-
anisms. Currently, there are several techniques
available in attempting to find the optimal align-
ment of shared structural motifs between two pro-
teins.

In this paper, we propose algorithms and develop
tools for local alignment between two protein struc-
tures by means of local adjustment. In our pre-
vious work [18], we show that the trigonometric
series approximation is appropriate for estimating
the good isometric transformations of one struc-
ture and aligning it to the other structure. Based
on these results, here we propose algorithms to re-
fine the given alignment by stepwise finding better
alignments of the protein pairings using minimum
bipartite matching method on geometric distance
space and several other adjustment strategies. The
proposed methods are used to improve the given
initialized alignment of two structures.

Furthermore, we also propose several prelimi-
nary initialization algorithms to examine the ef-
fectiveness of the proposed local refinement algo-
rithms. We show the effectiveness of the proposed
refinement methods and initial algorithm by a set
of experiments, which improve several previous re-
sults. Furthermore, some of our preliminary result
is accessible through the web interface.
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1 Introduction

Protein structures play critical roles in vital bi-
ological functions [10]. With more than 59,000
protein structures determined by the advances in
X-ray crystallography and NMR spectroscopy to
date, molecular biologists these days proceed in
the direction of analyzing and classifying these
protein structures in order to discover the struc-
tural relationships with protein functions [7].

Detection of proteins with a similar fold can
suggest a common ancestor, and often a similar
function [6]. Comparison of 3D structures makes
it possible to establish distant relationships, even
between protein families distinct in terms of se-
quence comparison alone. This is why structural
alignment of proteins increases our understanding
of more distant evolutionary relationships [3, 13].

There have been several methods proposed to
compare protein structures and measure the de-
gree of structural similarity based on alignment of
secondary structure elements as well as alignment
of intra and inter-molecular atomic distances. The
basic ideas are rapid identification of pair align-
ments of secondary structure elements, clustering
them into groups, and scoring the best substruc-
ture alignment. For examples, the VAST sys-
tem [5] is based on continuous distribution of do-
mains in the fold space. The FSSP/DALI system
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[12] provides two levels of description – a coarse-
grained one and one with a fine-grained resolu-
tion. The method, CATH, provides the complete
PDB fold classification by domains and links to
other sources of information. The two methods,
CE and LGscore2 [19] focus on the local geome-
try rather than global features such as orientation
of secondary structures and overall topology (as
in the case of VAST or DALI). VAST has been
used to compare all known PDB domains to each
other. The results of this computation are in-
cluded in NCBI’s Molecular Modelling Database
at http://www.ncbi.nlm.nih.gov/Structure/-
VAST/vast.html.

Note that there must be an atom-pairing
scheme before one can do the structure alignment
computation. The first atom of the first selection
is compared to the first atom of the second selec-
tion, fifth to fifth, and so on. Incorporating with
ideas of bipartite matching and 3-parameter iso-
metric transformation, Lin et al. [14] proposed
methods of using parametric searching strategies
with adaptive controls, and demonstrated that
more accurate and similar protein structure pair-
ings are possible comparing to previous known re-
sults like VAST [5] or CE [19].

One of the crucial steps of these algorithms is
finding a good isometric transformation, which
leads to the best atom-pairing alignment between
two proteins. In this paper, we propose algorithms
of for efficiently locating more suitable isometric
transformations of one structure and aligning it
to the other structure. Based upon the periodical
property of the parametric settings, we propose
parametric searching strategies by approximations
with power series and trigonometric series. We
show the effectiveness of the proposed parametric
searching strategies by a set of experiments, which
leads to better alignments of structure pairing in
general.

2 Background and Terminology

The main idea of our local refinement algorithm
for finding a suitable matching between two sets of
points before utilizing the Rmsd procedure to fine-
tune the final result is by adjusting the suitable
parameter sets by ways of searching the underlying
parametric space.

Root mean squared deviation

The smallest root mean squared deviation (rmsd)
is a least-squares fitting method for two sequences
of points [12]. The idea is to align atom vectors of
the two given (molecular) structures, and use the
common least averaged squared errors as a mea-
surement of differences between these two (paired)
sequences. Formally, let P = 〈p1, . . . , pn〉 and
Q = 〈q1, . . . , qn〉 be two sequences of points. We
assume that P is translated so that its centroid
( 1

n

∑n
k=1 pk) is at the origin. We also assume that

Q is translated in the same way. For each point
or vector x, let (x)i(i = 1, 2, 3) denote the i-th
(X,Y, Z) coordinate value of x, and ‖x‖ denote
the length of x. Let

rmsd(P, Q,R,a) =

√√√√ 1
n

n∑

k=1

‖Rpk + a− qk‖2,

where R is a rotation matrix and a is a translation
vector. Then, the rmsd value d(P,Q) between P
and Q is defined by d(P,Q) = minR,a d(P,Q, R,a).
Schwartz [17] showed that d(P, Q,R,a) is mini-
mized when a = 0 and

R = (AtA)
1
2 A−1,

where the matrix A = (Aij) i, j = 1, 2, 3 is given
by

Aij =
n∑

k=1

(pk)i(qk)j ,

where A
1
2 = B means BB = A , and o denotes

the zero vector. Thus, d(P, Q), R and a can be
computed in O(n) time [15].

We use the the McLachlan algorithm [15] as the
Rmsd fitting method and write a program in C
language to calculate the rmsd between C-α atoms
of paired protein backbones.

After locating the appropriate suggested points,
the minimum bipartite matching algorithm is used
to find the best matching between two sets to de-
cide the best matching alignment, which is needed
for the Rmsd procedure. Let P ′ = T ◦ P , and Q
being translated to Q′ such that the mass cen-
ter of Q′ is located at the origin. We construct a
weighed graph G = (V, E) with V being labelled
with points of P ′ and Q′, and each (p, q) in E
being weighted with the squared Euclidean (3D)
distance; i.e., w(p, q) = ‖p, q‖2. We then solve the
weighted minimum bipartite matching problem [9]
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to obtain the best matching of P ′ and Q′. By the
matched pairing, we perturb and refine the final
alignment to obtain a prosbably lower rmsd.

Isometric rotation transformation

According to Euler’s rotation theorem [8], any ro-
tation about the origin point can be described by
using three angular parameters. The rotation is
determined by 3 consecutive rotations with 3 Eu-
ler angles (α, β, γ). The first rotation is done by
the angle α around the z-axis, the second is done
by the angle β around the x-axis, and the third
rotation is done by the angle γ around the z-axis.
See [11] for more detailed discussions about the
transformation.

Similar to Euler’s rotation transformation, our
3-parameter method (α, β, γ) can be summarized
as the following:

• Rotation around z-axis:

Given a unit vector p = (x, y, z)T , p is trans-
formed into p′ by a rotation around the z-axis
by angle α. That is, let

p′ =




xα

yα

zα


 =




cosαπ sinαπ 0
− sinαπ cosαπ 0

0 0 1


 ·p

Since sin θ = α and thus, cos θ =
√

1− α2.

• Rotation around x-axis:

The vector, p′ = (xα, yα, zα)T , is transformed
into the probe p′′ by a rotation around the x-
axis by angle β. That is, let

p′′ =




xβ

yβ

zβ


 =




1 0 0
0 cos βπ − sinβπ
0 sinβπ cosβπ


·p′

then we will get new coordinate of
(xβ, yβ, zβ)T .

• Rotation around the probe p′′:

The last rotation matrix, Rγ , do the body
rotation around the probe p′′ by angle γ; see
[11] for related discussions about the trans-
formation. That is, let

(x, y, z) = (xβ, yβ, zβ)T .
c = cos γπ, s = sin γπ, h = 1− c.

Rγ =




c + x2h xyh− zs xzh + ys
xyh + zs c + y2h yzh− xs
xzh− ys yzh + xs c + z2h




As a result, we reduce the problem of finding
the good rotation matrix to the new problem of
finding a good 3-parameter setting. The rotation
matrix is thus characterized by just adjusting the
3 uniformly distributed parameters.

Minimum bipartite matching

We use the minimum bipartite matching to find
the best matching between two sets of points to de-
cide the best matching for the rmsd procedure. We
adopted the Munkres [16, 2] algorithm. The public
available implementation is written with the Perl
language. To improve the efficiency of computa-
tion, we implement the Munkres algorithm and
write hundreds lines of C Codes.

2.1 Parametric adjustment with trigono-
metric series

In our previous work [18], the trigonometric se-
ries estimation method, the three parameters are
assumed to be independent. We adjust the three
parameters one by one and increase the power of
the estimated function. The trigonometric series
function is described as the following:

f(θ) = C1 + C2 cosπθ + C3 sinπθ

+ C4 cos 2πθ + C5 sin 2πθ

+ C6 cos 3πθ + C7 sin 3πθ + . . .

+ C2k cos kπθ + C2k+1 sin kπθ.

(1)

where f(θ) denote the corresponding value of
rmsd with respect of one of the three parameters,
(α, β, γ). The k usually reflects the numbers of
local maximal points in the approximated curve.

2.2 VAST

It performs all-on-all structure comparisons
using the VAST algorithm. VAST is based on
aligning secondary structure elements using an
algorithm from the field of graph theory .The
output is a neighbors D list. It also contains
the complete PDB representative structure
comparison structure alignments and a structure
superposition tool. The search space for alter-
native secondary structure elements depends on
the length of proteins. All pairs of secondary
structure elements (one from each structure) that
have the same type are represented as nodes of
a graph. Two nodes are connected by an edge
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if the distance and angle between the corre-
sponding pairs of secondary structure elements
from the two proteins are within some threshold.
The graph therefore represents correspondences
between pairs of secondary structure elements
that have the same type, relative orientation,
and connectivity. This correspondence graph is
then searched to find the maximal subgraph such
that every node in the subgraph is connected
to every other node in the subgraph and is
not contained in any larger subgraph with this
property. This is referred to as clique detection
in graph theory and is basis of finding the initial
secondary structure alignment. VAST extends
this initial alignment to a residue level alignment
using a Gibbs sampling [4] technique. VAST
places considerable emphasis on defining the
statistical significance of an alignment. For each
pairwise alignment, the algorithm computes an
alignment score as well as a P-value for the best
substructure superposition. The P-value assigned
to the alignment is calculated as the probability
that its score would be seen by chance in drawing
secondary structure pairs at random from the
database multiplied by the number of possible
alternative substructure alignments for the given
pair of structures. The program only reports
alignments that yield a P-value less than 0.05. A
P-value of 0.05 indicates that VAST expects to
find an alignment with the same degree of similar-
ity by chance in 5% of all pair-wise comparisons.
VAST uses a threshold of 0.05 to limit the noise
in the hit lists, thus allowing repeated iterations
of double neighboring in Entrez . VAST has been
used to compare all known PDB domains to each
other. The results of this computation are in-
cluded in NCBI’s Molecular Modeling Database at
http://www.ncbi.nlm.nih.gov/Structure/VAST/
vast.html.

2.3 Initialization by Main Vector Method

The initial method, such as VAST and CE, sup-
ports the trigonometric series estimation method
to improve the rmsd value. A better initial align-
ment is very important for the trigonometric se-
ries estimation method to adjust a better result.
Therefore, we try to develop a initial method ac-
cording to the shape of protein structure. The
main vector method is to find a main vector about
protein structure in 3-dimension and a second
main vector in 2-dimension. We apply the in-

ner and outer product to find the rotation and
vertical vector. Let x, y be two vectors and θ
be the included angle of x and y. We can have
θ = cos−1 〈x·y〉

‖x‖·‖y‖ , then we use the outer product
to find the vertical vector, v, which is defined as
v = x × y, then we use θ and v to rotate the
protein structure. The algorithm is shown in Fig-
ure ??. In this algorithm, we have a first main
vector and a second main vector. If we assume
a, b to stand for the two points of first main
vector and c, d to to stand for another. There
are totally four possible combinations for them,
(
−→
ab,

−→
cd), (

−→
ba,

−→
cd), (

−→
ab,

−→
dc), (

−→
ba,

−→
dc). We choose

the minimum rmsd of them to be the initial rota-
tion. Besides the main vector method, we also use
a random initial rotation to execute the trigono-
metric series estimation method. The experimen-
tal results of those two different settings are dis-
cussed in next section.

2.4 Initialization by segment alignment

Comparing to the more sophisticated methods
like CE or VAST, the main-vector initialization
position [18] does have the advantage of saving
valuable computation resources. Yet the initial
orientation found by the main-vector method does
not produce satisfactory final orientation even af-
ter the fine-tune procedures. The idea here is try-
ing to find more suitable starting positions and
still conserve enough computation time for later
adjustment. Since the protein structure is just
a chain sequence of atoms, we can subdivide the
sequence and use the subsequence matching infor-
mation to find the better alignment. Thus, the
atom chains of a structure is divided into several
(consecutive) segments.

Given a list of (consecutive) atoms obtained
from the PDB file [1], one way of dividing pro-
tein chains of a structure is by using the secondary
structural information of the given protein. That
is, for the secondary structural partition method,
the segments of structures is determined by parti-
tion the protein sequence by the secondary struc-
tural information of the given protein. Another
possible division scheme is obtained by slicing a
fixed number of atoms of the given protein. Thus,
for the fixed number partition method, the seg-
ments of structures is determined by partition the
protein sequence by a fixed number of atoms of
the given protein.

After the segments of structures is decided, the
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segment alignment uses the standard dynamic pro-
gramming technique to obtain feasible pairings be-
tween segments by maintaining a suitable score ta-
ble. The dynamic programming evaluation func-
tion is described as the following:

score(s, λ) = Ump · | s |
score(λ, t) = Ump · | t |

score(sx, ty) =

min





Rmsd(L(s, t) ◦Match(x, y)) · `
+ Ump · (| sx | + | ty | −2`)

score(sx, t) + Ump · | y |
score(s, ty) + Ump · | x |

here λ denotes the empty list; s and t are two pre-
fix segment lists. L(s, t) is the alignment between
segment lists s and y, and nL denotes the number
of atoms in L; ` =| L(s, t) ◦Match(x, y) |.

The recurrence relation for evaluating the value
score relies on three possible alignments between
sx and ty. Here s and t are two prefix segment
lists, and x and y are the two currently (last) con-
sidered segments. The first alignment, L is the
pairing list from L(s, t) merging with Match(x, y)
which stands for the match between segment x
y. Since Rmsd() returns the average precalcu-
lated rmsd value, the number is multiplied by the
number of matched pairs `. However, if one can
not find any match for an atom, a given punish-
ment constant, Ump, must be added to encour-
age most atom be aligned with some atoms on the
other sequence. Another possibility is the case of
score(sx, t); in that case, the segment y is not able
to match with segment on the other list. Thus we
need to add in the punishment values for all atoms
of the y segment. The case of score(s, ty) is also
treated similarly.

3 Methodology

In this section, first we introduce the motivation
about why we want to use the local refinement
algorithm to find the better list between two pro-
teins. Secondly, we show the initial algorithm ac-
cording to the structure of protein. The detail
experimental result is showed in next section.

3.1 Motivation

In our previous works, the trigonometric series
estimation method is used to find a better posi-
tion in protein structure comparison. Let PA and

PB denote two protein structures. The proposed
method partitions atoms of a given protein by a
fixed length, forming a list of segments. By us-
ing the dynamic programming technique, the al-
gorithm aligns segments of PA to segments of PB
to obtain the initial configuration; then the algo-
rithm proceeds with trigonometric series estima-
tion method to further improve the control param-
eters of the 3D isometric transformation in order
to further refine the final alignment list. We also
develop another initial methods, main vector as
an substitute for the well-known methods, such as
the VAST and CE. In the following we introduce
the segment alignment initialization algorithm.

3.2 Initialization by New Segment Align-
ment

Let A = {a1, a2, a3 . . . , ai} and B =
{b1, b2, b3 . . . , bi} are two list of 3D coordinates
of point, and C = {c1, c2, c3 . . . , ci} are center of
gravity of A and B. The p is not match point with
segment. W (p) = min{d(p, Ci)} is weight of point
p.

score(s, λ) = Ump · | s |
score(λ, t) = Ump · | t |

score(sx, ty) =

min





Rmsd(L(s, t) ◦Match(x, y)) · `
+

∑
p∈sx∪ty\L′ minq∈Center(L′){d(p, q)})

score(sx, t) +
∑

p∈y minq∈Center(L){d(p, q)}
score(s, ty) +

∑
p∈x minq∈Center(L){d(p, q)}

L(s, t) is the alignment between segment lists s
and y, and nL denotes the number of atoms in L;
` =| L(s, t) ◦Match(x, y) |.

3.3 Parametric adjustment with trigono-
metric series

By incorporating with the two key concepts,
parameterized-rotation as well as bipartite match-
ing, the main algorithm can compare paired pro-
tein structures once given a reasonable good initial
setting of the 3 parameters. Since the best para-
metric settings can be very difficult to locate, our
previous methods concentrate on using random-
ized perturbation method in searching sufficiently
large number of parametric probes over the pa-
rameter spaces and let each probe searching its
own proximity in a randomized greedy manner. It
is shown that the underlying corresponding rmsd
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Seg-Alig ¤Segment Alignment algorithm
Input: Two segment list of protein atoms, namely (A[1], A[2], . . . ), (B[1], B[2], . . . ).

1 for i ← 0 to ns ¤ initiate the table
2 do score[i, 0] ← Ump · lenAs[i] ¤ Ump : unmatched penalty
3 for j ← 0 to nt

4 do score[0, j] ← Ump · lenBs[j]
5 for i ← 1 to ns

6 do for j ← 1 to nt

7 do L ← L[i− 1, j − 1]◦ Match(i, j)
8 r ← Rmsd(L)
9 s ← r · nL + Um(i, j, L) .nL = (nL[i−1,j−1] + nM[i,j])

10 u ← Um(i, j − 1)
11 l ← Um(i− 1, j)
12 if s ≤ score[i, j − 1] + u and s ≤ score[i− 1, j] + l
13 then score[i, j] ← s; L[i, j] ← L
14 elseif score[i, j − 1] + u ≤ s and score[i, j − 1] + u ≤ score[i− 1, j] + l
15 then score[i, j] ← score[i, j − 1] + u; L[i, j] ← L[i, j − 1]
16 else
17 score[i, j] ← score[i− 1, j] + l;L[i, j] ← L[i− 1, j]

Um(i, j, L)
Input: The L is the pairing list.

1 D ← A[1, . . . , i] ∪B[1, . . . , j]− L
2 C ←Cofg(L)
3 p ←Ump(C, D)
4 return p
Cofg(L) return the center of gravity of L list pairs.
Ump(C, D) return the weight of minimum distance sum of center of gravity C and dropped point set D.

Figure 1: The new segment alignment .
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values associated with the parametric sets are re-
lated to each other in periodical and continuous
manner; thus seeking reasonable approximation of
the underlying rmsd values distributions is possi-
ble by some suitable mathematical models, espe-
cially by trigonometric series [14].

Here we further improve our previous results
and propose an algorithm that further exploit
more phases of the trigonometric series estimation
methodology. As shown in Figure 2, the algorithm
consists of 3 phases. The algorithm first spreads g
guessing points uniformly over the underlying nor-
malized parameter space ranged (−0.5,+0.5); sec-
ondly, the algorithm proceeds with h estimation
points by trigonometric series estimation function.
These g + h phases are repeated over all three pa-
rameters searching spaces. Finally, these paramet-
ric searching processes are performed by exactly
f rounds. Each parametric searching process usu-
ally alternates one of these three parameters space;
once the isometric transformation is set, the atoms
of one protein are transformed and matched (by
bipartite matching method) with the other pro-
tein. Thus, there are totally 3f(g + h) MBM op-
erations performed for the structure alignment re-
finement algorithm.

4 Experimental Results And
Web System

In this section, we introduce the target of exper-
imental data set first. Then we show the difference
with dividing protein chains of a structure depends
on the different secondary structures of the given
protein. Finally, we show the Web enable user can
use our system through the network.

4.1 Data Set

We choose the PDB for our experimental sam-
ple source, and we randomly pick 14,400 protein
structures in the PDB database as our experi-
mental subjects by the uniform distribution sam-
pling out of totally 59,618 protein structures as of
2009. For each chosen protein structures we ran-
domly choose one structure alignments listed on
the database of VAST as the tested targets. We
use the term, P , to stand for one of the 14,400
randomly picked protein structures, and we use Q
to stand for one of the neighbors of each P . Note
that P and Q include all un-aligned and aligned

atoms. We use the term, PA, to stand for the
aligned atoms of P by VAST, and we use PB to
stand for one of the neighbors of each PA. Totally,
there have 14,400 protein pairings can test by our
previous experiment. The distribution of them is
shown in Figure 3. In this paper we randomly pick
1,000 protein pairings from 14,400 protein pairings
to test our experiment.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

<30 60 90 120 150 180 210 240 270 300 330 360 390 390<

Th
e 

nu
m

be
r o

f p
ro

te
in

 p
ai

rin
gs

The number of C-alpha atoms of PA

’total’

Figure 3: The distribution of the 14,400 ran-
domly picked protein structures in PDB and
their one neighbor structures. The total num-
ber of protein pairs is 14,400.

4.2 Web System

We make a web system, the Providence
University Protein Structure Comparison
Web System, for users who are interested
in our structures comparison system at
http://bioinfo.cs.pu.edu.tw/pupsc.html.
The user of our web service usually provides
two protein PDB IDs. We provide three ini-
tial methods, and two parametric adjustment
methods. Our web system searches and obtains
the corresponding PDB data from the Protein
data bank database [1] and perform the desired
protein structure alignment/comparison using
the chosen set of algorithms. To avoid the time
delay, our web service provides user access keys
for user to check the result later. Users can come
back and check the comparison result after the
computation is completed by the system servers;
parts of our web entry interface are shown in
Figure 7.

5 Concluding Remarks

In this paper, we propose algorithms to improve
the rmsd value between a protein structure pair
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Struc-Align(P,Q, αI , βI , γI ,p)
Input: Two set of 3D coordinates of points P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qm} ; n < m.

The αI , βI and γI are real numbers that are between -0.5 to 0.5.
¤ These inputs control the initial position of 3 parameters box and affect the explored area.
¤ p is the vector (x, y, z)T , explained in section 2.4.

Output: (s, α, β, γ) is a sufficiently low Rmsd s and (α, β, γ).
¤ (α, β, γ) is the best position of 3 parameters box.

Global : f, g, h, θmax.
The threshold F ,G,H are integer numbers.

¤ F is number of uniformly spreading probes.
¤ G is number of adaptively estimating probes.
¤ H is number of adjustment rounds.

θmax is real numbers of control the parametric perturbation variances between -0.5 to 0.5.
1 (α, β, γ) ← (α∗, β∗, γ∗) ← (αI , βI , γI)
2 Q′ ← Trans(Q,Rot-m(α, β, γ,p)) ¤ Q′ is a temp array of atoms set of protein.
3 L ← Mbm(P,Q′) ; (R, a) ←Ms-Fit(L,P, Q′) ; s∗ ←Rmsd(P,Q′, R,a)
4 for t ← 1 to h
5 do for i ← 1 to 3
6 do (θ[1], θ[2], θ[3]) ← (α, β, γ) ¤Reset parameters θ[i]s.
7 S[1] ← s ; U [1] ← θ[i]
8 for k ← 2 to f + 1 ¤Spreading f probes.
9 do θ[i] ← U [k] ←Rand(−θmax, θmax)

10 Q′ ← Trans(Q,Rot-m(θ[1], θ[2], θ[3],p))
11 L ← Mbm(P,Q′) ; (R,a) ←Ms-Fit(L,P, Q′) ; s ← S[k] ←Rmsd(P,Q′, R,a)

¤ S is an array to save the rmsd.
12 if s ≤ s∗

13 then s∗ ← s ; (α, β, γ) ← (α∗, β∗, γ∗) ← (θ[1], θ[2], θ[3]) ;
14 z ← f + 1
15 for j ← 1 to g/2 ¤Estimating g probes.
16 do z ← z + 1
17 θ[i] ← U [z] ←Lowest(z, U, S)
18 Q′ ← Trans(Q,Rot-m(θ[1], θ[2], θ[3],p))
19 L ← Mbm(P,Q′) ; (R,a) ←Ms-Fit(L,P, Q′) ; S[z] ←Rmsd(P,Q′, R,a)
20 if s ≤ s∗

21 then s∗ ← s ; (α, β, γ) ← (α∗, β∗, γ∗) ← (θ[1], θ[2], θ[3]) ;
22 z ← z + 1
23 (U ′, S′) ←DelMin(U, S)
24 θ[i] ← U [z] ←Lowest(z, U ′, S′)
25 Q′ ← Trans(Q,Rot-m(θ[1], θ[2], θ[3],p))
26 L ← Mbm(P,Q′) ; (R,a) ←Ms-Fit(L,P, Q′) ; S[z] ←Rmsd(P,Q′, R,a)
27 if s ≤ s∗

28 then s∗ ← s ; (α, β, γ) ← (α∗, β∗, γ∗) ← (θ[1], θ[2], θ[3]) ;
29 return (s∗, α∗, β∗, γ∗)
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Mbm(P, Q) returns the minimum bipartite matching of two point sets P and Q.

DelMin(U, S) returns two arrays U ′, S′ such that the largest element in S, and it’s corresponding element.

Lowest(z, U, S).
Input: The z is number of probes.

The U is an array of angles.
The S is an array of rmsd′s.

Output: (θ∗)
1 for i ← 1 to z
2 Matrix[i][1] ← 1
3 for j ← 1 to z−1

2
4 Matrix[i][2j] ← cos(jπU [j]) ; Matrix[i][2j + 1] ← sin(jπU [j])
5 C ←GaussElim(Matrix, S) ¤The estimated function is f(θ) = C[1] + C[2]cosπθ + C[3]sinπθ + . . .
6 θ∗ ← arg min−0.5≤θ≤0.5f(θ) ¤f(θ) is the estimated function.
7 return (θ∗)

Rand(a, b) is a random function returning a real number uniformly distributed between a and b.

Trans(A,R).
Input: A is an array of 3D points with size n.

R is the rotation matrix.
Output: An array of 3D points,B.
1 for i ← 1 to n do
2 B[i] ← R ·A[i] ¤ B is the array containing the transformed n points.
3 return B

Figure 2: Aligning two sets of atoms with low rmsd by pairing points according to the minimum
bipartite matching measurement .

The number The numbers The average The average The average The average The average
of C-α of protein rmsd after rmsd after rmsd after rmsd after rmsd after

atom of PA pairings VAST adjust VAST adjust Seg-Alig adjust New Seg-Alig adjust Main Vector
12-30 161 1.75 1.50 1.85 1.86 2.24
31-60 249 1.87 1.70 1.90 1.91 2.66
61-90 202 1.99 1.80 1.86 1.87 2.72
91-120 143 1.98 1.77 1.78 1.80 2.56
121-150 88 1.95 1.73 1.74 1.74 2.88
151-180 46 2.07 1.77 1.78 1.80 2.75
181-210 41 2.57 2.12 2.12 2.17 2.72
211-240 27 2.02 1.71 1.71 1.71 3.36
241-270 14 2.04 1.69 1.70 1.98 3.20
271-300 10 3.43 2.65 2.64 2.67 3.03
301-330 9 2.26 1.88 1.89 1.89 3.63
331-360 4 2.06 1.83 1.83 1.83 3.06
361-390 3 1.04 0.97 0.97 0.97 2.65
390-1200 3 1.39 1.27 1.27 1.27 1.31

total 1000 1.96 1.73 1.85 1.87 2.65

Table 1: The result is to execute the algorithm of three initial method and VAST. This table
show initial method rmsd and after adjustment rmsd. The unit of rmsd values is measured by
Angstrom(Å = 10−8cm.).

9

Administrator
矩形



1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

<30 60 90 120 150 180 210 240 270 300 330 360 390 390<

A
ve

ra
ge

d 
rm

sd

The number of C-alpha atoms of PA

’OV’
’OS’
’OT’

’OM’

(a)

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

<30 60 90 120 150 180 210 240 270 300 330 360 390 390<

A
ve

ra
ge

d 
rm

sd

The number of C-alpha atoms of PA

’OV’
’AV’
’AS’
’AT’

’AM’

(b)

Figure 4: (a) The average of rmsd value for original VAST(OV), original Seg-Alig(OS), original New Seg-Alig(OT),
original Main Vector(OM). (b) The average of rmsd value for original VAST, adjustment of VAST(AV), adjustment
of Seg-Alig(AS), adjustment of New Seg-Alig(AT) and adjustment of Main Vector(AM).

The initial The average The average The average
method rmsd after rmsd after rmsd after
method initial method old trigonometric new trigonometric
VAST 1.9572 1.7329 (11.46%) 1.7285 (11.69%)

Seg-Alig 3.4563 1.8526 (5.34%) 1.8496 (5.50%)
New Seg-Alig 3.3109 1.8508 (5.44%) 1.8684 (4.54%)
Main Vector 4.2697 2.5907 (-32.37%) 2.6518 (-35.49%)

Table 2: The result is to execute the algorithm of trigonometric series with initial alignment of
VAST, Seg-Alig, New Seg-Alig and Main vector. These percentages are express improvement of
original Vast.
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Figure 5: (a) The average of rmsd value for original VAST(OV), original Seg-Alig(OS) and adjustment of Seg-
Alig(AS). (b) The average of rmsd value for original VAST, original New Seg-Alig(OT) and adjustment of New
Seg-Alig(AT).

(a)

Figure 7: The web window of input and user menu. User submits can get a access key. After the
system obtain all analyzed results, user can get the result later on through the use of access key.
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Figure 6: The average of rmsd value for original
VAST(OV), original Main Vector(OM) and adjustment
of Main Vector(AM).

by finding better alignment list. A set of exper-
iments is designed to test the parameters; these
adjusted parameters are set to perform the ex-
periments over over a thousand of protein pairs,
which are uniformly random sampled from the
PDB database. As the results shown that our
methods improve the alignment computed by the
VAST by an averaged improvement ratios about
11%. The results demonstrate that the method
of using 3D Euclidean distance minimum bipar-
tite matching with trigonometric series estimated
parametric searching scheme indeed improves ex-
isted known system like the VAST. It remains in-
teresting to further explore the underlying best
suited parameters for our method.

The experiments show that a good initial rota-
tion is very important before the parametric ad-
justment. The idea of our segment alignment ini-
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tial setting methods is to slice a fixed number of
atoms and by matching segments of two struc-
tures using the dynamic programming technique;
the proposed segment alignment method does ob-
tain feasible starting configurations. It is shown
that, by further incorporated with our proposed
trigonometric series estimation method, the com-
bined method performs better than the original
VAST method by an averaged improvement ratios
about 5%. Furthermore, some of our preliminary
result is accessible through the our web interface
to provide molecular biologists and other bioinfor-
matic researchers the use of our service.

Finally, since the structure comparison prob-
lem, like many scientific computation/simulation
problem, is very time-consuming under cases of
large structures and large number of paired struc-
tures, it is desirable to implement the system un-
der massive parallel machines cluster, e.g., the
grid-environment, to increase the throughput of
the system.
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