On Distance-Two Domination of Composition of Graphs

Yung-Ling Lai
Department of Computer Science and Information Engineering, National Chiayi University, Taiwan Email: yllai@mail.ncyu.edu.tw

Shou-Bo Jeng

Department of Computer Science and Information Engineering, National Chiayi University, Taiwan Email: s0970393@mail.ncyu.edu.tw

Abstract

For a graph $G=(V, E)$, let $N_{1}(v)$ and $N_{2}(v)$ denote the set of vertices that are at distance one and two from v respectively. A subset $D \subseteq V(G)$ is said to be a $D_{3,2,1}$-dominating set of G if every vertex $v \in V$ satisfies $w_{D}(v) \geq 3$ where $w_{D}(v)=3|\{v\} \cap D|+$ $2\left|N_{1}(v) \cap D\right|+\left|N_{2}(v) \cap D\right|$. The minimum cardinality of a $D_{3,2,1}$-dominating set of G, denoted as $\gamma_{3,2,1}(G)$, is called the $D_{3,2,1}$-domination number of G. In this paper we obtained the $D_{3,2,1}$-domination number of the composition of two paths and a path with a cycle.

Index Terms- $D_{3,2,1}$-domination, composition, $D_{3,2,1}$-domination number.

I. Introduction

We consider only simple and connected graphs. A graph $G=(V, E)$ contains a set V of vertices and a set E of edges. The distance $d(x, y)$ of two vertices x and y is the length of the shortest $x-y$ path. The distance-k-neighborhood $N_{k}(v)$ of vertex v, defined as $N_{k}(v)=\{u \in v \mid d(u, v)=k\}$, is the set of those vertices that are at distance k from v. Figure 1 shows an example of a graph G with $V=\{a, b, c, d, e, f\} \quad$ where $\quad N_{1}(a)=\{b, d\}$, $N_{2}(a)=\{c, e, f\}$. For a graph $G=(V, E)$, a dominating set $D \subseteq V$ of G is a set of vertices such that for each $u \in V-D, N_{1}(u) \cap D \neq \varnothing$. The distance-k-dominating set of a graph G is defined as the subset $D \subseteq V$ such that for each $u \in V-D, \quad \bigcup_{1 \leq i \leq k}\left(N_{i}(u) \cap D\right) \neq \varnothing$. The $D_{3,2,1}$ -domination problem proposed by [12] in 2006 is similar to distance-2-domination problem, which
may be used to solved the resource sharing problem that are modeled by graphs. For each vertex v, the weight of v is defined as $w_{D}(v)=3|\{v\} \cap D|$ $+2|N(v) \cap D|+\left|N_{2}(v) \cap D\right|$ for some $D \subseteq V$. D is called a $D_{3,2,1}$-dominating set of graph G if and only if for each $v \in V(G), w_{D}(v) \geq 3$. The $D_{3,2,1}$-domination number $\gamma_{3,2,1}(G)$ of a graph G is then the minimum cardinality among all $D_{3,2,1}$-dominating set of $G . \quad D$ is an optimal $D_{3,2,1}$-dominating set of G if $|D|=\gamma_{3,2,1}(G)$. Due to the short history, unlike the related distance-k-domination has many results (see [1,3-5,7-9,13,16] for $k=1$, and [2,6,10-11,14-15] for $k>1), \quad D_{3,2,1}$-domination problem has only been solved for a very limited class of graphs. The $D_{3,2,1}$-domination number is known for paths, cycles and a full binary tree B_{n} [12]. discussed $\quad D_{3,2,1}$-domination problem of a double-loop network $D L(n ; a, b)$ according to different value of a, b. This paper established the $D_{3,2,1}$-domination number for the composition of two paths and a path with a cycle.

Figure $1 N_{1}(a)=\{b, d\}, N_{2}(a)=\{c, e, f\}$

II. RESULTS

The composition (also called lexicographic product) $G[H]$ of two graphs G and H with vertex set $V(G)=\left\{v_{x} \mid 1 \leq x \leq n\right\}$ and $V(H)=$ $\left\{u_{x} \mid 1 \leq x \leq m\right\}$ respectively, is the graph with vertex set $\quad V(G[H])=V(H) \times V(G) \quad$ and $\quad\left(u_{1}, v_{1}\right) \quad$ is adjacent to $\left(u_{2}, v_{2}\right)$, if either v_{1} is adjacent to v_{2} in G or $v_{1}=v_{2}$ and u_{1} is adjacent to u_{2} in H. Figure 3 shows an example of a $P_{3}\left[P_{4}\right]$. In this paper, we will use $c_{i}=\left\{\left(u_{j}, v_{i}\right) \mid 1 \leq j \leq m\right\}$ for $1 \leq i \leq n$ to denote the set of vertices from i-th column of $G[H]$.

Figure 3: An example of graph $P_{3}\left[P_{4}\right]$.

Since $D_{3,2,1}$-domination requires every vertex has weight at least 3 , Fact 1 is trivial.

Fact 1: Let G be a graph of order $n \geq 2$. Then $\gamma_{3,2,1}(G) \geq 2$.

Lemma 1: Let $G=P_{n}\left[P_{m}\right]$ for $n>10, m>6$ and D be an optimal $D_{3,2,1}$-dominating set of G. Then in any four consecutive columns of G, there is at least one vertex in D.
Proof: Suppose to the contrary that there is no vertex in D in four consecutive columns $c_{i}, c_{i+1}, c_{i+2}, c_{i+3}$. In order to have all vertices $v \in c_{i+1} \cup c_{i+2}$ satisfy $w_{D}(v) \geq 3$, there must be at least three vertices of D in c_{i-1} and c_{i+4}. In this case, the best possible is using six vertices to dominate ten columns (from c_{i-3} to c_{i+6}).

If $\mathrm{n}=11$ or $\mathrm{n}=12$, then we must have $|D| \geq 7$, but there exist a $D_{3,2,1}$-dominating set $D^{\prime}=\left\{\left(u_{1}, v_{2}\right)\right.$, $\left.\left(u_{1}, v_{3}\right),\left(u_{1}, v_{6}\right),\left(u_{1}, v_{7}\right),\left(u_{1}, v_{10}\right),\left(u_{1}, v_{11}\right)\right\}$ such that $\left|D^{\prime}\right|=6<7 \leq|D|$, contradict to the fact that D is optimal. If $\mathrm{n}>12$, we discuss in following cases: Case 1: $\left|c_{i+7} \cap D\right|=n(n \neq 0)$, there exist a $D_{3,2,1}$-dominating set $D^{\prime}=\left\{\left(u_{1}, v_{i-2}\right),\left(u_{1}, v_{i-1}\right)\right.$, $\left.\left(u_{1}, v_{i+3}\right),\left(u_{2}, v_{i+3}\right),\left(u_{1}, v_{i+5}\right)\right\} \cup\left\{D-\bigcup_{k=i-3}^{i+6}\left(D \cap c_{k}\right)\right\}$. Since $\left|\bigcup_{k=i-3}^{i+6}\left(D \cap c_{k}\right)\right|=6$, we must have $\left|D^{\prime}\right|<|D|$, which contradict to the fact that D is optimal.
Case 2: $\left|c_{i+8} \cap D\right|=n(n \neq 0)$ and $\left|c_{i+7} \cap D\right|=0$, there exist a $D_{3,2,1}$-dominating set $D^{\prime}=\left\{\left(u_{1}, v_{i-2}\right)\right.$, $\left.\left(u_{1}, v_{i-1}\right),\left(u_{1}, v_{i+3}\right),\left(u_{2}, v_{i+3}\right),\left(u_{1}, v_{i+5}\right)\right\}$ $\bigcup\{D$
$\left.-\bigcup_{k=i-3}^{i+7}\left(D \bigcap c_{k}\right)\right\}$. Since $\left|\bigcup_{k=i-3}^{i+7}\left(D \bigcap c_{k}\right)\right|=6$, we must have $\left|D^{\prime}\right|<|D|$, which contradict to the fact that D is optimal.
Case 3: $\left|\left\{c_{i+7}, c_{i+8}\right\} \cap D\right|=0$, in order to fulfill the condition $w_{D}(v) \geq 3$ for all $v \in\left\{c_{i+7}, c_{i+8}\right\}$, we must have $\left|c_{i+9} \cap D\right|=3$, there exist a $D_{3,2,1}$-dominating set $D^{\prime}=\left\{\left(u_{1}, v_{i-2}\right),\left(u_{1}, v_{i-1}\right)\right.$, $\left(u_{1}, v_{i+2}\right),\left(u_{1}, v_{i+3}\right),\left(u_{1}, v_{i+6}\right),\left(u_{1}, v_{i+7}\right),\left(u_{1}, v_{i+10}\right)$,
$\left.\left(u_{1}, v_{i+11}\right)\right\} \cup\left\{D-\bigcup_{k=i-3}^{i+11}\left(D \cap c_{k}\right)\right\} \quad$ Since $\left|\bigcup_{k=i-3}^{i+11}\left(D \bigcap c_{k}\right)\right|=9$, we must have $\left|D^{\prime}\right|<|D|$, which contradict to the fact that D is optimal.

Lemma 2: Let D be an optimal $D_{3,2,1}$ -dominating set of $G=P_{n}\left[P_{m}\right]$ for $m>6$ and n is even. If $c_{1} \cap D \neq \varnothing$ or $c_{n} \cap D \neq \varnothing$, then $|D|>n / 2$.
Proof: Without loss of generality, assume $c_{1} \cap D \neq \varnothing$. Consider following cases:
Case 1: $\left|c_{1} \cap D\right|=1$. In order to fulfill the condition $w_{D}(v) \geq 3$ for all $v \in c_{1}$, we must have either $\quad\left|c_{2} \cap D\right| \geq 1 \quad$ or $\quad c_{2} \cap D=\varnothing \quad$ and $\left|c_{3} \cap D\right| \geq 2$.

Subcase 1.1: $\left|c_{2} \cap D\right|=1$. Assume that from c_{1} through c_{4}, there are no more than two vertices in D. Since the vertices in c_{4} can not get enough weight from those two vertices, in order to fulfill the condition $w_{D}(v) \geq 3$ for all $v \in c_{4}$, we must have either $\left|c_{5} \cap D\right| \geq 1$ or $\left|c_{6} \cap D\right| \geq 2$.

If $\left|c_{5} \cap D\right|=1$, the sub graph from c_{5} to c_{n} is the same as G in case 1 .

If $\left|c_{5} \cap D\right| \geq 2$, then the case from c_{5} to c_{n} is the same as G in case 2 .

If $\mid c_{6} \cap D=2$, since the vertices in c_{6} are distance 4 from c_{2}, hence the vertices in c_{6} can only get weight from $c_{6} \cap D$. Since $m>6$, there must be some vertices in c_{6} without enough weight from those two vertices in c_{6}. Hence it is impossible for those four vertices to $D_{3,2,1}$-dominate c_{1} through c_{8}.

If $\left|c_{6} \cap D\right|=y>2$, assume that from c_{1} through $c_{2 y+4}$, there are no more than $y+2$ vertices in D. Since the vertices in $c_{2 y+3}$ are at least distance $2 y-3$ from c_{6}, and $y \geq 3$, the vertices in $c_{2 y+3}$ can not get any weight from the vertices in c_{1} through $c_{2 y+4}$. Then we must have $\left|c_{2 y+5} \cap D\right| \geq 3$, which again will bring us to case 2.
Subcase 1.2: $\left|c_{2} \cap D\right|=x>1$. Assume that from c_{1} through $c_{2 x+2}$, there are no more than $x+1$ vertices in D. Since the vertices in $c_{2 x+1}$ are at least distance $2 x-1$ from c_{2}, and $x \geq 2$, hence the vertices in $c_{2 x+1}$ can not get any weight from the vertices in c_{1} through $c_{2 x+2}$, then we must have $\left|c_{2 x+3} \cap D\right| \geq 3$, which again will bring us to case 2.
Subcase 1.3: $\quad c_{2} \cap D=\varnothing$ and $\left|c_{3} \cap D\right|=x \geq 2$. Assume that from c_{1} through $c_{2 x+2}$, there are no more than $x+1$ vertices in D. The vertices in $c_{2 x+1}$ are at least distance $2 x-2$ from c_{3}. If
$x=2$, the vertices in c_{5} are distance 2 from c_{3}, and $\left|c_{3} \cap D\right|=2$, hence the weight of the vertices in c_{5} can only get two from the vertices in c_{1} through c_{6}. Then we must have $\left|c_{7} \cap D\right| \geq 1$. If $\left|c_{7} \cap D\right|=1$, then the case from c_{7} to c_{n} is the same as G in case1. If $\left|c_{7} \cap D\right| \geq 2$, then the case from c_{7} to c_{n} is the same as G in case 2. If $x \geq 3$, since the vertices in $c_{2 x+1}$ are at least distance $2 x-2$ from c_{3}, the vertices in $c_{2 x+1}$ can not get any weight from the vertices in c_{1} through $c_{2 x+2}$, then we must have $\left|c_{2 x+3} \cap D\right| \geq 3$, which again will bring us to case 2 .
Case 2: $\left|c_{1} \cap D\right| \geq 2$. Consider following subcases:
Subcase 2.1: $\left|c_{1} \cap D\right|=2$. Assume that from c_{1} through c_{4}, there are no more than two vertices in D. Since the vertices in c_{3} are distance 2 from c_{1}, the vertices in c_{3} can only get two weight from the vertices in c_{1} through c_{4}, then we must have $\left|c_{5} \cap D\right| \geq 1$. If $\left|c_{5} \cap D\right|=1$, then the case from c_{5} to c_{n} is the same as G in case1. If $\left|c_{5} \cap D\right| \geq 2$, then the case from c_{5} to c_{n} is the same as G in case2.
Subcase 2.2: $\left|c_{1} \cap D\right|=x>2$. Assume that from c_{1} through $c_{2 x}$, there are no more than x vertices in D. Since the vertices in $c_{2 x-1}$ are at least distance $2 x-2$ from c_{1}, and $x \geq 3$, hence the vertices in $c_{2 x-1}$ can not get any weight from the vertices in c_{1} through $c_{2 x}$. In order to fulfill the condition $w_{D}(v) \geq 3$ for all $v \in c_{2 x-1}$, we must have $\left|c_{2 x+1} \cap D\right| \geq 3$, then the case from $c_{2 x+1}$ to c_{n} is the same as G in case2.
By all the cases above, we know that if n is even, for any optimal $D_{3,2,1}$-dominating set D of $P_{n}\left[P_{m}\right]$, either $\left(c_{1} \cup c_{n}\right) \cap D=\varnothing$, or $|D|>n / 2$.

Algorithm 1: A way to "partition" the graph $P_{n}\left[P_{m}\right]$ by the vertices in the $D_{3,2,1}$-dominating set, which is used in the proof of Theorem 1.
Input: Integers n, m, and a $D_{3,2,1}$-dominating set D with $|D|<n / 2$ of $P_{n}\left[P_{m}\right]$.
Task: Find $\max k, \min k^{\prime} \quad\left(1 \leq k \leq k^{\prime} \leq n\right), \quad D_{1}$ and $\quad D_{2} \quad$ such that $D_{1}=\bigcup_{i=1}^{k-1} c_{i} \cap D,\left|D_{1}\right|=\frac{k-1}{2}$, $D_{2}=\bigcup_{i=k^{\prime}+1}^{n} c_{i} \cap D,\left|D_{2}\right|=\frac{n-k^{\prime}}{2}$. Notice that if such k exists, then for odd $n, k=k^{\prime}$; and for even n, $k+1=k^{\prime}$.

Method:

```
k\leftarrow0;x\leftarrow0;k'\leftarrow0;y\leftarrow0;z\leftarrow0;
D}=\varnothing; D = \varnothing;
if (n% 2 = 0) }\quadz\leftarrow2
else }z<<1\mathrm{ ;
for (i=1;i<n;i++ ){
    if ( }\mp@subsup{c}{i}{}\capD=\varnothing) x\leftarrowx+1
    else }\quadx\leftarrowx-1-2(|\mp@subsup{c}{i}{}\capD|-1)
        D}=\mp@subsup{D}{1}{}\cup(\mp@subsup{c}{i}{}\capD)
    if (x=z){
        k\leftarrowi-z+1;
        }
    }
    for( }i=\textrm{n};i>k;i--)
    if ( }\mp@subsup{c}{i}{}\capD=\varnothing) y\leftarrowy+1
    else }\quady\leftarrowy-1-2(|\mp@subsup{c}{i}{}\capD|-1)
        D}=\mp@subsup{D}{2}{}\cup(\mp@subsup{c}{i}{}\capD
        if(y=z){
        k'\leftarrowi+z-1;
        }
    }
    Return k, D D, D ;
```

Theorem 1: Let $G=P_{n}\left[P_{m}\right]$ for $m>6$. Then

$$
\gamma_{3,2,1}\left(P_{n}\left[P_{m}\right]\right)=\left\{\begin{array}{cc}
2, & 2 \leq n \leq 3 \\
\frac{n}{2}+1, & n=6 \text { or } n=10 ; \\
\left\lceil\frac{n}{2}\right\rceil, & \text { otherwise } .
\end{array}\right.
$$

Since $d\left(\left(u_{i}, v_{1}\right),\left(u_{1}, v_{1}\right)\right) \leq d\left(\left(u_{i}, v_{3}\right),\left(u_{1}, v_{1}\right)\right)=2$ and $d\left(\left(u_{i}, v_{1}\right),\left(u_{1}, v_{2}\right)\right)=d\left(\left(u_{i}, v_{3}\right),\left(u_{1}, v_{2}\right)\right)=1$ for $2 \leq i \leq m$, we have $w_{D}\left(\left(u_{i}, v_{1}\right)\right) \geq w_{D}\left(\left(u_{i}, v_{3}\right)\right)$ $=1+2=3$ for $2 \leq i \leq m$. Similarly, for each $2 \leq i \leq m$, vertex (u_{i}, v_{2}) is at distance 1 from vertex (u_{1}, v_{1}) and at distance no more than 2 from $\left(u_{1}, v_{2}\right)$, so we have $w_{D}\left(\left(u_{i}, v_{2}\right)\right) \geq 2+1=3$ for $2 \leq i \leq m$. Hence D is a $D_{3,2,1}$-dominating set of $P_{m}\left[P_{2}\right]$. By Fact $1, \gamma_{3,2,1}\left(P_{m}\left[P_{2}\right]\right)=2$. Next we show the upper bound of $\gamma_{3,2,1}\left(P_{n}\left[P_{m}\right]\right)$ for the rest cases:
Case 1: $n \geq 4$ and $n \neq 2(\bmod 4)$. Consider $D=\left\{\left(u_{1}, v_{n-1}\right),\left(u_{1}, v_{n-2}\right)\right\} \cup$
$\left\{\left(u_{1}, v_{j}\right) \mid j=4 i+2\right.$ or $4 i+3$, for $\left.0 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor-1\right\}$
Since for all vertex $\left(u_{k}, v_{j}\right) \in V-D$, $N_{1}\left(\left(u_{k}, v_{j}\right)\right) \cap D \geq 1$ and $N_{2}\left(\left(u_{k}, v_{j}\right)\right) \cap D \geq 1$, we have $w_{D}\left(\left(u_{i}, v_{j}\right)\right) \geq 3$ for $1 \leq i \leq m$ and $1 \leq j \leq n$, which implies D is a $D_{3,2,1}$-dominating set of $P_{n}\left[P_{m}\right]$. Let $n=k(\bmod 4)$, then $|D|=2\left\lfloor\frac{n}{4}\right\rfloor+k$ $=\left\lceil\frac{n}{2}\right\rceil$. Hence $\gamma_{3,2,1}\left(P_{n}\left[P_{m}\right]\right) \leq\left\lceil\frac{n}{2}\right\rceil$.
Case 2: $n=2(\bmod 4)$. This case may be divided into two subcases:
Subcase 2.1: $n=6,10$. The same D in case 1 will work in this case and $|D|=2\left\lfloor\frac{n}{4}\right\rfloor+2=$ $2\left\lceil\frac{n}{4}\right\rceil=\frac{n}{2}+1$.
Subcase 2.2: $n \geq 14$ and $n=2(\bmod 4)$. Consider $D=\left\{\left(u_{1}, v_{j}\right) \mid j=4 i+2\right.$ or $4 i+3$ for $\left.0 \leq i \leq\left\lfloor\frac{n}{4}\right\rfloor-3\right\} \cup\left\{\left(u_{1}, v_{n-1}\right),\left(u_{1}, v_{n-2}\right),\left(u_{1}, v_{n-5}\right),\left(u_{1}, v_{n-7}\right)\right.$,$\left.\left(u_{2}, v_{n-7}\right)\right\}$ as shown in figure 4. Then D is a $D_{3,2,1}$-dominating set of $P_{n}\left[P_{m}\right]$ and $|D|=$ $2\left\lfloor\frac{n}{4}\right\rfloor+1=\left\lceil\frac{n}{2}\right\rceil$, which implies $\gamma_{3,2,1}\left(P_{n}\left[P_{m}\right]\right)$ $\leq\left\lceil\frac{n}{2}\right\rceil$.

Proof. For $2 \leq n \leq 3$, let $D=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right)\right\}$.

$$
c_{n-9} c_{n-8} c_{n-7} c_{n-6} c_{n-5} c_{n-4} c_{n-3} c_{n-2} c_{n-1} c_{n}
$$

Figure 4: A pattern of $D_{3,2,1}$-dominating set for $P_{n}\left[P_{m}\right]$ where $n=2(\bmod 4)$ and $n \geq 14$.

Next we show the lower bound of $\gamma_{3,2,1}\left(P_{n}\left[P_{m}\right]\right)$. First we consider the case of $n \geq 4$, and $n \neq 6,10$. Suppose to the contrary that $\gamma_{3,2,1}\left(P_{n}\left[P_{m}\right]\right) \leq\left\lceil\frac{n}{2}\right\rceil-1$. Then there exists a $D_{3,2,1}$-dominating set D such that $|D|=\frac{n}{2}-1$ for even n and $|D|=\left\lfloor\frac{n}{2}\right\rfloor$ for odd n. Consider following two cases:
Case 1: n is even. By using algorithm 1 to "partition" the graph, we can get two consecutive columns c_{k}, c_{k+1} such that $\left(c_{k} \cup c_{k+1}\right) \cap D=\varnothing$, $\left|\bigcup_{i=1}^{k-1} c_{i} \cap D\right|=\left|D_{1}\right|=\frac{k-1}{2} \quad$ and $\quad\left|\bigcup_{i=k+2}^{n} c_{i} \cap D\right|=\left|D_{2}\right|=$ $\frac{n-k-1}{2}$. Let D_{1}, D_{2} be two sets produced by algorithm 1, notice that $\left|D_{1}\right|=\frac{k-1}{2}$ and $\left|D_{2}\right|=\frac{n-k-1}{2}$. Since D_{1} can $D_{3,2,1}$-dominate the vertices from c_{1} to c_{k-1}, and D_{2} can $D_{3,2,1}$-dominate the vertices from c_{k+2} to c_{n}, to ensure that the vertices in c_{k} and c_{k+1} can also be $D_{3,2,1}$-dominated by $D_{1} \cup D_{2}$, one of the following must be satisfied:
(1) $\left|c_{k-1} \cap D\right|=1$ and $\left|c_{k+2} \cap D\right|=1$
(2) $\left|c_{k-1} \cap D\right|=1, c_{k+2} \cap D=\varnothing$ and $\left|c_{k+3} \cap D\right|=2$
(3) $c_{k-1} \cap D=\varnothing,\left|c_{k-2} \cap D\right|=2$ and $\left|c_{k+2} \cap D\right|=1$
(4) $\left(c_{k-1} \cup c_{k+2}\right) \cap D=\varnothing$ and

$$
\left|c_{k-2} \cap D\right|=\left|c_{k+3} \cap D\right|=3
$$

The first three conditions have either $\left|c_{k-1} \cap D\right|=1$ or $\left|c_{k+2} \cap D\right|=1$. Without loss of
generality, assume $\left|c_{k-1} \cap D\right|=1$. By Lemma 2, $\left|D_{1}\right|>(k-1) / 2$ which contradict to the fact that $\left|D_{1}\right|=(k-1) / 2$, so it is impossible.

For (4), since c_{k-1} to c_{k+2} are four consecutive columns without any vertex in $D_{3,2,1}$ -domination set, which contradict to Lemma1, hence it is also impossible.
Case 2: n is odd. By using algorithm 1 to "partition" the graph, we can get one column c_{k}, such that $c_{k} \cap D=\varnothing,\left|\bigcup_{i=1}^{k-1} c_{i} \cap D\right|=\left|D_{1}\right|=\frac{k-1}{2}$ and $\left|\bigcup_{i=k+1}^{n} c_{i} \cap D\right|=\left|D_{2}\right|=\frac{n-k}{2}$. Since D_{1} can $D_{3,2,1}$ -dominate the vertices from c_{1} to c_{k-1}, and D_{2} can $D_{3,2,1}$-dominate the vertices from c_{k+1} to c_{n}, to ensure that the vertices in c_{k} can also be $D_{3,2,1}$-dominated by $D_{1} \cup D_{2}$, one of the following must be satisfied:
(1) $\left|c_{k-1} \cap D\right|=1, c_{k+1} \cap D=\varnothing$ and $\left|c_{k+2} \cap D\right|=1$
(2) $\left|c_{k+1} \cap D\right|=1, c_{k-1} \cap D=\varnothing$ and $\left|c_{k-2} \cap D\right|=1$
(3) $\left(c_{k-1} \cup c_{k+1}\right) \cap D=\varnothing,\left|c_{k-2} \cap D\right|=2$ and $\left|c_{k+2} \cap D\right|=1$
(4) $\left(c_{k-1} \cup c_{k+1}\right) \cap D=\varnothing,\left|c_{k+2} \cap D\right|=2$ and $\left|c_{k-2} \cap D\right|=1$
(5) $\left(c_{k-1} \cup c_{k+1}\right) \cap D=\varnothing$ and $\left|c_{k-2} \cap D\right|=3$
(6) $\left(c_{k-1} \cup c_{k+1}\right) \cap D=\varnothing$ and $\left|c_{k+2} \cap D\right|=3$

Condition (1) and (2) have either $\left|c_{k-1} \cap D\right|=1$ or $\left|c_{k+1} \cap D\right|=1$, without loss of generality, assume $\left|c_{k-1} \cap D\right|=1$. By Lemma 2, $\left|D_{1}\right|>(k-1) / 2$ which contradict to the fact that $\left|D_{1}\right|=(k-1) / 2$, so it is impossible.

Condition (3) to (6) have either $\left|c_{k-2} \cap D\right| \geq 2$ or $\left|c_{k+2} \cap D\right| \geq 2$, without loss of generality, assume $\left|c_{k+2} \cap D\right| \geq 2$. Consider following subcases.
Subcase 2.1: If $\left|c_{k+2} \cap D\right|=2$, in order to fulfill the condition $w_{D}(v) \geq 3$ for all $v \in c_{k+2}$, we must have $\left|\left(c_{k+3} \cup c_{k+4}\right) \cap D\right|=x \geq 1$, assume that from
c_{k+1} through $c_{k+2 x+4}$, there are no more than $x+2$ vertices in D. Since from c_{k+1} through $c_{k+2 x+4}$, $\left|\left(N_{1}(v) \cup N_{2}(v)\right) \cap D_{2}\right| \leq 1$ for all $v \in c_{k+2 x+3}$, we must have $\left|c_{k+2 x+5} \cap D\right| \geq 1$. By lemma 2, the subgraph from $c_{k+2 x+5}$ to c_{n} must have more than $\frac{n-(k+2 x+5)+1}{2}$ vertices in $D_{3,2,1}$-dominating set, hence $\quad\left|D_{2}\right|>\frac{n-(k+2 x+5)+1}{2}+x+2=\frac{n-k}{2} \quad$ which contradict to $\left|D_{2}\right|=\frac{n-k}{2}$, so it is impossible.
Subcase 2.2: If $\left|c_{k+2} \cap D\right|=x \geq 3$, assume that from c_{k+1} through $c_{k+2 x}$, there are no more than x vertices in D. Since from c_{k+1} through $c_{k+2 x},\left(N_{1}(v) \cup N_{2}(v)\right) \cap D_{2}=\varnothing$ for all $v \in c_{k+2 x}$, we must have $\left|c_{k+2 x+1} \cap D\right| \geq 3$. By lemma 2 , the subgraph from $c_{k+2 x+1}$ to c_{n} must have more than $\frac{n-(k+2 x+1)+1}{2}$ vertices in $D_{3,2,1}$-dominating set, hence $\left|D_{2}\right|>\frac{n-(k+2 x+1)+1}{2}+x=\frac{n-k}{2}$ which contradict to the fact that $\left|D_{2}\right|=\frac{n-k}{2}$, hence it is also impossible.

Next we consider the case of $n=6$. According to the definition of $D_{3,2,1}$-domination, if $w_{D}(v) \geq 3$ for all $v \in c_{1}$, then $\left|\bigcup_{i=1}^{3} c_{i} \cap D\right| \geq 2$. Similarly, if $w_{D}(v) \geq 3$ for all $v \in c_{6}$, then $\left|\bigcup_{i=4}^{6} c_{i} \cap D\right| \geq 2$. Hence $\gamma_{3,2,1}\left(P_{6}\left[P_{m}\right]\right) \geq 4=\frac{n}{2}+1$.

For the case of $n=10$, according to the definition of $D_{3,2,1}$-domination, if $w_{D}(v) \geq 3$ for all $v \in c_{1}$, then $\left|\bigcup_{i=1}^{3} c_{i} \cap D\right| \geq 2$. Similarly, if $w_{D}(v) \geq 3$ for all $v \in c_{10}$, then $\left|\bigcup_{i=8}^{10} c_{i} \cap D\right| \geq 2$. Consider following three cases:
Case 1: $\left|\left\{c_{1}, c_{2}, c_{3}\right\} \cap D\right|=3$ and $\left|\left\{c_{8}, c_{9}, c_{10}\right\} \cap D\right|$ $=2$. In this case, $\forall v \in c_{6} \quad 3|\{v\} \cap D|+$ $2\left|N_{1}(v) \cap D\right|+\left|N_{2}(v) \cap D\right|<3 \quad$, therefore, $\gamma_{3,2,1}\left(P_{10}\left[P_{m}\right]\right) \geq 6$.
Case 2: $\left|\left\{c_{1}, c_{2}, c_{3}\right\} \cap D\right|=2$ and $\left|\left\{c_{8}, c_{9}, c_{10}\right\} \cap D\right|$ $=3$. In this case, $\forall v \in c_{5} \quad 3|\{v\} \cap D|+$ $2\left|N_{1}(v) \cap D\right|+\left|N_{2}(v) \cap D\right|<3 \quad$, therefore,
$\gamma_{3,2,1}\left(P_{10}\left[P_{m}\right]\right) \geq 6$.
Case 3: $\left|\left\{c_{1}, c_{2}, c_{3}\right\} \cap D\right|=2$ and $\left|\left\{c_{8}, c_{9}, c_{10}\right\} \cap D\right|$ $=2$. In this case, according to the definition of $D_{3,2,1}$-domination, in order to have $w_{D}(v) \geq 3$ $\forall v \in c_{1}$, we must have $\left|c_{3} \cap D\right| \leq 1$. Similarly, in order to have $w_{D}(v) \geq 3 \quad \forall v \in c_{10}$, we must have $\left|c_{8} \cap D\right| \leq 1$. Therefore, $\forall v \in\left(c_{5} \cup c_{6}\right) 3|\{v\} \cap D|$ $+2\left|N_{1}(v) \cap D\right|+\left|N_{2}(v) \cap D\right| \leq 1 \quad$. Since $\bigcap_{v \in c_{5} \cup_{6}} N_{1}(v)=\varnothing$, for $w_{D}(v) \geq 3 \quad \forall v \in\left(c_{5} \cup c_{6}\right)$, $\left|\left\{c_{4}, c_{5}, c_{6}, c_{7}\right\} \cap D\right| \geq 2$, therefore, $\gamma_{3,2,1}\left(P_{10}\left[P_{m}\right]\right)$ ≥ 6.

From all the cases above, we have the lower bound of $P_{\mathrm{n}}\left[P_{m}\right]$ for $n \geq 4$ is the same as the upper bound. By sandwich theorem, we proved the theorem.
$P_{n}\left[C_{m}\right]$ changes each column of $P_{n}\left[P_{m}\right]$ from a path to a cycle, which does not changes the distance between columns. Hence Corollary can be obtained from Theory 1 directly.

Corollary 1 Let $G=P_{n}\left[C_{m}\right]$ for $m>6$. Then

$$
\gamma_{3,2,1}\left(P_{n}\left[C_{m}\right]\right)=\left\{\begin{array}{cc}
2, & 2 \leq n \leq 3 ; \\
\frac{n}{2}+1, & n=6 \text { or } n=10 ; \\
\left\lceil\frac{n}{2}\right\rceil, & \text { otherwise } .
\end{array}\right.
$$

III. Conclusion

The $D_{3,2,1}$-domination is related to distance -two-domination, which has many applications in resource allocations. This paper established the $D_{3,2,1}$-domination number of the composition of a path with a path and a path with a cycle by giving detail proofs for each case. The author expect to study on the same problem for the composition of a cycle with a path and a cycle with a cycle in the near future.

Reference

[1] R.B. Allan, R. Laskar and S.T. Hedetniemi, "A note on total domination," Discrete Mathematics, Vol. 49, pp.7-13, 1984.
[2] J. Cyman, M. Lemanska and J. Raczek, "Lower bound on the distance k-domination number of a tree," Math. Slovaca, Vol.56(2), pp.235-243, 2006.
[3] P. Dankelmann, "Average distance and the domination number," Discrete Applied Mathematics, Vol.80, pp.21-35, 1997.
[4] O. Favaron and D. Kratsch, "Ratios of domination parameters, Advances in Graph Theory," Vishwa Int. Pub., pp.173-182, 1991.
[5] M. Fischermann and L. Volkmann, "Graphs having distance-n domination number half their order," Discrete Applied Mathematics, Vol.120, pp.97-107, 2002.
[6] A. Hansberg, D Meierling and L Volkmann, "Distance domination and distance irredundance in graphs," The Electronic Journal of Combinatorics, Vol.14, pp.\#R35, 2007.
[7] J.H. Hattingh and M.A. Henning, "The ratio of the distance irredundance and domination numbers of a graph," Journal of Graph Theory, Vol.18, pp.1-9, 1994.
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, "Domination in Graphs: Advanced Topics," Marcel Decker Inc, New York, 1998.
[9] T. Haynes, S.T. Hedetniemi and P.J. Slater, "Fundamentals of Domination in Graphs," Marcel Decker Inc, New York, 1998.
[10] M.A. Henning, O.R. Oellermann and H.C. Swart, "Bounds on distance domination parameters," Journal of Combinatorics, Information System Sciences, Vol.16, pp.11-18, 1991.
[11] M.A. Henning, O.R. Oellermann and H.C. Swart, "Relations between distance domination parameters," Mathematica Pannonica, Vol.5, pp.69-79, 1994.
[12] F. R. Hsu, "Distance-two domination of graph," Master Thesis, Department of Mathematic, National Central University, Taiwan, 2006.
[13] Shougui Li, "On connected k-domination numbers of graphs," Discrete Mathematics, Vol.274, pp.303-310, 2004.
[14] D. Meierling and L. Volkmann, "A lower bound for the distance k -domination number of trees," Results in Mathematics, Vol.47, pp.335-339, 2005.
[15] Fang Tian and Jun-Ming Xu , "A note on distance domination numbers of graphs," Australasian Journal of Combinatorics, Vol.43, pp.181-190, 2009.
[16] D.B. West, "Introduction to Graph Theory (2nd ed.)," Prentice-Hall, NJ, 2001.
[17] K.Y. Zhen, "Distance-two domination of double-loop networks," Master Thesis, Department of Mathematic, National Central University, Taiwan, 2008.

