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Abstract―For a graph  ,G V E , let 1( )N v and

2 ( )N v denote the set of vertices that are at distance one

and two from v respectively. A subset D V G is

said to be a 3,2,1D -dominating set of G if every vertex

v V satisfies  3Dw v  where Dw v 3 v D 

2 1N v D  2N v D . The minimum cardinality

of a 3,2,1D -dominating set of G , denoted as 3,2,1 G , is

called the 3,2,1D -domination number of G . In this

paper we obtained the 3,2,1D -domination number of the

composition of two paths and a path with a cycle.
Index Terms― 3,2,1D -domination, composition,

3,2,1D -domination number.

I. INTRODUCTION
We consider only simple and connected

graphs. A graph  ,G V E contains a set V
of vertices and a set E of edges. The distance
 ,d x y of two vertices x and y is the length

of the shortest x y path. The
distance-k-neighborhood kN v of vertex v ,

defined as    ,kN v u v d u v k   , is the set

of those vertices that are at distance k from v .
Figure 1 shows an example of a graph G with

 , , , , ,V a b c d e f where  1 ,N a b d ,

 2 , ,N a c e f . For a graph ( , )G V E , a
dominating set D V of G is a set of vertices
such that for each u V D  , 1N u D  .
The distance-k-dominating set of a graph G is
defined as the subset D V such that for each
u V D  ,  

1
i

i k
N u D


  . The 3,2,1D

-domination problem proposed by [12] in 2006 is
similar to distance-2-domination problem, which

may be used to solved the resource sharing problem
that are modeled by graphs. For each vertex v ,
the weight of v is defined as Dw v  3 v D

2 N v D  2N v D  for some D V .

D is called a 3,2,1D -dominating set of graph G

if and only if for each v V G ,  3Dw v  .

The 3,2,1D -domination number 3,2,1 G of a
graph G is then the minimum cardinality among all

3,2,1D -dominating set of G. D is an optimal

3,2,1D -dominating set of G if 3,2,1D G .
Due to the short history, unlike the related
distance-k-domination has many results (see
[1,3-5,7-9,13,16] for 1k  , and [2,6,10-11,14-15]
for 1k  ), 3,2,1D -domination problem has only
been solved for a very limited class of graphs.
The 3,2,1D -domination number is known for paths,

cycles and a full binary tree nB [12]. [17]
discussed 3,2,1D -domination problem of a

-double loop network  ; ,DL n a b according to
different value of ,a b . This paper established the

3,2,1D -domination number for the composition of
two paths and a path with a cycle.

Figure 1  1 ,N a b d ,  2 , ,N a c e f
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II. RESULTS
The composition (also called lexicographic

product)  G H of two graphs G and H with

vertex set   1xV G v x n   and  V H 

 1xu x m  respectively, is the graph with vertex

set      V G H V H V G  and  1 1,u v is

adjacent to  2 2,u v , if either 1v is adjacent to 2v

in G or 1 2v v and 1u is adjacent to 2u in H .
Figure 3 shows an example of a 3 4[ ]P P . In this

paper, we will use  ( , ) 1i j ic u v j m   for

1 i n to denote the set of vertices from i-th
column of  G H .

Figure 3: An example of graph 3 4[ ]P P .

Since 3,2,1D -domination requires every vertex
has weight at least 3, Fact 1 is trivial.

Fact 1: Let G be a graph of order 2n  . Then
3,2,1( ) 2G  .

Lemma 1: Let [ ]n mG P P for 10, 6n m  and
D be an optimal 3,2,1D -dominating set of G .
Then in any four consecutive columns of G , there
is at least one vertex in D .
Proof: Suppose to the contrary that there is no
vertex in D in four consecutive columns

1 2 3, , ,i i i ic c c c   . In order to have all vertices

1 2i iv c c   satisfy ( ) 3Dw v  , there must be at
least three vertices of D in 1ic  and 4ic  . In

this case, the best possible is using six vertices to
dominate ten columns (from 3ic  to 6ic  ).

If n=11 or n=12, then we must have 7D  , but

there exist a 3,2,1D -dominating set   1 2' , ,D u v

     1 3 1 6 1 7 1 10 1 11, , , , , , , , ,u v u v u v u v u v such that

' 6 7D D   , contradict to the fact that D is
optimal. If n>12, we discuss in following cases:
Case 1:  7 0ic D n n   , there exist a

3,2,1D -dominating set    1 -2 1 -1' , , , ,i iD u v u v

   1 3 2 3 1 5, , , , ,i i iu v u v u v     6
-3- i

k i kD D c
   .

Since  6
-3 =6i

k i kD c
  , we must have 'D D ,

which contradict to the fact that D is optimal.
Case 2:  8 0ic D n n   and 7 0ic D  ,

there exist a 3,2,1D -dominating set   1 -2' , ,iD u v

    1 -1 1 3 2 3 1 5, , , , , , ,i i i iu v u v u v u v   D
 7

-3- i
k i kD c
  . Since  7

-3 =6i
k i kD c
  , we

must have 'D D , which contradict to the fact
that D is optimal.
Case 3:  7 8, 0i ic c D   , in order to fulfill the

condition  3Dw v  for all  7 8,i iv c c  , we

must have 9 3ic D  , there exist a

3,2,1D -dominating set    1 -2 1 -1' , , , ,i iD u v u v

     1 2 1 3 1 6 1 7 1 10, , , , , , , , , ,i i i i iu v u v u v u v u v    

    11
1 11 -3, - i

i k i ku v D D c
    . Since

 11
-3 =9i

k i kD c
  , we must have 'D D , which

contradict to the fact that D is optimal. 

Lemma 2: Let D be an optimal 3,2,1D

-dominating set of [ ]n mG P P for 6m  and n
is even. If 1c D  or nc D  , then

2D n .
Proof: Without loss of generality, assume

1c D  . Consider following cases:

Case 1: 1 1c D  . In order to fulfill the

condition ( ) 3Dw v  for all 1v c , we must have

either 2 1c D  or 2c D  and

3 2c D  .
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Subcase 1.1: 2 1c D  . Assume that from 1c

through 4c , there are no more than two vertices in
D . Since the vertices in 4c can not get enough
weight from those two vertices, in order to fulfill
the condition ( ) 3Dw v  for all 4v c , we must

have either 5 1c D  or 6 2c D  .

If 5 =1c D , the sub graph from 5c to nc
is the same as G in case 1.

If 5 2c D  , then the case from 5c to nc
is the same as G in case 2.

If 6 =2c D , since the vertices in 6c are

distance 4 from 2c , hence the vertices in 6c can
only get weight from 6c D . Since 6m  , there
must be some vertices in 6c without enough
weight from those two vertices in 6c . Hence it is
impossible for those four vertices to

3,2,1D -dominate 1c through 8c .

If 6 = 2c D y  , assume that from 1c

through 2 +4yc , there are no more than 2y

vertices in D . Since the vertices in 2 3yc  are at

least distance 2 -3y from 6c , and 3y  , the
vertices in 2 3yc  can not get any weight from the

vertices in 1c through 2 4yc  . Then we must

have 2 +5 3yc D  , which again will bring us to

case 2.
Subcase 1.2: 2 1c D x  . Assume that from

1c through 2 2xc  , there are no more than 1x
vertices in D . Since the vertices in 2 +1xc are at
least distance 2 -1x from 2c , and 2x  , hence
the vertices in 2 1xc  can not get any weight from
the vertices in 1c through 2 2xc  , then we must

have 2 3 3xc D  , which again will bring us to
case 2.
Subcase 1.3: 2 3and 2c D c D x    .

Assume that from 1c through 2 2xc  , there are no
more than 1x vertices in D . The vertices in

2 +1xc are at least distance 2 - 2x from 3c . If

2x  , the vertices in 5c are distance 2 from 3c ,

and 3 2c D  , hence the weight of the vertices

in 5c can only get two from the vertices in 1c

through 6c . Then we must have 7 1c D  . If

7 =1c D , then the case from 7c to nc is the

same as G in case1. If 7 2c D  , then the

case from 7c to nc is the same as G in case 2.
If 3x  , since the vertices in 2 +1xc are at least
distance 2 - 2x from 3c , the vertices in 2 1xc  can
not get any weight from the vertices in 1c through

2 2xc  , then we must have 2 3 3xc D  , which
again will bring us to case 2.
Case 2: 1 2c D  . Consider following
subcases:
Subcase 2.1: 1 =2c D . Assume that from 1c

through 4c , there are no more than two vertices in
D . Since the vertices in 3c are distance 2 from

1c , the vertices in 3c can only get two weight
from the vertices in 1c through 4c , then we must

have 5 1c D  . If 5 =1c D , then the case

from 5c to nc is the same as G in case1. If

5 2c D  , then the case from 5c to nc is the
same as G in case2.
Subcase 2.2: 1 2c D x  . Assume that from

1c through 2xc , there are no more than x
vertices in D . Since the vertices in 2 -1xc are at
least distance 2 - 2x from 1c , and 3x  , hence
the vertices in 2 -1xc can not get any weight from
the vertices in 1c through 2xc . In order to fulfill
the condition ( ) 3Dw v  for all 2 -1xv c , we must

have 2 1 3xc D  , then the case from 2 1xc  to

nc is the same as G in case2.
By all the cases above, we know that if n is even,
for any optimal 3,2,1D -dominating set D of

 n mP P , either  1 nc c D   , or 2D n . 
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Algorithm 1: A way to “partition” the graph
 n mP P by the vertices in the 3,2,1D -dominating set,

which is used in the proof of Theorem 1.
Input: Integers n, m, and a 3,2,1D -dominating set

D with 2D n of  n mP P .

Task: Find max k , min k  1 k k n   , 1D

and 2D such that 1 1
1 1 1 2,k k

i iD c D D 
   ,

2 1 2 2,n n k
i k iD c D D 

    . Notice that if such
k exists, then for odd n, k k ; and for even n ,

1k k .
Method:
1 k← 0; x← 0; k’← 0; y← 0; z← 0;
2 1D ; 2D ;
3 if ( n % 2 = 0 ) z← 2;
4 else z← 1;
5 for ( i = 1; i < n; i++ ){
6 if ( ic D  ) x← x+1;

7 else x← x-1-  2 1ic D  ;

8  1 1 iD D c D   ;
9 if ( x = z ){
10 k← i-z+1;
11 }
12 }
13 for( i = n; i > k; i-- ){
14 if ( ic D  ) y← y+1;

15 else y← y-1-  2 1ic D  ;

16  2 2 iD D c D  
17 if( y = z ){
18 k’← i+z-1;
19 }
20 }
21 Return k, 1D , 2D ;

Theorem 1: Let [ ]n mG P P for 6m  . Then

 3,2,1 2

2

2, 2 3;
[ ] 1, 6 10;

, .

n
n m

n

n
P P n or n

otherwise


  
   


Proof. For 2 3n  , let    1 1 1 2, , ,D u v u v .

Since  1 1 1( , ), ( , )id u v u v   3 1 1( , ), ( , ) 2id u v u v 

and    1 1 2 3 1 2( , ), ( , ) ( , ), ( , ) 1i id u v u v d u v u v  for

2 i m  , we have  1( , )D iw u v   3( , )D iw u v
1 2 3  for 2 i m  . Similarly, for each

2 i m  , vertex 2( , )iu v is at distance 1 from
vertex 1 1( , )u v and at distance no more than 2 from

1 2( , )u v , so we have  2( , ) 2 1 3D iw u v   for

2 i m  . Hence D is a 3,2,1D -dominating set

of 2[ ]mP P . By Fact 1,  3,2,1 2[ ] 2mP P  . Next

we show the upper bound of  3,2,1 [ ]n mP P for the
rest cases:
Case 1: 4n  and 2 (mod 4)n  . Consider

   1 1 1 2, , ,n nD u v u v  
  1 4, | 4 2 or 4 3, for 0 1n

ju v j i i i     .

Since for all vertex  , -k ju v V D ,

 1 ( , ) 1k jN u v D  and  2 ( , ) 1k jN u v D  , we

have   , 3D i jw u v  for 1 i m and 1 j n  ,

which implies D is a 3,2,1D -dominating set of

[ ]n mP P . Let ( mod 4)n k , then D  42 n k

2
n. Hence  3,2,1 2[ ] n

n mP P .
Case 2: 2 ( mod 4)n  . This case may be divided
into two subcases:
Subcase 2.1: 6,10n  . The same D in case 1
will work in this case and D  42 2n  

4 22 1n n  .
Subcase 2.2: 14n  and 2 ( mod 4)n  .

Consider   1, 4 2jD u v j i   or 4 3i for

     1 1 1 2 1 5 1 740 3 ( , ), , , , , ,n
n n n ni u v u v u v u v     

 2 7, , nu v  as shown in figure 4. Then D is a

3,2,1D -dominating set of [ ]n mP P and D 

42 1n  2
n, which implies  3,2,1 [ ]n mP P

2
n.
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Figure 4: A pattern of 3,2,1D -dominating set for

[ ]n mP P where 2 ( mod 4)n  and 14n  .

Next we show the lower bound of
 3,2,1 [ ]n mP P . First we consider the case of

4, and 6,10n n  . Suppose to the contrary that

 3,2,1 2[ ] 1n
n mP P   . Then there exists a

3,2,1D -dominating set D such that 2 1nD   for

even n and 2
nD  for odd n . Consider

following two cases:
Case 1: n is even. By using algorithm 1 to
“partition”the graph, we can get two consecutive
columns 1,k kc c  such that  1 =k kc c D   ,

1 1
1 1 2

k k
i ic D D 
    and 2 2

n
i k ic D D   

1
2

n k . Let 1D , 2D be two sets produced by

algorithm 1, notice that -1
1 2

kD  and - -1
2 2

n kD  .

Since 1D can 3,2,1D -dominate the vertices from

1c to -1kc , and 2D can 3,2,1D -dominate the

vertices from 2kc  to nc , to ensure that the
vertices in kc and 1kc  can also be

3,2,1D -dominated by 1 2D D , one of the following
must be satisfied:
(1) -1 = 1kc D and +2 = 1kc D
(2) -1 = 1kc D , +2 =kc D  and +3 = 2kc D
(3) -1 =kc D  , -2 = 2kc D and +2 = 1kc D
(4)  -1 +2 =k kc c D   and

-2 +3=k kc D c D  = 3
The first three conditions have either

-1 = 1kc D or +2 = 1kc D . Without loss of

generality, assume -1 = 1kc D . By Lemma 2,

 1 -1 2D k which contradict to the fact that

 1 = -1 2D k , so it is impossible.

For (4), since -1kc to +2kc are four
consecutive columns without any vertex in 3,2,1D
-domination set, which contradict to Lemma1,
hence it is also impossible.
Case 2: n is odd. By using algorithm 1 to
“partition”the graph, we can get one column kc ,

such that =kc D  , 1 1
1 1 2

k k
i ic D D 
    and

1 2 2
n n k
i k ic D D 
    . Since 1D can 3,2,1D

-dominate the vertices from 1c to -1kc , and 2D
can 3,2,1D -dominate the vertices from 1kc  to nc ,

to ensure that the vertices in kc can also be

3,2,1D -dominated by 1 2D D , one of the following
must be satisfied:
(1) -1 =1kc D , +1 =kc D  and +2 =1kc D
(2) +1 =1kc D , -1 =kc D  and -2 =1kc D
(3)  -1 1 =k kc c D   , -2 =2kc D and

+2 =1kc D
(4)  -1 1 =k kc c D   , +2 =2kc D and

-2 =1kc D
(5)  -1 1 =k kc c D   and -2 =3kc D
(6)  -1 1 =k kc c D   and +2 =3kc D

Condition (1) and (2) have either -1 = 1kc D
or +1 = 1kc D , without loss of generality, assume

-1 = 1kc D . By Lemma 2,  1 -1 2D k

which contradict to the fact that  1 = -1 2D k , so
it is impossible.

Condition (3) to (6) have either -2 2kc D 
or +2 2kc D  , without loss of generality, assume

+2 2kc D  . Consider following subcases.

Subcase 2.1: If 2 =2kc D  , in order to fulfill the

condition ( ) 3Dw v  for all 2kv c  , we must

have  3 4 = 1k kc c D x    , assume that from

ic D

nc1nc 2nc 3nc -4nc9nc  8nc  7nc  6nc  5nc 

0 20 0 1 1 1 000

0 1 1 0

5c 6c 7c 8c

0 1 1 0

1c 2c 3c 4c

4Repeated -2 times.n






column
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1kc  through 2 4k xc   , there are no more than 2x
vertices in D . Since from 1kc  through 2 4k xc   ,

  1 2 2 1N v N v D   for all 2 3k xv c   , we

must have 2 5 1k xc D   . By lemma 2, the

subgraph from 2 5k xc   to nc must have more

than ( 2 5) 1
2

n k x    vertices in 3,2,1D -dominating set,

hence ( 2 5) 1
2 2 22n k x n kD x        which

contradict to 2 2
n kD  , so it is impossible.

Subcase 2.2: If 2 3kc D x   , assume that

from 1kc  through 2k xc  , there are no more than
x vertices in D . Since from 1kc  through

2k xc  ,   1 2 2N v N v D   for all 2k xv c  ,

we must have 2 1 3k xc D   . By lemma 2, the

subgraph from 2 1k xc   to nc must have more than
( 2 1) 1

2
n k x    vertices in 3,2,1D -dominating set, hence

( 2 1) 1
2 2 2

n k x n kD x       which contradict to the

fact that 2 2
n kD  , hence it is also impossible.

Next we consider the case of 6n  .
According to the definition of 3,2,1D -domination, if

 3Dw v  for all 1v c , then 3
1 2i ic D   .

Similarly, if  3Dw v  for all 6v c , then
6

4 2i ic D   . Hence  3,2,1 6 2[ ] 4 1n
mP P    .

For the case of 10n  , according to the
definition of 3,2,1D -domination, if  3Dw v  for

all 1v c , then 3
1 2i ic D   . Similarly, if

 3Dw v  for all 10v c , then 10
8 2i ic D   .

Consider following three cases:
Case 1:  1 2 3, , 3c c c D  and  8 9 10, ,c c c D

2 . In this case, 6v c  3 v D 

 1 22 3N v D N v D   , therefore,

 3,2,1 10[ ] 6mP P  .

Case 2:  1 2 3, , 2c c c D  and  8 9 10, ,c c c D
3 . In this case, 5v c  3 v D 

 1 22 3N v D N v D   , therefore,

 3,2,1 10[ ] 6mP P  .

Case 3:  1 2 3, , 2c c c D  and  8 9 10, ,c c c D
2 . In this case, according to the definition of

3,2,1D -domination, in order to have  3Dw v 

1v c  , we must have 3 1c D  . Similarly, in

order to have  3Dw v  10v c  , we must have

8 1c D  . Therefore,  5 6v c c   3 v D
 1 22 1N v D N v D    . Since


5 6 1 =v c c N v  , for  3Dw v   5 6v c c   ,

 4 5 6 7, , , 2c c c c D  , therefore,  3,2,1 10[ ]mP P

6 .
From all the cases above, we have the lower

bound of n[ ]mP P for 4n  is the same as the
upper bound. By sandwich theorem, we proved
the theorem. 

[ ]n mP C changes each column of [ ]n mP P
from a path to a cycle, which does not changes the
distance between columns. Hence Corollary can
be obtained from Theory 1 directly.

Corollary 1 Let [ ]n mG P C for 6m  . Then

 3,2,1 2

2

2, 2 3;
[ ] 1, 6 10;

, .

n
n m

n

n
P C n or n

otherwise


  
   


III. Conclusion
The 3,2,1D -domination is related to distance

-two-domination, which has many applications in
resource allocations. This paper established the

3,2,1D -domination number of the composition of a
path with a path and a path with a cycle by giving
detail proofs for each case. The author expect to
study on the same problem for the composition of a
cycle with a path and a cycle with a cycle in the
near future.
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