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 Abstract―A ( )2,1−k L  labeling f for a given graph 

( ),G V E= , is a function { }: 0,1,2, ...,f V k→  such that 

for every pair of vertices x, y in V , ( ) ( ) 2f x f y− ≥  if 

( ), 1d x y = , and ( ) ( ) 1f x f y− ≥  if ( ), 2d x y =  

where ( ),d x y  denotes the distance between vertices x 

and y.  The ( )2,1L  labeling problem is finding the 

minimum k such that G has a ( )2,1k L−  labeling.  This 

paper established the bounds of ( )2,1L  labeling, for 
some regular graphs such as star-like, pancake, burnt 
pancake, and folded hypercube graph. 
 Index Terms― ( )2,1L  labeling, star-like, pancake, 
burnt pancake, folded hypercube. 

I. INTRODUCTION 
 Due to fast growth in the use of radio 
frequencies and the scarce of radio frequencies, 
allocate these finite frequencies efficiently is very 
important.  If two radio stations are closed to each 
other in the same area, they must not be assigned 
too closed frequencies otherwise it will cause some 
interferences.  The problem of efficiently 
allocating finite frequencies to avoid interference, 
which is called the channel assignment problem, 
becomes very important.  The channel assignment 
problem finds the minimum range of frequencies 
for all transmitters.  The frequency assignment 
problem which was modeled by graph was 
originally introduced by Hale [8] in 1980.  In 
order to avoid disturbing each other, they use the 
vertices to denote the transmitters and the edges to 
indicate two transmitters being “very closed”.  
When two transmitters are adjacent which means 
they are “very closed”, they should use frequencies 
differ by at least p; when two transmitters are at 
distance two, which means they are “closed”, they 
should use frequencies differ by at least q where 
p q> .  In general, a ( ),k L p q−  labeling f  

for a given graph ( ),G V E=  with positive 

integers p and q where p q> , is a function 
{ }: 0,1, 2, ,f V k→  such that ( ) ( )f x f y p− ≥  

if ( ), 1d x y = , and ( ) ( )f x f y q− ≥  if 

( ), 2d x y =  where ( ),d x y  is the distance 

between vertices x and y. The ( ), -L p q labeling  

number ( ),p q Gλ  of G is the minimum k such that 

there exists a ( ),k L p q−  labeling of graph G.  

The ( ), -L p q labeling  problem is the problem of 

finding the ( ), -L p q labeling  number of graphs 
which has been proved to be NP-Complete [7]. 
 For special numbers of p and q, Griggs and 
Yeh [7] brought up ( )2,1 -L labeling  in 1992.  

Some surveys of the results on ( )2,1 -L labeling  
problem are given in [3][4][13]. 
 The n-dimensional graphs are very interesting 
and brought themselves much attention.  Griggs 
and Yeh [7] established the ( )2,1 -L labeling  
number for n-dimensional hypercube nQ  to be 

( )2,1 2 1nQ nλ ≤ +  for 5n ≥ .  Whittlesey [10] 
improved the upper bound by one, for all n.  For 
the lower bound, Jonas [9] has shown that 

( )2,13 nn Qλ+ ≤  and ( )2,14 nn Qλ+ ≤  for n =8,16.  
This paper established the bounds of 
( )2,1 -L labeling  number for some other regular 

graphs such as star-like graphs, pancake graph, 
burn pancake graph, and folded hypercube graph.  
These graphs are popular in the interconnection 
network topologies.  The interconnection network 
plays a important role in determining the whole 
performance of a multi-processor system.  
Hypercube-type networks are developed over the 
past few years since they propose the rich 
interconnection structure. 
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II. STAR-LIKE GRAPH 
 The n-dimensional star-like graph nS  defined 
in [1], is a graph in which the vertices are denoted 
by a sequence number of distinct permutation of 
integer set { }1,2,3 ,n .  Two vertices are 
adjacent in nS  if they can be obtained by 
exchanging first digit (the leftmost digit) with i-th 
digit where 1 i n< ≤ .  So that nS  is a n-1 regular 
graph containing !n  vertices.  Figure 1 shows an 
example of a 4-star-like graph which contains 24 
vertices; vertex 2341 is adjacent with vertices 1342, 
3241, and 4321.  A star-like graph nS  contains n 
disjoint 1nS −  subgraphs { 1 2 1 1 2 11, 2n nx x x x x x− − , 

}1 2 1, nx x x n−  where { }1 2 1, , , 1, 2, ,nx x x n− ∈  
and i nx x≠  in each subgraph for 1 1i n≤ ≤ − , 
such that each pair of 1nS −  is connected by 

( )2 !n −  edges. 

 
 Since the vertex in a star-like graph is 
exchanged first digit (the leftmost digit) with i-th 
digit of its neighbors where 1 i n< ≤ , it takes at 
least three steps to exchange back to the same first 
digit.  Hence we have following proposition. 

Proposition 1: The vertices with the same first 
digit in an n-dimensional star-like graph nS  are at 
distance at least 3. 

 The following lemmas are used in the proof of 
our theorems. 

Lemma 1. [13] Let H be a subgraph of graph G.  
Then ( ) ( )

1 2 1 2, ,d d d dH Gλ λ≤  for 1 2d d≥ . 

Lemma 2. [7] If graph G  has three vertices of 
maximum degree n  such that one such vertex is 
adjacent to the other two , then ( )2,1 2G nλ ≥ + . 

Lemma 3. [12] ( )2,1 4nCλ =  for 3n ≥ . 
 
 Since the vertices in complete graph nK  are 
adjacent to each other, the ( )2,1L  labels of each 
pair of vertices has to be differ by at least two.  In 
a complete bipartite graph, each pair of vertices in 
the same partite set is at distance two.  Two 
vertices in different partite set are adjacent, hence 
every vertex has to have distinct ( )2,1L  label.  
Therefore, we have following proposition. 

Proposition 2. ( )2,1 2 2nK nλ = −  for 2n ≥ ; and 

( )2,1 ,m nK m nλ = +  for m n≥ . 

 For an n -dimensional star-like graph nS , 
since 1S  is trivial; 2 2S K= , and 3 6S C= , by 
lemma 3 and proposition 2, we have 

( ) ( ) ( )2,1 1 2,1 2 2,1 30,  2,  4S S Sλ λ λ= = = .  Figure 2 

is a 5- ( )2,1L labeling−  of 4S , hence ( )2,1 4Sλ  

5≤ .  By lemma 2, ( )2,1 4 5Sλ ≥  which implies 

( )2,1 4 5Sλ = .  For the case of 5n ≥ , we have 
following theorem. 
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Figure 1. A 6- ( )2,1L  labeling of 4S . 
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Theorem 1. Let nS  be an n-dimensional Star-like 
graph.  Then ( )2,11 2 2nn S nλ+ ≤ ≤ −  for 5n ≥ . 

Proof: Consider a labeling ( ) {: 0, 2, 4,nf V S →   

}, 2 2n − such that ( ) 2 2f v i= −  for the vertex v 
where its sequence number starts with digit i  as 
shown in figure 1.  By proposition 1, we know 
that each vertex with the same ( )2,1L  label are at 
distance at least 3.  Since only even numbers are 
used in f , if u  and v  are adjacent vertices, 

( ) ( ) 2f u f v− ≥ .  Hence f  is a (2n-2)- 

( )2,1L -labeling of nS , which implies that 

( )2,1 2 2nS nλ ≤ − .  By lemma 2, we have 

( )2,11 nn Sλ+ ≤ .  Therefore the proof of theorem 
completes. ■ 

III. PANCAKE GRAPH 
 An n-dimensional pancake graph nPC  [2] is 
a graph in which the vertices are denoted by a 
sequence number of distinct permutation of integer 
set { }1,2,3 ,  n .  Two vertices ( 1 2 iu u u u=  

)nu and ( )1 2 i nv v v v v=  are adjacent in 

nPC  if there exists an i , 2 i n≤ ≤ , such that 

1j i jv u − +=  for all 1 j i≤ ≤  and j jv u=  for 

i j n< ≤ .  In another words, vertex v  represents 
the i-th prefix reversal of vertex u, which is then 
denoted by ( )i

PC
u .  For example, ( )412345

PC
 

43215= .  So that nPC  is an n-1 regular graph 
containing !n  vertices.  A 4-pancake graph, 
shown in figure 3, contains 24 vertices; the vertex 
1234 is adjacent with vertices 2134, 3214, and 
4321.  In general, nPC  contains n disjoint 1nPC −  
subgraphs { 1 2 1 1 2 1 1 21, 2, ,n nx x x x x x x x− −  

}1nx n− where { }1 2 1, , , 1, 2, ,nx x x n− ∈  and 

i nx x≠  in each subgraph for 1 1i n≤ ≤ − , such that 
each pair of 1nPC −  is connected by ( )2 !n −  
edges. 

 
 Since the vertex in a pancake graph is a prefix 
reversal of its neighbors, it takes at least three steps 
to flip back to the same first digit.  Hence we have 
following proposition. 

Proposition 3: The vertices with the same first 
digit in an n-dimensional pancake graph nPC  are 
at distance at least 3. 
 For an n -dimensional pancake graph nPC , 
since 1PC  is trivial; 2 2PC K= , and 3 6PC C= , 
by lemma 3 and proposition 2, we have 

( )2,1 1 0PCλ = , ( )2,1 2 2PCλ = , and ( )2,1 3 4PCλ = .  
For the case of 4n ≥ , we have following theorem. 

Figure 2. A 5- ( )2,1L  labeling of 4S . 
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Figure 3.  A 6- ( )2,1L  labeling of 4PC . 
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Theorem 2. Let nPC  be an n-dimensional 
Pancake graph of graph.  Then ( )2,11 nn PCλ+ ≤  

2 2n≤ −  for 4n ≥ . 
Proof:  Consider a labeling ( ) {: 0, 2, 4nf V PC →   

}, 2 2n −  such that ( ) 2 2f v i= −  for vertex v 
starts with digit i  as shown in figure 3.  By 
proposition 3, we know that each vertex with the 
same ( )2,1L  label are at distance at least 3.  
Since only even numbers are used in f , if u  and 
v  are adjacent vertices, ( ) ( ) 2f u f v− ≥ .  

Hence f  is a ( ) ( )2 2 2,1n L− −  labeling of nPC , 

which implies ( )2,1 2 2nPC nλ ≤ − .  By lemma 2, 

we have ( )2,11 nn PCλ+ ≤ .  That completes the 
proof. ■ 

IV. BURNT PANCAKE GRAPH 
 The n-dimensional burnt pancake graph nBP  
defined in [5] is a graph in which the vertices are 
denoted by a sequence number of distinct 
permutation of (signed) integer set ( ){1  1or  

( ) ( ) ( )}, 2  2 , 3  3 , ,  or or n or n .  Two vertices u  

( )1 2 i nu u u u= and ( )1 2 i nv v v v v=  are 
adjacent in nBP  if there exists an i , 1 i n≤ ≤ , 
such that 

1i jjv u
− +

=  for all  1 j i≤ ≤ , and j jv u=  
for i j n< ≤ .  Therefore, v  is a representation 
of the i-th prefix reversal of signed integers of 
vertex u, which may be denoted by ( )i

BP
u .  For 

example, ( )4
12345 43215

BP
= .  Hence, nBP  is an 

n regular graph containing 2 !n n  vertices.  A 
3-burnt pancake graph, shown in figure 4, contains 
48 vertices; vertex 123 is adjacent with vertices 
123 , 213 , and 321 .  A nBP  contains 2n  
disjoint 1nBP −  subgraphs { 1 2 1 1 21,nx x x x x−  

1 1 2 1 1 2 1 1 2 12, , , 1, 2,n n n nx x x x n x x x x x x− − − −

}1 2 1, nx x x n−  where ( ){1 2 1, , , 1  1nx x x or− ∈  

( ) ( ) ( )}, 2  2 , 3  3 , ,  or or n or n  and i nx x≠  in 

each subgraph for 1 1i n≤ ≤ − . 

 The burnt pancake graph has a similar 
property as in pancake graph for the same reason, 
and we stated it as next proposition. 

Proposition 4: The vertices with the same first 
digit in an n-dimensional burnt pancake graph 

nBP  are at distance at least 3. 

For an n -dimensional burnt pancake graph nBP , 
since 1 2BP K=  and 2 8BP C= , by lemma 3 and 
proposition 2, we have ( )2,1 1 2BPλ = , 

( )2,1 2 4BPλ = .  For the case of 3n ≥ , we have 
following two theorems. 

 

Theorem 3. Let nBP  be an n-dimensional Burnt 
Pancake graph. Then ( )2,1 3 6BPλ = . 
Proof: We divide the vertices of 3BP  into groups 
such that the vertices in the same group have the 

2‧13

213

12‧‧3 12‧3

21‧3 

21‧‧3 
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Figure 4. A 10- ( )2,1L  labeling of 3BP . 
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same ( )2,1L  labels, which implies any two 
vertices in same group are at distance at least 3.  
Notice that for each subgraph 8C , there are no 
more than two vertices in the same group, which 
implies there are at most twelve vertices in one 
group of the 3BP .  Since 3BP  is 3-regular, there 
are at least four groups.  Suppose there are exactly 
four groups in 3BP , then each group must include 
exactly twelve vertices.  By the 6- ( )2,1L  
labeling of 3BP  shown in figure 5 and figure 6, we 
have ( )2,1 3 6BPλ ≤ .  Consider any subgraph 8C  
of 3BP , let abc  be a vertex in group1, the only 
vertices in the same subgraph 8C  that can be also 

in group1 are { }, ,abc abc bac .  Assume abc  and 
abc  are both in group1.  Consider the subgraph 

8C′  end with a , the only two vertices that can be 
in group1 are adjacent in 8C′  which produces a 
contradiction.  Hence the only two possible cases 
to divide 3BP  into four groups are shown in figure 
5 and figure 6 where the vertices with the same 
label are in the same group.  For any vertex (say 
abc ), { }{ }, , | , , 1, 2,3,1,2,3abc bca cab a b c∈  must 
be in the same group in both cases.  Without loss 
of generality, assume that vertex abc  is in group1 
together with vertices bca  and cab ; abc  is in 
group2 together with vertices cab  and bca ; bac  
is in group3 together with vertices cba  and acb ; 
and cba  is in group4 together with vertices bac  
and acb .  Since vertex abc  in group2 is 
adjacent to cba  in group3 and bac  in group4 
and vertex acb  in group3 is adjacent to acb  in 
group4, there are adjacent vertices in each pair of 
groups.  Hence the labels for each part must be at 
least two apart, which implies ( )2,1 36 BPλ≤ .  

Therefore, ( )2,1 3 6BPλ = . ■ 
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Figure 6. A 6- ( )2,1L  labeling of 3BP  
with abc  and bac  are both in group1. 
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Figure 5. A 6- ( )2,1L  labeling of 3BP  

with abc  and abc  are both in group1. 
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Theorem 4. Let nBP  be an n-dimensional Burnt 
Pancake graph. Then ( )2 4 2nn BP nλ+ ≤ ≤ −  for 

4n ≥ . 
Proof:  Consider a labeling ( ) {: 0, 2, 4nf V BP →  

}, , 4 2n −  such that ( ) 2 2if v i= −  and 

( ) 2 2 2if v n i= + −  where the vertex v starts with 

digit i  and vertex v  starts with digit i  for 
1 i n≤ ≤  as shown in figure 4.  By proposition 4, 
we know that each vertex with the same ( )2,1L  
label are at distance at least 3.  Since only even 
numbers are used in f , if u  and v  are adjacent 
vertices, ( ) ( ) 2f u f v− ≥ .  Hence f  is a 

( ) ( )4 2 2,1n L− −  labeling of nBP , which implies 

( )2,1 4 2nBP nλ ≤ − .  By lemma 2, we have 

( )2,12 nn BPλ+ ≤ .  Hence the result follows.  ■ 

V. FOLDED HYPERCUBE GRAPH 
 The n-dimensional folded hypercube graph 

nFHC  defined in [6] is an n-dimensional 
hypercube graph nQ  appended with 12n−  
complementary edges.  The hypercube graph nQ  
consists of 2n  vertices denoted distinctly by n-bit 
binary sequence numbers from 0 to 2 1n −  by 

{ }{ }1 2 1 | 0,1n n ib b b b b− ∈ .  Two vertices are 
adjacent in nQ  if their n-bit binary numbers differ 
in exactly one bit.  The folded hypercube graph 
also contains 2n  vertices.  A complementary 
edge means that vertex { 1 2 1n nu u u u u−=  

{ }}| 0,1iu ∈ is adjacent to vertex { 1 2 1n nv v v v v−=  

{ }}| 0,1iv ∈  where i iu v≠  for 1 i n≤ ≤ .  The 

edges in nFHC  contain ( )nE Q  and 
complementary edges which connect two farthest 
vertices in nQ .  A 3-folded hypercube graph 
which is shown in figure 7, contains 8 vertices; 
vertex 000 is adjacent with vertices 001, 010, 100, 
and 111.  nFHC  is a (n+1) regular graph.  
Following propositions are useful in the proof of 
theorem 5. 

 

Proposition 5. [6] The diameter of nFHC  is 2
n⎡ ⎤⎢ ⎥ . 

Proposition 6. [11] nFHC  is a bipartite graph if 
and only if n is odd. 
 For an n -dimensional folded hypercube 
graph nFHC , since 1 2FHC K= , 2 4FHC K= , and 

3 4,4FHC K= , by proposition 2, we have 

( )2,1 1 2FHCλ = , ( )2,1 2 6FHCλ = , and 

( )2,1 3 8FHCλ = .  For the case of 4n ≥ , we have 
following two theorems. 

Theorem 5. Let nFHC  be an n-dimensional 
Folded Hypercube graph. For 4  5n or= , 

( ) ( )2,1 4 2,1 5 15FHC FHCλ λ= = . 
Proof:  By proposition 5, every vertex in 

( ) 4
2,1 4 2 1 15FHCλ ≥ − = .  A 15- (2,1)L  labeling 

4FHC  must have distinct labels, hence of 4FHC  
is shown in figure 8, therefore ( )2,1 4 15FHCλ = .  
By proposition 6, 5FHC  is a bipartite graph such 
that each partite set contains 42  vertices.  Since 
the vertices in the same partite set of a bipartite 
graph must have even distance and by proposition 5, 
the diameter of 5FHC  is 3, the vertices in the 
same partite set are at distance two.  Hence every 
vertex in the same partite set of 5FHC  must have 
distinct labels.  That is ( ) 4

2,1 5 2 1 15FHCλ ≥ − = .  

A 15- ( )2,1L  labeling of 5FHC  is shown in table 

Figure 7. A 3-folded hypercube graph. 
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1, therefore ( )2,1 5 15FHCλ = .               ■ 

Lemma 4. [9] Let nQ  be the n-dimensional 
hypercube graph.  Then for 5n ≥ , 

( )2,1 3nQ nλ ≥ + . 

Lemma 5. [10] Let nQ  be the n-dimensional 
hypercube graph.  Then for all n , ( )2,1 2nQ nλ ≤ . 

 
 

vertex 00000 00011 00101 01001 10001 00110 01010 10010

label 0 1 2 3 4 5 6 7 

vertex 01100 10100 11000 11110 11101 11011 10111 01111
Partite 
set 1 

label 8 9 10 11 12 13 14 15 

vertex 11111 00001 00010 00100 01000 10000 11100 11001

label 9 14 3 15 12 13 6 7 

vertex 11010 10110 10101 10011 01110 01101 01011 00111
Partite 
set 2 

label 4 1 0 10 2 5 11 8 
 

Theorem 6. Let nFHC  be an n-dimensional 
Folded Hypercube graph. Then 

( )2,13 4 2nn FHC nλ+ ≤ ≤ −  for 6n ≥ . 

Proof: Let ( )nv V FHC∈ , ( )1 2 nv v v v=  where 

{ }0,1iv ∈ .  Let ( ) ( ) ( )0 1
1 1n n nV FHC V Q V Q− −= ∪  

such that ( )0
1nV Q −  is the set of vertices with 

sequence number start from 0 and ( )1
1nV Q −  is the 

set of vertices with sequence number start from 1.  
By lemm5, there is a ( )2,1L  labeling 

( ) { }0
0 1: 0,1, 2, , 2 2nf V Q n− → − .  Define ( )2,1L  

labeling ( ) { }: 0,1, 2, , 4 2nf V FHC n→ −  by 

( ) ( )0 0
0f v f v=  and ( ) ( )1 0

0 2f v f v n= +  where 

Figure 8. A 15- ( )2,1L  labeling of 4FHC  (vertex (labeling number)). 

1000(8) 0001(3) 0000(0) 

0100(2) 0101(5) 

0011(6) 

0111(1) 0110(7) 

1001(11) 

1100(10)

1010(12) 

1101(13) 

1011(14) 

1111(9) 1110(15)

0010(4) 

Table 1. A 15- ( )2,1L  labeling of 5FHC . 
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( )0 0
1nv V Q −∈  and ( )1 1

1nv V Q −∈  are differ only at 

first bit in nFHC .  Since the labels of any two 

vertices ,u v  such that ( )0
1nu V Q −∈  and 

( )1
1nv V Q −∈  are differ by at least two, and 0f  is a 

( )2,1L  labeling of 1nQ − , for any two vertices 

( ), nu v V FHC∈ , we have ( ) ( ) 2f u f v− ≥  if 

( ) ( ), nu v E FHC∈  and ( ) ( ) 1f u f v− ≥  if 

( ), 2d u v = .  Hence f  is a ( ) ( )4 2 2,1n L− −  

labeling of nFHC , which implies ( )2,1 nFHCλ  
4 2n≤ − .  Since nQ  is the spanning subgraph of 

nFHC , by lemma 1 and lemma 4 we have 

( ) ( )2,1 2,13 n nn Q FHCλ λ+ ≤ ≤ .  That completes 
the proof.  ■ 

VI. Conclusion 
 This paper deals with ( )2,1L  labeling for 
several n -dimensional regular graphs.  For 
star-like graph nS , we gave exact results for 4n ≤  
and both upper and lower bounds for 5n ≥ , where 
the upper bound is about twice as the lower bound.  
For pancake graph nPC , we gave exact results for 

3n ≤  and both upper and lower bounds for 4n ≥ , 
where the upper bound is about twice as the lower 
bound.  For burnt pancake graph nBP , we gave 
exact results for 3n ≤  and bounds for 4n ≥ .  
Although the upper bound is about four times as 
the lower bound, we conjecture that ( )2,1 nBPλ  

2n≥ , which makes the upper bound twice as the 
lower bound.  For folded hypercube graph nFHC , 
we gave exact results for 5n ≤  and both upper 
and lower bounds for 6n ≥ . 
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