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Abstract—For solving the problem of cysteine state
classification, we propose a 2-stage prediction method.
In the first stage, we invoke the SVM to get the initial
prediction. The features involved in SVM classification
include the local profile PSSM, order of cysteines with
the normalized protein length, physiochemical properties
and structure probabilities. Then, in the second stage,
we propose a tuning method for refining the predicted
result obtained by SVM. We validate it with a dataset
derived from PDB, which contains 969 non-homologous
proteins and 4136 cysteines. We adopt a 20-fold cross-
validation test and achieve 90.7% accuracy and 0.79
Matthews correlation coefficient. With our tuning method,
we can improve the performance from the initial prediction
by about 20% in the protein-based accuracy and 5% in
the cysteine-based accuracy. The prediction accuracies are
better than the previous works.

Index Terms—bioinformatics, SVM, feature selection,
protein, cysteine, disulfide bond.

I. INTRODUCTION

Disulfide bond, which is also called SS-bond
or SS-bridge, is a single covalent bond between
two thiol groups. It plays an important role in
protein folding and makes the structure more stable.
Moreover, the bonding states can be used to derive
the structure similarities between proteins. Although
there are two types of amino acids containing thiol
groups, only cysteines can form this kind of bond.

Studies on disulfide bonds can be divided into
two categories [20] as follows:

• Cysteine state classification: A cysteine may
be in the state of either oxidized or reduced.
The goal is to figure out whether the target
residue is oxidized or not. Furthermore, this
topic can be extended to “chain classification”
for determining whether there exist disulfide
bonds in a protein or not.

• Cysteine connectivity prediction: The major
work is to seek for which pair would be bonded
in all possible candidates. The problem can be

further split into two subcategories, pair-wise
and pattern-wise prediction, by methodology.
The pair-wise prediction focuses on the rela-
tions of pairs and the pattern-wise one focuses
on the connectivity patterns.

Various algorithms have been developed with
statistical analysis [10], [13], [16], [19] and machine
learning techniques in recent years, such as neural
network (NN) and support vector machine (SVM).
These algorithms may invoke single layer architec-
ture, hierarchical scheme [5], or multi-layer scheme
[12]. Many attributes have been found to facilitate
prediction, such as physiochemical properties [4],
secondary structure information [3], [7] and so on.

In this paper, we focus on the study of cys-
teine state classification. Some researchers have
concentrated on this problem [8], [9], [17], [18].
In 1999, Fariseli and Casadio [6] obtained 80%
accuracy with the evolutionary information by using
NN. Furthermore, Martelli et al. [14] improved the
accuracies based on the same method in 2002. In
2004, Chen et al. [4] developed an SVM method,
which achieves accuracy of 90%. All of their
methods adopt the window approach, in which the
information of a window centering at the target
cysteine is extracted. Their results conclude that the
information beside the target cysteine is useful and
helpful for raising the prediction accuracies.

The main idea of Martelli et al. [14] is to build
a hybrid system by the neural network (NN) and
hidden Markov model (HMM). They construct a
feed-forward network with the back-propagation
algorithm and add a vector-based HMM on the NN.
The network contains one input layer, one hidden
layer and one output layer. The probabilities of
oxidized and reduced states output by the neural
network are used as the emission probabilities for
HMM to generate the final state sequence.

Chen’s method [4] is based on SVM with the



physiochemical properties introduced by Meiler et
al. [15], the homologous sequence profile and the
cysteines state sequence (CSS). The CSS is the state
transition information calculated from the dataset.
They collect all the evaluated information from
the dataset with different number of cysteines and
then reduce the transition states into 12 groups.
The groups are (S,O1), (S,R1), (O1, O2), (O2, O1),
(R1, R1), (R2, R2), (R1, O1), (R2, O2), (O1, R2),
(O2, R1), (R1, F ), and (O2, F ), where S, F , O and
R represent start, finish, oxidized and reduced states,
respectively. The evaluated information contains not
only the transition but also transmission of states in
the dataset.

In this paper, we aim to solve the problem of
cysteine state classification. In the first stage, we
invoke the SVM to get the initial prediction. The
possible features include the local profile PSSM, or-
der of cysteines with the normalized protein length,
physiochemical properties and structure probabili-
ties. Then, in the second stage, we propose a tuning
method for refining the cysteine states. With our
tuning method, we can improve the accuracy by
about 20% in protein-based accuracy and 5% in
cysteine-based accuracy, respectively. The result is
better than the previous works.

The rest of this paper is organized as follows. In
Section II, we will introduce possible features used
by the SVM classification in the first stage. Section
III presents our tuning method, which constitutes the
second stage. In Section IV, the experimental results
will be illustrated and compared with the previous
works. Finally, the conclusion and discussion will
be given in Section V.

II. FEATURES OF SVM INITIAL CLASSIFICATION

Previous studies adopt the window approach, in
which the information of a window centering at the
target cysteine is extracted. Their results conclude
that the information beside the target cysteine is
helpful for raising the prediction accuracies. We use
the profile generated by the PSI-BLAST software as
important features.

Position-Specific Score Matrix (PSSM), also
called profile, is created from a group of sequences
which are aligned previously. The profile is calcu-
lated by the similarities between a query sequence
(target) and the aligned sequence group (probe). In

        A   R   N   D   C   Q   E   G   H   I   L   K   M   F   P   S   T   W   Y   V

 8  E    - 1   0   0   2  - 4   2   5  - 2   0  - 3  - 3   1  - 2  - 3  - 1   0  - 1  - 3  - 2  - 2

 9  Y    - 2  - 2  - 2  - 3  - 2  - 1  - 2  - 3   2  - 1  - 1  - 2  - 1   3  - 3  - 2  - 2   2   7  - 1

1 0  E    - 1   0   0   2  - 4   2   5  - 2   0  - 3  - 3   1  - 2  - 3  - 1   0  - 1  - 3  - 2  - 2

1 1  A     3  - 2  - 2  - 2  - 1  - 1  - 2  - 1  - 2   1   0  - 1   0  - 1  - 1   0   0  - 3  - 1   2

1 2  C     0  - 3  - 3  - 3   9  - 3  - 4  - 3  - 3  - 1  - 1  - 3  - 1  - 2  - 3  - 1  - 1  - 2  - 2  - 1

1 3  R    - 1   5   0  - 2  - 3   1   0  - 2   0  - 3  - 2   2  - 1  - 3  - 2  - 1  - 1  - 3  - 2  - 3

1 4  V    - 1  - 2  - 3  - 3  - 1  - 2  - 3  - 3  - 3   2   3  - 2   1   0  - 3  - 2  - 1  - 2  - 1   3

1 5  R    - 1   5   0  - 2  - 3   1   0  - 2   0  - 3  - 2   2  - 1  - 3  - 2  - 1  - 1  - 3  - 2  - 3

1 6  C     0  - 3  - 3  - 3   9  - 3  - 4  - 3  - 3  - 1  - 1  - 3  - 1  - 2  - 3  - 1  - 1  - 2  - 2  - 1
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Fig. 1. A local profile generated by PSSM with a window of 9
residues.

other words, PSSM is a multiple sequence align-
ment method based on database search techniques.
It contains a 20-element vector for each residue of
the sequence. The value in each vector represents
the score when a residue is substituted for another
one. Two sequences may have close PSSM scores
if they are similar to each other.

To build the sequence profile, we invoke PSI-
BLAST by setting up e-value as 0.001 and executing
3 iterations. The e-value is a threshold used for
BLAST iterations when sequences are chosen from
a set of candidates. According to the results of
Altschul et al. [1], the lower the e-value, the more
significant the score. We also change the iteration
setting to strike a balance between performance and
required time.

We set PSSM(p, w) as the local profile for the
target residue at position p in the window of size w.
The local profile, as shown in Figure 1, is a matrix
with 20-element vector of w residues. In addition,
all features are normalized to [0, 1] in order to fit in
with the format of SVM.

We also adopt the cysteine orders and the protein
length as features. For a protein with n cysteines,
we define the order of its cysteines, between 1 and
n, as their position indexes. In order to make the
features locate in the range of [0, 1], we normalize
it with its size n, that is, from 1/n to 1. And the
protein length (number of residues) is normalized
by dividing by the longest one in the dataset.

In addition, to increase the diversity of features,
we involve physiochemical properties (P ) of stan-
dard amino acids, used by Meiler et al. [15], and
their structure probabilities (S), derived by Holm
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Fig. 2. The accuracies of the top six feature combinations.

and Sander [11], as listed in Table I. P consists of
graph shape index (Ξ), polarizability (αp), normal-
ized Van der Waals volume (νv), hydrophobicity (Π)
and isoelectric point (I). S contains the probabilities
to constitute alpha helix (α) and beta sheet (β).

In summary, the possible features included in the
cysteine state classification are given as follows.
L: the local profile PSSM,
O: the order of cysteines and the normalized protein
length,
P : the five physiochemical properties,
S: the structure probabilities (S).

To obtain better performance, we perform the
feature selection procedure by trying all combina-
tions of the four features. In other words, there
are totally 16 possible feature combinations. With
each of the 16 feature combinations, we employ
LIBSVM package [2] to perform the classification
job. Although it is a compact package, we slightly
modify the codes to meet our purpose in cross
validation. That is, we do not adopt its original
“shuffle” function but use the predefined fold lists
to make the comparison with the previous works in
fair. Figure 2 shows the prediction accuracies of the
top six feature combinations.

III. THE TUNING METHOD

We propose a tuning method to do slight mod-
ification for the SVM output and make sure that
the number of oxidized cysteines is even, since
each disulfide bond is formed by a pair of oxidized

cysteines. Our tuning method changes the cysteine
states with their positions and the oxidized prob-
abilities from SVM output. The flow chart of our
method is shown in Figure 3.

To tune up specific cysteines, we make two
assumptions that the bonds or structures in Figure 4
(a) and (b) are unstable. Figure 4 (a) illustrates the
situation that two oxidized cysteines on the same
β-sheet structure could not form a bond because
they are surrounded by reduced cysteines. So one
predicted oxidized cysteine is assumed to not be
surrounded by reduced ones.

Figure 4 (b) is another situation that the predicted
state is assumed to be unstable. To make the struc-
ture stable, we think that C2 should be bonded with
either C4 or C5, that causes C3 or C1 to become a
reduced cysteine. So our second assumption is that
no reduced cysteines can be surrounded by oxidized
ones.

The two assumptions form the main spirit of our
algorithm for refining the initial predicted states.
The tuning method is given as follows.

Algorithm: Tuning method for state classification
Input: The results of SVM prediction, and the

predicted bonding probabilities.
Output: The tuned result of the cysteines.
Step 1: Boundary adjustment. Check whether the

cysteine is misplaced or not with the near-
est neighbor method. That is, we examine
the cysteine nearest to the reduced group,
which we call the state transition bound-
ary. The procedure continues sequentially
until there are no error-predicted cys-
teines. Take a sorted output of SVM T
which is sorted by its probabilities in
non-increasing order for each cysteine Ti,
1 <= i <= |T |. We first check whether
the boundary j should be changed or not.
If j is changed, jump to Step 2. Otherwise
we will check j + 1 in the rest cysteines.

Step 2: Oxidized inversion. Change the state
of each oxidized one to be reduced when
it is surrounded by two or more reduced
cysteines on each side.

Step 3: Reduced inversion . Change a reduced
cysteine to be an oxidized one if it is sur-
rounded by one or more oxidized cysteines
on each side.



TABLE I
THE PHYSIOCHEMICAL PROPERTIES AND STRUCTURE PROBABILITIES OF AMINO ACIDS [15].

Amino acid One-letter Physiochemical properties (P ) Structure (S)
full-name code Ξ αp νv Π I α β
Alanine A 1.28 0.05 1.00 0.31 6.11 0.42 0.23
Cysteine C 1.77 0.13 2.43 1.54 6.35 0.17 0.41
Aspartic acid D 1.60 0.11 2.78 -0.77 2.95 0.25 0.20
Glutamic acid E 1.56 0.15 3.78 -0.64 3.09 0.42 0.21
Phenylalanine F 2.94 0.29 5.89 1.79 5.67 0.30 0.38
Glycine G 0.00 0.00 0.00 0.00 6.07 0.13 0.15
Histidine H 2.99 0.23 4.66 0.13 7.69 0.27 0.30
Isoleucin I 4.19 0.19 4.00 1.80 6.04 0.30 0.45
Lysine K 1.89 0.22 4.77 -0.99 9.99 0.32 0.27
Leucine L 2.59 0.19 4.00 1.70 6.04 0.39 0.31
Methionine M 2.35 0.22 4.43 1.23 5.71 0.38 0.32
Asparagine N 1.60 0.13 2.95 -0.60 6.52 0.21 0.22
Proline P 2.67 0.00 2.72 0.72 6.80 0.13 0.34
Glutamine Q 1.56 0.18 3.95 -0.22 5.65 0.36 0.25
Arginine R 2.34 0.29 6.13 -1.01 10.74 0.36 0.25
Serine S 1.31 0.06 1.60 -0.04 5.70 0.20 0.28
Threonine T 3.03 0.11 2.60 0.26 5.60 0.21 0.36
Valine V 3.67 0.14 3.00 1.22 6.02 0.27 0.49
Tryptophan W 3.21 0.41 8.08 2.25 5.94 0.32 0.42
Tyrosine Y 2.94 0.30 6.47 0.96 5.66 0.25 0.41

P r e d i c t i o n
f r o m  S V M

S o r t  b y
p robab i l i t y

B o u n d a r y
a d j u s t m e n t

S o r t  b y
p o s i t i o n

O x i d i z e d
i n v e r s i o n

R e d u c e d
i n v e r s i o n

S o r t  b y
p robab i l i t y

O d d - e v e n
r e v i s i o n

O u t p u t

Fig. 3. The flow chart of the tuning method.
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Fig. 4. The assumption that oxidized cysteines could not be formed into a pair, where oxidized cysteines are represented by gray nodes
and the other residues are skipped by the dashed line. (a) An unstable β-sheet structure. (b) Another unstable structure.



Step 4: Odd-even revision. Adjust the number
of oxidized cysteines to be even when it
is odd after Step 3. This step is similar to
boundary adjustment, but we check it only
once. And for the future experiments, we
set up an additional threshold ρ to obtain
better performance.

For more details, Figures 5 to 7 illustrate an
example of the tuning method with a real protein
(PDB ID: 1duw, chain A). Here we use 0 and 1
to represent the reduced state and oxidized state,
respectively.

Figure 5 (a) shows the prediction produced by
SVM with its corresponding oxidized probabilities
and positions. In Step 1, we first sort the cysteines
by the probabilities and then locate the cysteine at
the state transition boundary, which is the oxidized
cysteine with the smallest probability. We calculate
the probability difference of the target cysteine by
the two closest cysteines, one is oxidized and the
other one is reduced, as Figure 5 (b) shows.

In this example, the cysteine at position 241
lies at the boundary where we should check its
probability difference. We find that cysteine 241 is
closer to the reduced group than the oxidized group.
Thus, we change it to 0. In our algorithm, we then
stop the adjustment and go to the next step.

Then we check for specific cysteines depending
on our two assumptions. As Figure 6 (c) shows,
we perform the oxidized inversion step. We find
that cysteine 59 matches our assumptions and thus
turn it to be reduced. For the remaining cysteines,
positions 108 and 225 also satisfy the rule and their
states should be changed. After this, we perform
the reduced inversion step and find that the rule
is satisfied at position 281 where the cysteine state
should be oxidized, as shown in Figure 6 (d).

Finally, in the odd-even revision step, we check
whether the total number of oxidized cysteines is
even or not. Here we set a threshold ρ to refine
the state adjustment. In Steps 2 and 3, we focus
on the relationship between positions of cysteines
and leave the probabilities out of consideration.
Although the tactics help us to filter some erro-
neously predicted cysteines, we also run the risk of
eliminating correctly predicted ones. Consequently,
in the final step, we take the most probable oxidized
cysteine back according to the probability produced

by SVM.
As shown in Figure 7 (e), we sort them by

the states tuned in previous steps and then by
probabilities which is similar to Step 1. We find
the probability at position 281 is smaller than ρ;
therefore we adjust the state to become reduced
to make the number consistently be paired. In our
experiments, as shown in Figure 8, the threshold
ρ = 0.06 can yield best results.

After finishing the above procedure, we obtain the
tuned states of the sequence, as shown in Figure 7
(f). Although this strategy is simple and heuristic,
it is useful.

IV. EXPERIMENTAL RESULTS

A. Datasets and Performance Evaluation

To compare with the previous works, we use
the same datasets as the previous works did. The
PDB4136 was used by Martelli et al. [14], containing
969 proteins extracted from PDB with an identity
value less than 25% and without broken chain. The
dataset contains 4136 cysteines in which the number
of oxidized ones is 1446. For comparison, we split
it into 20 disjoint subsets and perform 20-fold cross-
validation with the same list used by Martelli et al.
[14].

In order to perform k-fold cross-validation for
a dataset D, we split D into k disjoint subsets
D1, D2, . . . , Dk. We take one Di, 1 ≤ i ≤ k, for
testing and the other k − 1 subsets for training.
This procedure repeats k times until all subsets are
processed.

We also use the standard percentage accuracy as
performance measurement and group the answers
into 4 categories, true positive (TP), true negative
(TN), false positive (FP) and false negative (FN).

For the cysteine state classification problem, the
accuracy is defined as

Q3 =
P

N
=

TP + TN

TP + TN + FP + FN
, (1)

where P denotes the total number of correct predic-
tions and N denotes the number of total predictions.

For the protein-based performance, the accuracy
is defined as

Qp =
Pp

Np

=
TPp + TNp

TPp + TNp + FPp + FNp

, (2)



( a )

(b )

S V M            P o s .      S V M  P r o b .

0              4 4        0 . 3 3 6 2 4 6 0

0              4 7        0 . 2 9 0 9 2 0 0

0              5 6        0 . 1 6 7 6 0 2 0

1              5 9        0 . 6 3 9 8 5 6 0

0              9 4        0 . 0 3 1 6 3 1 4

0              9 7        0 . 1 0 5 1 0 2 0

1              1 0 8       0 . 6 8 8 4 8 6 0

0              1 1 1       0 . 4 2 7 4 8 9 0

0              1 2 4       0 . 2 0 6 8 9 5 0

0              1 2 7       0 . 2 6 2 1 1 2 0

0              2 2 2       0 . 0 9 8 8 4 5 7

1              2 2 5       0 . 6 5 0 5 8 9 0

0              2 3 8       0 . 0 8 1 5 2 8 5

1              2 4 1       0 . 5 1 5 3 6 4 0

0              2 6 4       0 . 1 5 6 3 3 8 0

1              2 6 7       0 . 6 2 2 7 9 4 0

0              2 8 1       0 . 0 2 8 3 4 6 0

1              2 8 4       0 . 6 6 6 2 1 2 0

B e f o r e  A f t e r   P o s .      S V M  P r o b .           D i f f .

1       1       1 0 8       0 . 6 8 8 4 8 6 0               -

1       1       2 8 4       0 . 6 6 6 2 1 2 0       0 . 0 2 2 2 7 4 0

1       1       2 2 5       0 . 6 5 0 5 8 9 0       0 . 0 1 5 6 2 3 0

1       1       5 9        0 . 6 3 9 8 5 6 0       0 . 0 1 0 7 3 3 0

1       1       2 6 7       0 . 6 2 2 7 9 4 0       0 . 0 1 7 0 6 2 0

1       0       2 4 1       0 . 5 1 5 3 6 4 0       0 . 1 0 7 4 3 0 0

0       0       1 1 1       0 . 4 2 7 4 8 9 0       0 . 0 8 7 8 7 5 0

0       0       4 4        0 . 3 3 6 2 4 6 0       0 . 0 9 1 2 4 3 0

0       0       4 7        0 . 2 9 0 9 2 0 0       0 . 0 4 5 3 2 6 0

0       0       1 2 7       0 . 2 6 2 1 1 2 0       0 . 0 2 8 8 0 8 0

0       0       1 2 4       0 . 2 0 6 8 9 5 0       0 . 0 5 5 2 1 7 0

0       0       5 6        0 . 1 6 7 6 0 2 0       0 . 0 3 9 2 9 3 0

0       0       2 6 4       0 . 1 5 6 3 3 8 0       0 . 0 1 1 2 6 4 0

0       0       9 7        0 . 1 0 5 1 0 2 0       0 . 0 5 1 2 3 6 0

0       0       2 2 2       0 . 0 9 8 8 4 5 7       0 . 0 0 6 2 5 6 3

0       0       2 3 8       0 . 0 8 1 5 2 8 5       0 . 0 1 7 3 1 7 2

0       0       9 4        0 . 0 3 1 6 3 1 4       0 . 0 4 9 8 9 7 1

0       0       2 8 1       0 . 0 2 8 3 4 6 0       0 . 0 0 3 2 8 5 4

Fig. 5. An example of the tuning method. PDB ID: 1duw, chain A. (a) The input which is the output obtained from SVM. (b) The boundary
adjustment step.



( c )

( d )

B e f o r e  A f t e r   P o s .      S V M  P r o b .

0       0       4 4        0 . 3 3 6 2 4 6 0

0       0       4 7        0 . 2 9 0 9 2 0 0

0       0       5 6        0 . 1 6 7 6 0 2 0

1       0       5 9        0 . 6 3 9 8 5 6 0

0       0       9 4        0 . 0 3 1 6 3 1 4

0       0       9 7        0 . 1 0 5 1 0 2 0

1       0       1 0 8       0 . 6 8 8 4 8 6 0

0       0       1 1 1       0 . 4 2 7 4 8 9 0

0       0       1 2 4       0 . 2 0 6 8 9 5 0

0       0       1 2 7       0 . 2 6 2 1 1 2 0

0       0       2 2 2       0 . 0 9 8 8 4 5 7

1       0       2 2 5       0 . 6 5 0 5 8 9 0

0       0       2 3 8       0 . 0 8 1 5 2 8 5

0       0       2 4 1       0 . 5 1 5 3 6 4 0

0       0       2 6 4       0 . 1 5 6 3 3 8 0

1       1       2 6 7       0 . 6 2 2 7 9 4 0

0       0       2 8 1       0 . 0 2 8 3 4 6 0

1       1       2 8 4       0 . 6 6 6 2 1 2 0

B e f o r e  A f t e r   P o s .      S V M  P r o b .

0       0       4 4        0 . 3 3 6 2 4 6 0

0       0       4 7        0 . 2 9 0 9 2 0 0

0       0       5 6        0 . 1 6 7 6 0 2 0

0       0       5 9        0 . 6 3 9 8 5 6 0

0       0       9 4        0 . 0 3 1 6 3 1 4

0       0       9 7        0 . 1 0 5 1 0 2 0

0       0       1 0 8       0 . 6 8 8 4 8 6 0

0       0       1 1 1       0 . 4 2 7 4 8 9 0

0       0       1 2 4       0 . 2 0 6 8 9 5 0

0       0       1 2 7       0 . 2 6 2 1 1 2 0

0       0       2 2 2       0 . 0 9 8 8 4 5 7

0       0       2 2 5       0 . 6 5 0 5 8 9 0

0       0       2 3 8       0 . 0 8 1 5 2 8 5

0       0       2 4 1       0 . 5 1 5 3 6 4 0

0       0       2 6 4       0 . 1 5 6 3 3 8 0

1       1       2 6 7       0 . 6 2 2 7 9 4 0

0       1       2 8 1       0 . 0 2 8 3 4 6 0

1       1       2 8 4       0 . 6 6 6 2 1 2 0

Fig. 6. An example of the tuning method. PDB ID: 1duw, chain A (continued). (c) The oxidized inversion step. (d) The reduced inversion
step.



( e )

( f )

B e f o r e  A f t e r   P o s .      S V M  P r o b .

1       1       2 8 4       0 . 6 6 6 2 1 2 0

1       1       2 6 7       0 . 6 2 2 7 9 4 0

1       0       2 8 1       0 . 0 2 8 3 4 6 0

0       0       1 0 8       0 . 6 8 8 4 8 6 0

0       0       2 2 5       0 . 6 5 0 5 8 9 0

0       0       5 9        0 . 6 3 9 8 5 6 0

0       0       2 4 1       0 . 5 1 5 3 6 4 0

0       0       1 1 1       0 . 4 2 7 4 8 9 0

0       0       4 4        0 . 3 3 6 2 4 6 0

0       0       4 7        0 . 2 9 0 9 2 0 0

0       0       1 2 7       0 . 2 6 2 1 1 2 0

0       0       1 2 4       0 . 2 0 6 8 9 5 0

0       0       5 6        0 . 1 6 7 6 0 2 0

0       0       2 6 4       0 . 1 5 6 3 3 8 0

0       0       9 7        0 . 1 0 5 1 0 2 0

0       0       2 2 2       0 . 0 9 8 8 4 5 7

0       0       2 3 8       0 . 0 8 1 5 2 8 5

0       0       9 4        0 . 0 3 1 6 3 1 4

I n p u t   O u t p u t  P o s .      S V M  P r o b .

0       0       4 4        0 . 3 3 6 2 4 6 0

0       0       4 7        0 . 2 9 0 9 2 0 0

0       0       5 6        0 . 1 6 7 6 0 2 0

1       0       5 9        0 . 6 3 9 8 5 6 0

0       0       9 4        0 . 0 3 1 6 3 1 4

0       0       9 7        0 . 1 0 5 1 0 2 0

1       0       1 0 8       0 . 6 8 8 4 8 6 0

0       0       1 1 1       0 . 4 2 7 4 8 9 0

0       0       1 2 4       0 . 2 0 6 8 9 5 0

0       0       1 2 7       0 . 2 6 2 1 1 2 0

0       0       2 2 2       0 . 0 9 8 8 4 5 7

1       0       2 2 5       0 . 6 5 0 5 8 9 0

0       0       2 3 8       0 . 0 8 1 5 2 8 5

1       0       2 4 1       0 . 5 1 5 3 6 4 0

0       0       2 6 4       0 . 1 5 6 3 3 8 0

1       1       2 6 7       0 . 6 2 2 7 9 4 0

0       0       2 8 1       0 . 0 2 8 3 4 6 0

0       1       2 8 4       0 . 6 6 6 2 1 2 0

Fig. 7. An example of the tuning method. PDB ID: 1duw, chain A (continued). (e) The odd-even revision step. (f) The final output.
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Fig. 8. Accuracies of various values of threshold ρ in the tuneing method.

where Pp is the correct predictions of proteins and
Np is total number of proteins in the testing set.

In order to make the cross-validation fair, all the
statistics are calculated with the same parameters,
cost (C) and gamma (γ), for SVM. For example,
suppose there are 3 sets of parameters, (C1, γ1),
(C2, γ2) and (C3, γ3) in a window size w. The
accuracy for this window size is defined as the
maximum one of Q(C1,γ1), Q(C2,γ2) and Q(C3,γ3).

Moreover, we also consider the commonly used
indexes such as sensitivity, specificity and Matthews
correlation coefficients (MCC), which are defined
as follows.

Specificity =
TN

TN + FP
. (3)

Sensitivity =
TP

TP + FN
. (4)

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
. (5)

B. Experimental Results
Table II shows the accuracy comparison between

our tuning method and previous works. As we
can see, the best result in previous works is the
method of Vincent et al.[21]. They constructed a
kernel-based SVM method, all-pairs decomposition
kernel (APDK), to solve the problems of chain
classification, state classification and connectivity
prediction.

In Table II, “Our Method1” adopts only the odd-
even revision step. In other words, “Our Method1”

only makes the number of oxidized cysteines even
after the prediction of SVM. On the other hand,
“Our Method2” adopts the whole steps of the tuning
method with threshold rho to make the modification
more precisely. We find Qp and Q3 are improved
after the whole tuning method is executed.

In our method, the boundary adjustment step first
reduces the risk when the data are ambiguous for
SVM. And with the specific target revision, we
take back and throw away the cysteines of wrong
prediction by its positions in the sequence. The steps
make up the defects of SVM, in which the model
will be affected by distributions of samples in the
training set.

For various window sizes, the accuracies are
shown in Table III. In this table, we find that there
is a tendency between window sizes and accuracies.
Although the window approach is based on the
idea that the information beside the target cysteine
is useful, it also makes it indistinct for SVM.
Take Q3 as an example, the accuracies increase
till the 25-residue window and then decrease. This
phenomenon implies that there is no global rule to
decide the window size.

The details of the best result are shown in Tables
IV and V. In this dataset, the best performance is
on a 25-residue window with SVM parameters C =
2.0 and γ = 0.125 where we achieve Qc = 90.7%
and Qp = 86%. Moreover, the standard deviation
σ = 0.03 means that our method is stable in the
20-fold cross-validation test.



TABLE II
ACCURACY COMPARISON FOR PDB4136 DATASET.

Oxidized Reduced
Method Q3 MCC Specificity Sensitivity Specificity Sensitivity Qp

HNN a 88.0 0.73 78.1 93.3 86.3 88.8 84.0
MultipleSVM + CSSb 90 0.77 91 77 89 90 -
APTK +DISULFINDc 90.3 - 82.1 89.2 - - -
OurMethod1d 85.2 0.67 81.4 74.7 87.0 90.8 66.8
OurMethod2e 90.7 0.79 88.4 84.4 91.8 94.1 86
a From Martelli et al. [14].
b From Chen et al. [4].
c From Vincent et al. [21].
d Performance with only the odd-even revision step.
e Performance with the tuning method.

TABLE III
ACCURACIES OF PDB4136 DATASET FOR VARIOUS WINDOW SIZES WITH 20-FOLD CROSS-VALIDATION.

Window Oxidized Reduced
size Q3 MCC Specificity Sensitivity Specificity Sensitivity Qp

7 88.2 0.74 84.5 81.3 90.2 92.0 82.6
9 88.9 0.75 85.9 81.7 90.4 92.8 84.4
11 89.0 0.76 85.6 82.3 90.7 92.6 84.2
13 89.0 0.76 85.1 83.0 91.0 92.2 84.4
15 89.3 0.76 85.9 83.1 91.1 92.6 84.9
17 89.1 0.76 85.6 82.7 90.9 92.5 84.5
19 89.7 0.77 86.6 83.3 91.2 93.1 85.0
21 89.7 0.77 87.5 82.2 90.7 93.7 85.6
23 89.9 0.78 87.2 83.5 91.3 93.4 85.3
25 90.7 0.79 88.4 84.4 91.8 94.1 86.0
27 89.9 0.78 86.6 84.2 91.6 93.0 84.9
29 89.6 0.77 86.8 82.7 90.9 93.2 84.8
31 89.3 0.76 86.6 82.0 90.6 93.2 84.9
33 88.5 0.75 85.7 80.7 89.9 92.8 84.5

V. CONCLUSIONS

In this paper, we propose a tuning method for
refining the predicted cysteine state obtained from
SVM. Experimental results reveal that higher ac-
curacies are achieved compared with the previous
works. Although we believe this strategy can be
used in other situations, even to tune up the results
of previous works, we also realize its limitation.
First, our method is recommended when there are
more than four cysteines in a protein. Second, our
method is devised to add the lost ones but still
lacks mechanism for deletion when there is an error
prediction.

We show that the problem can be solved by
simple but logic rules. With the sequence profile and
window approach as a local view, we can predict the
state of each cysteines. And with our tuning method,
we can improve the accuracy by about 20% in Qp

and 5% in Q3. The result is better than the previous
works.
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Subset 3 0.9 0.73 0.64 0.64 0.9 0.73 0.64 0.64
Subset 4 0.93 0.83 0.8 0.81 0.92 0.83 0.8 0.81
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Subset 6 0.91 0.74 0.71 0.68 0.91 0.74 0.71 0.68
Subset 7 0.89 0.78 0.68 0.68 0.89 0.78 0.68 0.68
Subset 8 0.95 0.79 0.68 0.68 0.95 0.79 0.68 0.68
Subset 9 0.92 0.68 0.61 0.6 0.92 0.68 0.61 0.6
Subset 10 0.92 0.88 0.78 0.78 0.91 0.88 0.78 0.78
Subset 11 0.9 0.72 0.68 0.67 0.88 0.72 0.68 0.67
Subset 12 0.88 0.77 0.62 0.62 0.88 0.77 0.62 0.62
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Subset 18 0.88 0.87 0.74 0.74 0.88 0.87 0.74 0.74
Subset 19 0.86 0.65 0.49 0.49 0.86 0.65 0.49 0.49

Q 0.91 0.76 0.65 0.65 0.90 0.76 0.65 0.65
σ 0.03 0.07 0.10 0.10 0.04 0.07 0.10 0.10

TP 1220 557 34 24 1212 557 34 24
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