
With parallel algorithm solved tridiagonal system

Liang-Jung Shen
Department of Electronic Engineering

Nan Jeon Institute of Technology
Email: altus@mail.njtc.edu.tw

Abstract ―In recent years there has been increasing in-

terest in the study and research of parallel algorithms.

Parallel programming uses multiple computers or dis-

tributed computing system to solve the problem at simul-

taneous and computational speed is faster than a single

computer. This paper utilized divide-and-conquer concept

to present brand-new method of parallel process in order

to solve tridiagonal system. This skill is called “Recur-

sive-Doubling-Elimination” algorithm. This approach al-

lows a tridiagonal system to be solved in O(log2 n) times

on a barrel shifter network of O(n/log2 n) processors. It is

also cost-optimal in the sense that the product of the exe-

cution time and the number of processors is minimal.

Index Terms―tridiagonal system, Barrel shifter, Recur-

sive-Doubling-Elimination.

I. INTORDUCTION

Solving tridiagonal system has the following
several kinds of important application on science

1. Solving of differential equation or partial
differential equations for example FACR
(Fourier Analysis-Cyclic Reduction) Succes-
sive Line. [1][2]

2. Cubic polynomials spline method. [3][4]

3. Using finite difference method will solve
orthogonal curvilinear coordinate system to
get coupled finite difference equations. [5]

A tridiagonal matrix has nonzero elements that
only in the main diagonal and it neighboring ele-
ments. A diagonal is below main diagonal and an-
other one is above main diagonal, as show in Fig-
ure 1. For example a tridiagonal system for n un-
knowns may be written as:

Nniniwhere
rxbxaxc iiiiiii

∈≤≤
=++ +−

,,1
11

The ones that because exist very high among
data are interdependent, it is very difficult to use
parallel method to deal with the matrix. If use the
general linear algebra method to solve, no matter
how many processors are used, complexity of time
needs for O(n). Because of the above-mentioned
reasons, this is really a difficult parallel problem.

Ax≡

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣
− − − − −

a b
c a b

c a b

c a b
c a

x
x
x

x
x

r
r
r

r
r

n n n

n n

n

n

n

n

1 1

2 2 2

3 3 3

1 1 1

1

2

3

1

1

2

3

1

...
...

...

..

..

..

..

..

..

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

≡r

Figure 1 Linear tridiagonal system

Literature has proposed a lot of method with par-

 1

Administrator
矩形

allel calculations for tridiagonal system in the past,
as shown in Table 1. This paper presents the algo-
rithm that is applied to solve a tridiagonal system.
Based on the recursive doubling elimination
method is parallel computed by a barrel shifter
network with O(n/log2 n) processors taking O(log2
n) times.

Table 1 Parallel algorithm solves performance of
tridiagonal system.

Method
Time

Complex-
ity

Processor
Complexity

LU decomposi-
tion [6]

)(log2 nO)(nO

QR decomposi-
tion [7]

)(log2 nO)(nO

cyclic reduction
[8]

)(log2 nO)(nO

divide and con-
quer[9]

)(nO)(nO

Continued frac-
tion [10]

)(log2 nO)log/(2 nnO

II. RECURSIVE DOUBLING ELIMINATION

METHOD

This method emphasized the skill operation of
matrix element of simultaneous. If tridiagonal ma-
trix size is n by n (coefficient matrix as shown in
Figure 2), calculation can be divided into upper and
lower parts parallel process and simultaneous cal-
culation every part, then the result can be finished
in (log2 n) steps.

Regarding main diagonal as the centre will carry

on procedure of elimination to upper and lower
element base on matrix elementary row operation.
For example ith row, we multiply the row through
by a multiple kdi (kdi = -ci +1/ai) and elimination
element below main diagonal. The same situation
multiply the row through by a multiple kui (kui =
-bi-1 +1/ai) and elimination element above main di-
agonal, as shown in Figure 3. By the same method,
its result that does operation once again is as shown
in Figure 4.

a b
c a b

c a b
c a b

c a

c a b
c a

i i i

i i i

i i

n n n

n n

1 1

2 2 2

1 1 1

1 1

1 1 1

. . .

. . .

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋅ ⋅ ⋅

− − −

+ +

⋅ ⋅ ⋅

− − −

Figure 2 coefficient matrix

a b
a b

c a b

c a b
c a b

c a b
c a b

c a b

c a b
c a

c a

i i i

i i i

i i i

i i i

i i i

n n

n n

1 1

2 2

3 3 3

2 2 2

1 1 1

1 1 1

2 2 2

2 2

1 1

0
0 0

0 0

0 0
0 0

0 0
0 0

0 0

0 0
0 0

0

.

.

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⋅ ⋅ ⋅ ⋅ ⋅

− − −

− − −

+ + +

+ + +

⋅ ⋅ ⋅ ⋅ ⋅

− −

− −

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

n

n n

2−

Figure 3 first elimination

 2

Administrator
矩形

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅⋅⋅

−−

−−

⋅⋅⋅⋅⋅⋅⋅⋅

+++

+++

−−−

−−−

⋅⋅⋅⋅⋅⋅⋅⋅

nn

nn

nn

iii

iii

iii

iii

iii

ac
ac

ac

bac
bac

bac
bac

bac

ba
ba

ba

000
0000
00000

000000
000000

000000
000000

000000

00000
0000

000

11

22

........
222

111

111

222

........
33

22

11

Figure 4 the second elimination

So matrix is after operation of m (m = log2 n)
times, all value will be zero besides main diagonal
element. That is to say this system has already been
answered.

As to in the above mentioned elementary row
operation course. The constant term(r) in the equa-
tion need to do relative operation too. If according
to matrix of local:

c a b
c a b

c a b

u u u

i i i

d d d

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Assumption matrix size is n by n. Let kd = - (ci /
au), and ku = - (bi / ad), uth row is multiplied by kd
together, dth row is multiplied by ku together, and
then with ith 3 pieces of equation preface summa-
tion.

1 0

2 0

3 0

.

.

.

a a b c
a

c b
a

r r r
c

a
r

b
a

c c
c

a
b b

b
a

i i u
i

u
d

i

d

i u
i

u
d

i

d

i u
i

u
i u

i

d

= +
−⎛

⎝
⎜

⎞

⎠
⎟ +

−⎛

⎝
⎜

⎞

⎠
⎟ +

= +
−⎛

⎝
⎜

⎞

⎠
⎟ +

−⎛

⎝
⎜

⎞

⎠
⎟ +

=
−⎛

⎝
⎜

⎞

⎠
⎟ + =

−⎛

⎝
⎜

⎞

⎠
⎟ + 0

2

jj idiu 2,2 +=−=

0 2 0 1≤ ± ≤ ∈i m i jj , , , ... matrix size is m

III. BARREL SHIFTER

14 2

4

8

12

0

610

115

11 5

313

79

Figure 5 Barrel shifter

As shown in Fig.5 for a network of N=16 nodes,
the barrel shifter is obtained from the ring by add-
ing extra links from each node to those nodes hav-
ing a distance equal to an integer power of 2. This
implies that node i is connected to node j if│j-i∣
=2r for some r=0,1,2…,n-1 and the network size
is N=2n. Barrel shifter has a node degree of d=2n-1
and a diameter D=n/2. Communication way of
processor is based on the following transmission
function:

 3

Administrator
矩形

BB+i (j) = (j + 2) (mod N) i

BB-i (j) = (j - 2) (mod N) i

0 ≤ j ≤ N-1 , 0 ≤ i ≤ n-1 , n=log2N

IV. RECURSIVE DOUBLING ELIMINATION ALGO-

RITHM

The algorithm adopts divide-and-conquer as the
structure. In this method, the problem is divided
into smaller subproblems. The solutions of these
subproblems are found first. Then these are proc-
essed further, to get the solution of the complete
problem. The algorithm is divided into three steps:

1. If matrix size is n by n, partition into
(n/log2 n) blocks and each one has (log2 n)
rows. Each block distribute to a processor re-
sponsible for calculating, as shown in Fig. 6.
Simultaneity performs elementary row opera-
tion of each block, as shown in Fig. 7.

2. Take out the last row of every block, and
make up smaller tridiagonal matrix, namely
eigenmatrix, as show in Figure 8. And solving
the eigenmatrix utilizes recursive doubling
elimination method.

3. Solution calculated by eigenmatrix,
backward substitution it in each processor. So
can find every row of original matrix all only
has one variable left. Solving job of original
matrix just need utilize simple division, as
shown in Figure 9.

n
n

blocks

a b
c a b

c a b
c a b

c a b
c a b

c a b
c a b

c a b
c a b

c a b
c a b

c a b
c a b

c a b
c a

log2

1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

10 10 10

11 11 11

12 12 12

13 13 13

14 14 14

15 15 15

16 16

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

log2 n

rows

Figure 6 partition matrix

a g
a g

a b
a g
c a g
f a g
f a b
f a g

c a g
f a g
f a b
f a

c a g
f a g
f a
f a

1 1

2 2

3 3

4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

10 10 10

11 11 11

12 12 12

13 13 13

14 14 14

15 15 15

16 16

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

g

b

16 16 16 16

Figure 7 Simultaneity performs elementary row

operation of each block

a g
f a g

f a g
f a

x
x
x
x

r
r
r
r

4 4

8 8 8

12 12 12

4

8

12

4

8

12

0 0
0

0
0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

×

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

Figure 8 eigenmatrix

 4

Administrator
矩形

a g
a g

a b
a
c a g
f a g
f a b

a
c a g
f a g
f a b

a
c a g
f a g
f a b

a

x
x
x

x
x
x

x
x

1 1

2 2

3 3

4

5 5 5

6 6 6

7 7 7

8

9 9 9

10 10 10

11 11 11

12

13 13 13

14 14 14

15 15 15

16

1

2

3

5

6

7

9

0

0 0

0 0

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

x

x

4

8

10

11

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

x

x
x
x

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

x

x

12

16

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

Figure 9 backward substitution

V. COMPLEXITY ANALYSIS

Define parallel algorithm cost analysis as the
product of execution time and processor quantity,
as below:

c(n) = t(n) × p(n)

Suppose the matrix size is n by n, based on the
principle of partition matrix, so need O(n/log2 n)
processors altogether. That is to say the processor
complexity is O(n/log2 n).

Estimate the time complexity of algorithm and
can be divided into three components:

1. Partition: Each block has (log2 n) rows
after partition matrix. Time complexity at
this stage is :

)(log21 nOO =

2. Recursive doubling elimination: Be-

cause matrix partition into (n/log2 n) blocks
and calculation with method of recursive
doubling elimination, hence time complex-
ity at the second stage is n:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n
nOO

2
2 log

log

3. Backward substitution: Each block has
(log2 n) rows, so time complexity is:

()nOO 23 log=

Whole time complexity is:

O O O Ot = + +1 2 3

() ()

()nO

nO
n

nOnOOt

2

2
2

2

log

log
log

loglog

=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

And algorithm cost is:

() ()nO
n

nOnOnt =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

2
2 log

log)(cos

VI. CONCLUSION

The algorithm is based on “divide-and-conquer”
principle to present “recursive doubling elimina-
tion” method and to deal with tridiagonal system
problem on the structure of barrel shifter. In cost

 5

Administrator
矩形

analysis, utilize O(n/log2 n) processors to finish
within O(log2 n) times. Its cost equals to O(n), this
is the best solution at present.

REFERENCE

[1] R. F. Boisvert, “Algorithms for special tridi-
agonal systems,” SIAM J. Scientific Statist.
Computat., vol.12, no.2, 1991, pp. 423-442.

[2] S. L. Johnsson, “Solving tridiagonal systems
on ensemble architectures,” SIAM J. Scientific
Statist. Compt., vol.8, no.3, 1987, pp.354-392.

[3] H. Spath, Spline Algorithms for Curves and
Surfaces. Utilitas Mathematica, 1974.

[4] Kuo-Liang Chung and Ferng-Ching Lin, “A
cost-optimal parallel algorithm for B-spline
surface fitting,” Graphical models and image
processing, vol.53, no.6, November, 1991, pp.
601-605.

[5] Larry L. Schumaker, Spline Function Basic
Theoy. JOHN WILEY & SONS, 1981.

[6] H. S. Stone, “Parallel tridiagonal equation
solvers,” ACM Trans. Math Software, vol.1,
no.4, 1975, pp. 289-307.

[7] A. H. Sameh and D. J. Kuck, “A parallel QR
algorithm for symmetric tridiagonal matrices”,
IEEE Trans. Comp. vol. C-26(2), 1977,
pp.147-155.

[8] R. W. Hockney. “A first direct solution of
Poisson’s equation using fourier analysis,”
Journal of ACM vol.12, 1965, pp. 95-113.

[9] H. H. Wang. “A parallel method for tridiago-
nal equations,” ACM Trans. Math. Software
vol.7, 1981, pp170-183.

[10] Ferng-Ching Lin and Kuo-Liang Chung. “A
cost-optimal parallel tridiagonal system
solver,” Parallel Computing, vol.15, 1990, pp.
189-199.

 6

Administrator
矩形

