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Abstract ―In recent years there has been increasing in-

terest in the study and research of parallel algorithms. 

Parallel programming uses multiple computers or dis-

tributed computing system to solve the problem at simul-

taneous and computational speed is faster than a single 

computer. This paper utilized divide-and-conquer concept 

to present brand-new method of parallel process in order 

to solve tridiagonal system. This skill is called “Recur-

sive-Doubling-Elimination” algorithm. This approach al-

lows a tridiagonal system to be solved in O(log2 n) times 

on a barrel shifter network of O(n/log2 n) processors. It is 

also cost-optimal in the sense that the product of the exe-

cution time and the number of processors is minimal. 
 

Index Terms―tridiagonal system, Barrel shifter, Recur-

sive-Doubling-Elimination. 

 

I. INTORDUCTION  

Solving tridiagonal system has the following 
several kinds of important application on science 

1. Solving of differential equation or partial 
differential equations for example FACR 
(Fourier Analysis-Cyclic Reduction) Succes-
sive Line. [1][2] 

2. Cubic polynomials spline method. [3][4] 

3. Using finite difference method will solve 
orthogonal curvilinear coordinate system to 
get coupled finite difference equations. [5] 

 

A tridiagonal matrix has nonzero elements that 
only in the main diagonal and it neighboring ele-
ments. A diagonal is below main diagonal and an-
other one is above main diagonal, as show in Fig-
ure 1. For example a tridiagonal system for n un-
knowns may be written as: 

 

Nniniwhere
rxbxaxc iiiiiii

∈≤≤
=++ +−

,,1
11  

 

The ones that because exist very high among 
data are interdependent, it is very difficult to use 
parallel method to deal with the matrix. If use the 
general linear algebra method to solve, no matter 
how many processors are used, complexity of time 
needs for O(n). Because of the above-mentioned 
reasons, this is really a difficult parallel problem. 
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Figure 1  Linear tridiagonal system 

 

Literature has proposed a lot of method with par-

                                                                             1

Administrator
矩形



allel calculations for tridiagonal system in the past, 
as shown in Table 1. This paper presents the algo-
rithm that is applied to solve a tridiagonal system. 
Based on the recursive doubling elimination 
method is parallel computed by a barrel shifter 
network with O(n/log2 n) processors taking O(log2 
n) times. 

 

Table 1 Parallel algorithm solves performance of 
tridiagonal system. 

Method 
Time 

Complex-
ity 

Processor 
Complexity

LU decomposi-
tion [6] 

)(log2 nO  )(nO  

QR decomposi-
tion [7] 

)(log2 nO  )(nO  

cyclic reduction 
[8] 

)(log2 nO  )(nO  

divide and con-
quer[9] 

)( nO  )( nO  

Continued frac-
tion [10] 

)(log2 nO  )log/( 2 nnO

 

II. RECURSIVE DOUBLING ELIMINATION 

METHOD 

This method emphasized the skill operation of 
matrix element of simultaneous. If tridiagonal ma-
trix size is n by n (coefficient matrix as shown in 
Figure 2), calculation can be divided into upper and 
lower parts parallel process and simultaneous cal-
culation every part, then the result can be finished 
in (log2 n) steps. 

 

Regarding main diagonal as the centre will carry 

on procedure of elimination to upper and lower 
element base on matrix elementary row operation. 
For example ith row, we multiply the row through 
by a multiple kdi (kdi = -ci +1/ai) and elimination 
element below main diagonal. The same situation 
multiply the row through by a multiple kui (kui = 
-bi-1 +1/ai) and elimination element above main di-
agonal, as shown in Figure 3. By the same method, 
its result that does operation once again is as shown 
in Figure 4. 
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Figure 2  coefficient matrix 
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Figure 3  first elimination 
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Figure 4  the second elimination 

 

So matrix is after operation of m (m = log2 n) 
times, all value will be zero besides main diagonal 
element. That is to say this system has already been 
answered. 

 

As to in the above mentioned elementary row 
operation course. The constant term(r) in the equa-
tion need to do relative operation too. If according 
to matrix of local: 
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Assumption matrix size is n by n. Let kd = - (ci / 
au), and ku = - (bi / ad), uth row is multiplied by kd 
together, dth row is multiplied by ku together, and 
then with ith 3 pieces of equation preface summa-
tion. 

1 0

2 0

3 0

.

.

.

a a b c
a

c b
a

r r r
c

a
r

b
a

c c
c

a
b b

b
a

i i u
i

u
d

i

d

i u
i

u
d

i

d

i u
i

u
i u

i

d

= +
−⎛

⎝
⎜

⎞

⎠
⎟ +

−⎛

⎝
⎜

⎞

⎠
⎟ +

= +
−⎛

⎝
⎜

⎞

⎠
⎟ +

−⎛

⎝
⎜

⎞

⎠
⎟ +

=
−⎛

⎝
⎜

⎞

⎠
⎟ + =

−⎛

⎝
⎜

⎞

⎠
⎟ + 0

2

 

jj idiu 2,2 +=−=  

0 2 0 1≤ ± ≤ ∈i m i jj , , , ... matrix size is m 

 

III. BARREL SHIFTER 
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Figure 5  Barrel shifter 

As shown in Fig.5 for a network of N=16 nodes, 
the barrel shifter is obtained from the ring by add-
ing extra links from each node to those nodes hav-
ing a distance equal to an integer power of 2. This 
implies that node i is connected to node j if│j-i∣
=2r  for some r=0,1,2…,n-1 and the network size 
is N=2n. Barrel shifter has a node degree of d=2n-1 
and a diameter D=n/2. Communication way of 
processor is based on the following transmission 
function: 
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BB+i ( j ) = ( j + 2  ) ( mod N ) i

BB-i ( j ) = ( j - 2 ) ( mod N ) i  

0 ≤ j ≤ N-1 , 0 ≤ i ≤ n-1 , n=log2N 

 

IV. RECURSIVE DOUBLING ELIMINATION ALGO-

RITHM  

The algorithm adopts divide-and-conquer as the 
structure. In this method, the problem is divided 
into smaller subproblems. The solutions of these 
subproblems are found first. Then these are proc-
essed further, to get the solution of the complete 
problem. The algorithm is divided into three steps: 

 

1. If matrix size is n by n, partition into 
(n/log2 n) blocks and each one has (log2 n) 
rows. Each block distribute to a processor re-
sponsible for calculating, as shown in Fig. 6. 
Simultaneity performs elementary row opera-
tion of each block, as shown in Fig. 7. 

 

2. Take out the last row of every block, and 
make up smaller tridiagonal matrix, namely 
eigenmatrix, as show in Figure 8. And solving 
the eigenmatrix utilizes recursive doubling 
elimination method. 

 

 

3. Solution calculated by eigenmatrix, 
backward substitution it in each processor. So 
can find every row of original matrix all only 
has one variable left. Solving job of original 
matrix just need utilize simple division, as 
shown in Figure 9. 
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Figure 6  partition matrix 
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Figure 7  Simultaneity performs elementary row 

operation of each block 
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Figure 8  eigenmatrix 
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Figure 9  backward substitution 

 

V. COMPLEXITY ANALYSIS 

Define parallel algorithm cost analysis as the 
product of execution time and processor quantity, 
as below: 

c(n) = t(n) × p(n) 

 

Suppose the matrix size is n by n, based on the 
principle of partition matrix, so need O(n/log2 n) 
processors altogether. That is to say the processor 
complexity is O(n/log2 n). 

 

Estimate the time complexity of algorithm and 
can be divided into three components: 

 

1. Partition: Each block has (log2 n) rows 
after partition matrix. Time complexity at 
this stage is : 

)(log21 nOO =  

 

2. Recursive doubling elimination: Be-

cause matrix partition into (n/log2 n) blocks 
and calculation with method of recursive  
doubling elimination, hence time complex-
ity at the second stage is n: 
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3. Backward substitution: Each block has 
(log2 n) rows, so time complexity is: 
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Whole time complexity is: 
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And algorithm cost is:  
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VI. CONCLUSION 

The algorithm is based on “divide-and-conquer” 
principle to present “recursive doubling elimina-
tion” method and to deal with tridiagonal system 
problem on the structure of barrel shifter. In cost 
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analysis, utilize O(n/log2 n) processors to finish 
within O(log2 n) times. Its cost equals to O(n), this 
is the best solution at present. 
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