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Abstract — Because of the flourish of multi-processor 
system-on-a-chips (MPSoCs) and on- or off-chip 
high-speed networks, how to design an efficient arbiter, 
although a classical problem, now becomes more and 
more important. In the past, there were little or no work 
that thoroughly discussed the functionality, design 
issues and models of arbiters, which resulted in the 
inferior arbiter design and usages. Here, we have aimed 
at exploring the design space and the issues of operating 
of arbiters, and proposed a new multi-function arbiter 
design model and classification. With this new design 
model, we could further know the required key points of 
arbiter design, and thus have designed an efficient 
integrated multi-function arbiter that suitable to many 
different applications. A Round-Robin arbiter based on 
this model has been designed; to best of our knowledge, 
it is the fastest and smallest Round-Robin arbiter. 

Index Terms — Multi-function arbiter, design space, 
design model, round-robin, granularity, arbitrating 
latency, waiting latency. 

I. INTRODUCTION 

With the rapid evolution of technology, the 
complexity has become one of the most 
constraining aspects in the design and 
implementation of embedded multi-processor 
system-on-a-chips (MPSoCs) [1],  where many 
IPs (Intellectual Property) such as processor cores, 
memories, DSP processors, and peripheral 
devices are integrated on a single die. These IPs 
are shared one another in order to integrate and 
operate efficiently as well as to reduce the system 

area and cost. One of the important issues in 
MPSoC design is to increase the computation 
and/or communication performance among 
sharing IPs. Therefore, the high-speed and 
low-cost arbiters with efficient sharing arbitration 
among them become critical. 

As far as the efficiency is concerned, the 
notable sharing communication resource in an 
MPSoC is the shared on-chip switches, which are 
shared by some or all of the computation elements. 
Fig. 1 shows such an on-chip switch connected 
with some IPs, which are treated as its input or 
output masters by the I/O ports. If it is necessary 
to transmit data between the input and output 
masters, a request signal will be sent by the input 
master to request the use authority of the on-chip 
switch. Then these request signals will be 
arbitrated by the arbiter and one of the masters 
will be granted to monopolize the shared bus. As 
the number of masters increases in a single chip 
like many cores MPSoCs with thousand of cores 
[4], the resource contention will increase quickly, 
then the performance and fairness of the arbiters 
dealing with the serious resource contentions 
need more attention [1]. 

 Many arbiter designs have been proposed [2] 
[3] [5], but they did not analyze and explore the 
arbiter design space thoroughly, and failed to 
achieve the arbiters’ high performance and/or 
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design simplicity. Here, we focus on exploring the 
design space and issues of arbiter operations, and 
then propose a new arbiter design model and 
classification. With this new design model, we 
have already designed many new multi-function 
arbiters with a high arbitration performance 
and/or a less area. A Round-Robin arbiter based 
on the proposed design model has been designed; 
to best of our knowledge, it is one of the fastest 
and smallest Round-Robin arbiters in the world. 
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Fig. 1.  An n×n switch: block diagram, crossbar switch 
fabric and its switch arbiters. 

This paper is organized as follows: Section II 
describes the background of the arbiter. Section 
III illustrates some issues about the arbiter design, 
and the corresponding solutions will be provided 
in Section IV. Section V describes the new arbiter 
design model, and the simulation results of our 
arbiters compared with other existing ones are 
shown in Section VI. Finally, conclusions will be 
made in Section VII. 

II. BACKGROUND 

When a monopolized-only resource is shared 
by N masters, every unit of usage time of the 
resource (described as time unit below) can be 
allocated to only one master. Therefore, if there 

are many masters requesting a monopolized use 
of the resource at the same time, an arbitration 
scheme is needed to determine which one has the 
usage authority of each time unit fairly and 
efficiently. The time on which the arbiter has 
serviced every master with a request is defined as 
an arbitration round. It is determined by the 
number of masters who request the resource 
simultaneously, but does not exceed N time units. 

When an arbiter works, not only the request 
signals provided by each master but also some 
other information must be considered by it, and 
those important information about arbitration 
includes: 1) Bandwidth (BW) request ratio of the 
masters: For example, if the BW request ratio of 
three masters are 3:2:1, then the number of 3 
indicates that the bandwidth request quantity of 
the first master is 3 time units of the resource 
usage. 2) Waiting latency of each master: This 
time is defined as the number of time units that the 
master waits for the arbiter’s grant. 3) Resource 
granularity: It indicates the maximum number of 
data unit that a granted master could obtain from 
the shared resource per time unit. The data unit is 
defined as the basic unit of the quantum or 
bandwidth that the shared resource could provide. 
4) Arbitrating latency: It indicates the total 
number of time units (or arbitrations) required by 
the arbiter to arbitrate a master request. In other 
words, the arbitrating latency of the arbiter could 
be defined as the total time units between a master 
request is first granted to the time the request is 
fulfilled and finished. 5) Priority of each master: 
It determines various authorities among different 
masters. Under various arbitration schemes, it 
brings about some arbitration interrupting 
behavior choices: 6) Preemption or 7) 
Non-preemption. 

III. DESIGN ISSUES OF ARBITERS 

In this section, the arbiter design space is 
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explored and four important design issues of 
arbiters are also discussed. 

A. Issue about the BW request quantity and 
waiting latency tradeoff 

The masters which request the same resource 
at the same time are usually arbitrated by a 
conventional arbiter based on the values of their 
BW request quantities, and the master with the 
largest value is granted first. The waiting latency 
of each master is, therefore, dependent on the 
corresponding BW request quantity. A master 
with smaller BW request quantity always has 
larger waiting latency, and even starvation may 
occur among masters. Shown in Fig. 2(a) is the 
request schedule for three masters M1, M2, and 
M3 with BW request quantities 6, 3, and 1, 
respectively, and Mi on the time axis indicates 
that the request of Mi is issued at that time. The 
corresponding resource schedule, given in Fig. 
2(b), is arbitrated according to the BW request 
quantities of the masters. We can see that these 
three masters issue their requests simultaneously 
at time 1 and 11, and M1 gets granted earlier than 
both M2 and M3 due to its larger BW request 
quantity. However, if M2 or M3 needs less 
waiting latencies for some reason, this arbitration 
scheme depending only on the BW request 
quantities of the masters no longer works, 
although BW request quantity-based  arbitration is 
often r

B. Issue about the resource granularity and 
arbitrating latency tradeoff 

Both the arbitrating latency of masters and 
resource utilization will be influenced by the 
resource granularity. Conventionally, the 
arbitration fairness of most arbiters is reserved by 
servicing each master in a round-robin manner for 
each arbitration round. In other words, each 
master gains at most one access to the shared 
resource in each arbitration round. The 
round-robin arbitration scheme is adopted by 
many arbiters because of its simplicity and 
starvation-freeness. However, there is a 
tight-coupled relation between resource 
granularity and arbitrating latency for the 
round-robin arbiters. The arbitrating latencies are 
hence smaller for masters using coarse-grain 
resource granularity, but this scheme may result 
in severe resource over-allocation problem. For 
example,  masters M1, M2, and M3 requesting 
three data units of shared resource simultaneously, 
the resource schedule results (RSRs) based on 2 
and 1 data units of resource granularity are shown 
in Fig. 3(a) and (b), respectively. The arbitrating 
latency of M1 (four time units) in Fig. 3(a) is 
smaller than the one (seven time units) in Fig. 3(b). 
The arbitrating latencies can hence be efficiently 
reduced for arbiters with coarse-grain resource 
granularity. However, this coarser resource 
granularity will make the resource over-allocation 
problem, e.g., each of the three masters in Fig. 3(a) 
wastes one time unit at time 4, 5, and 6. Therefore, 
how to tradeoff between arbitrating latency and 
resource utilization has become an important 
issue. 
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Fig. 2. (a) Request schedule for masters M1, M2 and 
M3.  (b) The corresponding resource sched (a) ule. 
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Fig. 3. (a) The RSR with resource granularity = 2. (b) 
The RSR with resource granularity = 1. 

C. Issue about the resource granularity and 
fairness tradeoff 

The arbitration fairness can be influenced by 
the resource granularity. An arbiter is fair if (1) it 
is work-conserving; i.e., it never leaves any 
resource idle if there are requesting masters, and 
(2) it arbitrates resource time units to masters in 
exactly proportional to their BW request ratio. 
Using finer resource granularity can provide more 
precise bandwidth allocation and makes 
arbitration fairer. For three masters M1, M2, and 
M3 with BW request quantities 4, 2, and 1, 
respectively, the RSRs corresponding to resource 
granularities 1 and 2 are shown in Fig. 4(a) and (b), 
respectively. In Fig. 4(b), the arbiter wastes one 
time unit at time 8 since the resource granularity is 
larger than its request data unit. 
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Fig. 4. (a) The RSR with resource granularity = 1. (b) 
The RSR with resource granularity = 2. 

D. Issue about the integrity of arbiter design 

Conventional arbiters are usually designed for 
a single arbitration object, so the multiple 
arbitration requirements cannot be satisfied at the 

same time. For instance, a round-robin arbiter 
cannot continuously provide smaller waiting 
latency to the emergent masters; the 
linear-priority arbiter does not provide both 
preemptive and non-preemptive arbitration 
behaviors; the waiting-latency-aware arbiters 
give higher priories to masters with stricter 
waiting latency requirement but lower priorities 
to the others. The reason is that they cannot be 
designed in an integrated and modular manner 
because of the lack of a comprehensive arbiter 
design model. 

IV. SOLUTIONS TO THE DESIGN ISSUES OF 

ARBITERS 

To solve the problems about arbiter design 
described in the previous section, the design space 
is explored here and the solution to each design 
issue is also proposed. 

A. Solution about the issue about BW request 
ratio and waiting latency tradeoff 

To deal with the issue of BW request ratio and 
waiting latency tradeoff, the following solution is 
proposed. Since it is not appropriate to arbitrate 
the masters, which have different waiting latency 
requirements, based only on their BW request 
quantities, an additional parameter accompanied 
with each master, called the priority, is added. 
This parameter is used to arbitrate the masters 
under the BW request ratio constraint. The 
masters that have smaller waiting latency 
requirements are usually assigned higher 
priorities, and the arbitration is made according to 
their priorities and BW request ratio. The priority 
value of each master can be assigned statically or 
dynamically. It is defined as a positive integer pi 
for master Mi, where pi=1 indicates the highest 
priority. This priority-based BW request ratio 
arbitration can be further classified into 
non-equal-priority arbitration and equal-priority 
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arbitration, which can then be implemented as a 
BW request ratio-based linear-priority arbiter and 
a round-robin arbiter, respectively. 

There are two types of non-equal-priority 
arbitration: preemption and non-preemption. 
Preemption non-equal-priority arbitration allows 
the higher-priority master to interrupt and 
preempt the resource of the lower-priority master. 
Preemption arbitration guarantees that 
higher-priority masters will have smaller waiting 
latency than lower-priority ones. This makes the 
waiting latency of a master inversely proportional 
to its priority value; i.e., the waiting latency of the 
highest-priority master is the smallest. Fig. 5(a) 
shows an example of preemption arbitration. At 
time 2, the arbiter grants M3 to access the shared 
resource for two time units, and then the highest 
priority master M1 requests at time 3. At this time, 
the granted shared resource of M3 will be 
preempted by M1. In contrast to the preemption, 
the non-preemption arbitration does not allow any 
master to be interrupted as they are using the 
shared resource. The higher-priority master has to 
wait for the lower-priority master to finish its 
shared resource usage continuously. The RSR of 
the non-preemption arbitration is shown in Fig. 
5(b), where the highest-priority master M1 has to 
wait for the completion of M3 using the shared 
resource. Compared with the preemption 
arbitration, the arbitrating latencies of 
lower-priority masters can be decreased in a 
non-preemption arbitration, but the waiting 
latency of higher-priority masters will be 
increased. This results in a tradeoff between the 
waiting latency and arbitrating latency of a 
master. 
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Fig. 5. (a) Preemption arbitration. (b) Non-preemption 
arbitration. 

B. Solution to the issue about resource 
granularity and arbitrating latency tradeoff 

The solution to solve the couple between 
resource granularity and arbitrating latency is 
proposed here. Since some arbitration algorithms 
may satisfy portions of the requirements of 
masters in each arbitration round like 
“installment”, they suffer a situation in which the 
arbiter needs many arbitration rounds to satisfy 
masters with large amount of requirements and 
increases their arbitrating latencies. To deal with 
this problem, the non-preemption scheme is 
adopted to arbitrate a shared resource to one 
master non-preemptedly, and then its resource 
granularity and arbitrating latency are decoupled. 
Like the same conditions in Fig. 3(a) and (b), Fig. 
6(a) and (b) show the RSRs of non-preemption. 
The arbitrating latencies of all masters are 
minimized and equal to their request values, and 
the waiting latencies are growing inversely with 
their priority values. To avoid the starvation 
caused by non-preemption, a bandwidth-weight 
tuning scheme could be used to regulate and to 
limit the bandwidth gained by the masters. 
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Fig. 6. (a) The waiting latency of Fig. 3(a) is reduced 
by non-preemption. (b) The waiting latency of Fig. 3(b) 
is reduced by non-preemption. 

C. Solution to the issue about resource 
granularity and fairness tradeoff 

The relation between resource granularity and 
arbitrating latency can be decoupled by the 
non-preemption design, so the finest resource 
granularity is adopted for shared resource to 
increase resource utilization and to keep fairness. 
For fairness, a set of integers is used to represent 
the BW request ratio of masters. Then a master 
isolation scheme is applied to protect the 
bandwidth of each master from being robbed by 
other masters. The concept of master isolation is 
described as follows.  In a fixed amount of time, 
we give each master some time units called BW 
quota according to its BW request quantity. Every 
time when a shared resource is used by a master, 
its BW quota is decreased. When a master uses up 
its BW quota, its following requests will be 
ignored by the arbiter to prevent the bandwidth of 
other masters from being robbed. 

D. Solution to the issue about integrity 

The proposed reconfigurable and modular 
concept will be applied to design an arbiter to 
fulfill versatile arbitration schemes. The modular 
and reconfigurable arbiter can be reconfigured 
modularly as a linear-priority arbiter with a 
preemption or non-preemption mechanism to 

favor higher-priority masters and lower-priority 
masters with low waiting latency and low 
arbitrating latency, respectively. On the other side, 
the modular arbiter can be reconfigured as an 
equal-priority arbiter like a round-robin arbiter to 
prevent masters from starvation. Moreover, the 
master isolation idea can also be implemented to 
maintain the fairness between masters. 

From the solutions described above, an arbiter 
with complete arbitration schemes should have 
the following essential input parameters: request 
signal, priority, BW request quantity or BW 
request ratio, and the choice of preemption or 
non-preemption. Based on these arbitration 
parameters, we have developed an arbiter design 
model in the next section. 

V. DEVELOPMENT OF THE NEW MULTI-FUNCTION 

ARBITER DESIGN MODEL 

After the discussions and analyses of arbiter 
issues, arbitration factors, and their solutions 
described above, the design space exploration and 
development of a new arbiter design model with 
multi-function are described in detail as follows.  

A. Design space exploration of the arbiter design 
model 

Design space exploration of the arbiter design 
model involves exploring alternate arbiter 
configurations to form an efficient design model 
with some essential factors about the arbiters. 
Based on the arbiter design solutions above, we 
find that three essential factors of arbitration are 
priority, preemption, and bandwidth.  These 
factors will be explored to derive and to build the 
multi-function arbiter design model. But, how 
many configurations of those essential factors 
(and their inverses) does the design space of the 
multi-function arbiter design model have? How 
many valid arbiter designs among the 
configurations do the model and the space have? 
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What is the processing order of these essential 
factors in the multi-function design model for 
design of any valid configurations of the arbiters? 
As far as the design space is concerned, very 
essential factor will make the arbiter having the 
corresponding different arbitrating property. The 
design space of a multi-function arbiter with some 
or all of those factors or their inverses may be 
wide, so an exact design model has to be explored. 

Let us assume that the three essential factors 
priority, preemption and bandwidth are labeled as 
Ω, Φ and Ψ, respectively, and they also indicate 
that the arbiters will be realized with 
equal-priority, preemptive and 
bandwidth-constraint properties, respectively. On 
the other hand, label Ω’, Φ’  and Ψ’ indicates that 
the arbiter will be realized with non-equal-priority, 
non-preemptive and no bandwidth-constraint 
properties, respectively.  For example, an arbiter 
with Ω, Φ’, and Ψ’ properties indicates that it is 
an arbiter with the equal-priority, (then) 
non-preemption and (finally) non- 
bandwidth-constraint properties (circuit modules). 
Note that the connection order of those factors is 
also important; the hardware structure of the 
ΩΦ’Ψ’ arbiter in the design model and the design 
space has a priority control circuit module 
connected to a non-preemption module, and then 
followed by a bandwidth constraint control 
module. Thus, the design space of an arbiter 
design model with/without those three essential 
factors and their inverses has at most 79 different 
configurations (combinations), and each 
configuration may or may not form a valid arbiter. 
For arbiters designed with zero, one, two, and 
three essential factors, they will form four 
different sets of valid or invalid configurations of 
the arbiter: S0, S1, S2, and S3 in the following, 
respectively. The whole design space S of the 
arbiters is the union of set S0, S1, S2, and S3, and 
then 79 configurations will correspond to possibly 

79 different arbiters. 

S0 = {　}. 

S1 = {Ω, Φ, Ψ, Ω’, Φ’, Ψ’}. 

S2 = {ΩΦ, ΦΩ, Ω’Φ, ΦΩ’, ΩΦ’, Φ’Ω, Ω’Φ’, 
Φ’Ω’, ΩΨ, ΨΩ, Ω’Ψ, ΨΩ’, ΨΩ’, Ψ’Ω, 
Ω’Ψ’, Ψ’Ω’, ΦΨ, ΨΦ, Φ’Ψ, ΨΦ’, ΦΨ’, 
Ψ’Φ, Φ’Ψ’, Ψ’Φ’}. 

S3 = {ΩΦΨ, ΩΨΦ, ΦΩΨ, ΦΨΩ, ΨΩΦ, ΨΦΩ, 
Ω’ΦΨ, Ω’ΨΦ, ΦΩ’Ψ, ΦΨΩ’, ΨΩ’Φ, 
ΨΦΩ’, ΩΦ’Ψ, ΩΨΦ’, Φ’ΩΨ, Φ’ΨΩ, 
ΨΩΦ’, ΨΦ’Ω, ΩΦΨ’, ΩΨ’Φ, ΦΩΨ’, 
ΦΨ’Ω, Ψ’ΩΦ, Ψ’ΦΩ, Ω’Φ’Ψ, Ω’ΨΦ’, 
Φ’Ω’Ψ, Φ’ΨΩ’, ΨΩ’Φ’, ΨΦ’Ω’, 
Ω’ΦΨ’, Ω’Ψ’Φ, ΦΩ’Ψ’, ΦΨ’Ω’, 
Ψ’Ω’Φ, Ψ’ΦΩ’, ΩΦ’Ψ’, ΩΨ’Φ’, 
Φ’ΩΨ’, Φ’Ψ’Ω, Ψ’ΩΦ’, Ψ’Φ’Ω, 
Ω’Φ’Ψ’, Ω’Ψ’Φ’, Φ’Ω’Ψ’, Φ’Ψ’Ω’, 
Ψ’Ω’Φ’, Ψ’Φ’Ω’}. 

S = S0 ∪ S1 ∪ S2 ∪ S3 

For these 79 configurations or possible arbiters, 
however, some of which are invalid (not an arbiter) 
and should be removed to prune the design space. 
The final pruned design space is then used to 
derive and form the proposed arbiter design 
model.  

In the space, the priority factor determines what 
types of the priority-based arbitration which an 
arbiter uses, and an arbiter in nature must have at 
least one priority-based arbitrating scheme to 
handle the situation in which many masters 
compete for a single resource. Thus, no matter 
which choices we take, the priority factor always 
has an effect on the arbitration. The priority factor 
Ω must hence exist in the design space and then in 
the arbiter model. Therefore, the configurations 
which do not contain Ω (or Ω’) are removed from 
the design space. The number of configurations 
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remained in the space is now 65.  
From the definitions of preemption [6], the 

preemptive arbitration occurs only when masters 
have different priority levels, called non-equal 
priority arbitration. Thus, the preemption factor Φ 
belongs to the sub-option under the non-equal 
priority arbitration controlled by the priority 
factor. Another option of the priority factor is the 
equal-priority arbitration which cannot go with 
the preemption arbitration since there is no 
difference among priorities of all masters. In other 
words, the preemption arbitration only occurs 
when the arbiter has the non-equal-priority 
arbitrating property, which is an option 
determined by the priority factor. Thus, the 
processing order in the design model is first the 
priority factor and then the preemption factor. It 
indicates that Φ must occur in the configurations 
which contain Ω’ and at the right side of Ω’, and 
does not occur in the configurations which 
contain Ω. Therefore, configurations such as Ω’Ψ, 
ΦΩ’ and ΩΦ are seen as invalid configurations. 
The design space S is then reduced and only 22 
configurations remain in S. 

In terms of the shared resource arbitration, 
priority and bandwidth factors are responsible for 
granting resource usage orders and granting 
resource usage times, respectively. The priority 
factor decides the granting sequence of masters as 
two or more masters request the shared resource 
simultaneously, and the bandwidth factor Ψ 
affects the percentage of bandwidth of shared 
resource each master gets. Thus they are 
independent of each other and orthogonal in the 
design space. What is the processing order 
between the priority factor and bandwidth factor? 
From the view of a left-to-right, i.e. leaves-to-root, 
tree-like classification, and the priority factor is 
more necessary than the bandwidth factor, we let 
the priority factor closer to the option at the inner 

(right or root) side of the design mode (space). 
Thus, it is better to let the bandwidth factor locate 
at the outside (or the left-side) of the arbiter 
design model. From the arbitration option at the 
outer side (or the left-side), it classifies the model 
into two main types. One of them contains arbiters 
without BW-constraint, and the other one 
contains arbiters with BW-constraint. Therefore, 
it is better for Ψ to be located at the left side of Ω 
in the design space, and configurations such as 
ΩΨ, Ω’Ψ, … , and ΩΨ’ are eliminated. The 
number of elements remained in the space is 
become 27.  

Moreover, since the bandwidth factor indicates 
whether an arbiter is able to do bandwidth- 
constraint arbitration. The configurations which 
do not contain Ψ are the same as the ones with Ψ’. 
In other words, Ψ is also necessary in the options 
of the configurations. Thus, any configurations 
not containing factor Ψ (Ψ or Ψ’) should be seen 
as an invalid configuration. The number of them 
is 10. The final number of the valid configurations 
in set S for multi-function arbiter design space is 
reduced to 6; that is S = { ΨΩ, Ψ’Ω, ΨΩ’Φ, 
ΨΩ’Φ’, Ψ’Ω’Φ, Ψ’Ω’Φ’}.  

 
B. Development of the multi-function  arbiter 
design model 

Based on the fine pruned design space 
explored above, the proposed arbiter design 
model will now be derived. The processing order 
of the three essential factors in the space is as 
follows: bandwidth Ψ, priority Ω, and then 
preemption Φ, which will be the order in the 
design model. Each of them is then an option 
considered from the right side to the left side in 
the arbiter design model to be developed.  

With these six configurations representing six 
different arbiters, the proposed arbiter design 
model is then formed and given in Table I. With 
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the concept of the top-down design methodology, 
we classify the arbiter design into six types from 
the outer side to the inner side in the arbiter design 
model (i.e., from left to right in Table I): 
non-BW-constraint and equal-priority arbitration, 
non-BW-constraint and non-equal-priority 
arbitration without/with preemption, BW- 
constraint and equal-priority arbitration, 
BW-constraint and non-equal-priority arbitration 
without/with preemption, which correspond to the 
valid configurations (arbiters) Ψ’Ω,  Ψ’Ω’Φ’, 
Ψ’Ω’Φ, ΨΩ, ΨΩ’Φ’, and ΨΩ’Φ in set S, 
respectively.  

Table I.   New arbiter design model. 
Equal priority: 

Problem D: Large AL for most masters 
Non-preemptive: 

Problem D is solved: 
Reduce AL for 
lower-priority 
masters. 

No BW 
constraint: 

 
Problem A: 

Unfair. 

Non-equal 
priority: 

Problem C: WL is 
not directly 
controlled by 
priority. 

Preemptive: 
Problem C is solved: 

WL is inversely 
proportional to 
priority. 

Problem D: Large AL 
for most masters

Equal priority: 
Problem B is solved: WL is decoupled with 

BW ratio; and WLs of all masters are 
equal 

Problem D: Large AL for most masters 
Non-preemptive: 

Problem D is solved: 
Reduce AL for 
lower-priority 
masters. 

BW constraint: 
 
Problem A is 

solved. 
Problem B: WL 

coupling with 
BW ratio 
problem. 

Non-equal 
priority:  

Problem B is 
solved: WL is 
decoupled with 
BW ratio. 

Problem C: WL is 
not directly 
controlled by 
priority. 

Preemptive:  
Problem C is solved: 

WL is inversely 
proportional to 
priority. 

Problem D: Large AL 
for most masters

WL: waiting latency, AL: arbitrating latency. 

The model of Table I first divides the arbiter 
design into two directions, without BW constraint 
and with BW constraint, depending on one of two 
orthogonal factors, BW request quantity, that 
represents whether masters have essential 
bandwidth requirements. There are two problems 

for arbitration without BW constraint, Problem A: 
Unfair, and Problem B: Waiting latency, WL, 
couples the BW request quantity. Problem A can 
be solved by the left-bottom part of Table I 
depicted as “Solution A is solved”, and Problem B 
is solved by another facter, priority Ω, which is at 
the second column of Table I, depicted as 
“Solution B is solved”. Moreover, there is a 
problem in non-equal-priority arbitration, 
depicted as Problem C: Does the waiting latency 
of a master grows inversely proportional to its 
priority? In other words, can we control waiting 
latencies of the masters just by regulating their 
priorities? This problem can be solved by the 
“Problem C is solved” at the third column of 
Table I. However, preemption leads to the high 
arbitrating latency as shown in Fig. 5(a). This 
problem can be alleviated by the non-preemption 
arbitration with “Problem D is solved”, using the 
non-preemption scheme to trade off the waiting 
latency and the arbitrating latency of a master.  

With this model, the efficient architectures and 
algorithms of the hardware of the arbiters had 
been designed and implemented; we omit them 
due to space limit, but some of design results are 
given in the next section. 

VI. EXPERIMENTAL AND DESIGN RESULTS 

The results of round-robin arbiters, RRAs, 
designed with the proposed new arbiter design 
model, Ψ’Ω, are compared with other existing 
arbiters: SA[2], PRRA[3], and IPRRA[3].  SA[2] 
is the existing fastest round-robin arbiter, and 
IPRRA[3] is the existing smallest round-robin 
arbiter. All the designs are described in Verilog 
and synthesized under the same typical operating 
condition using Synopsys Design Vision 
(2007.03-sp3) targeting the same TSMC 0.18μm 
standard cell library. Fig. 7(a) and (b) show the 
critical path delay and area cost of arbiters, 
respectively. From these figures, we can see that 
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our arbiter, RRA, outperforms the others at both 
parts. To the best of our knowledge, our 
round-robin arbiter is one of the fastest and 
smallest round-robin arbiters in the world. 

Other arbiters with different functions have 
also been designed, and the results are given in 
Fig. 8. However, the comparisons about them 
could not be done here since no corresponding 
arbiters from other work or the literature have 
been found until now.  
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Fig. 7. Comparison of the arbiters in (a) critical path 
delay and (b) area cost.  

 

Fig. 8. Design results of the multi-function arbiters. 

VII. CONCLUSIONS 

In this paper, a new multi-function arbiter 
design model which decouples an arbiter’s input 
parameters and the arbitration output grants has 
been explored and proposed. This model covers a 
large design space and solves the arbitration 

issues for designing a multi-function arbiter. 
These issues include the couples and tradeoffs 
between BW request ratio and waiting latency, 
between resource granularity and arbitrating 
latency or fairness, and finally, the issue about 
integrity of the arbiter functions. With this 
multi-function arbiter design model, the key 
points required for an arbiter design can be further 
obtained, and then a more appropriate and simpler 
arbiter suitable for various applications can be 
developed. It can be seen from the arbiter design 
results that the round-robin arbiters designed with 
the proposed model are fastest and smallest. In the 
future, the development of the multi-resources 
and multiple outputs model is one of our next 
targets. 
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