
Design Space Exploration and Construction of an
Arbiter Design Model

Jer Min Jou1, Yun-Lung Lee1, Ren-Der Chen2, Sih-Sian Wu1, Cheng Chou3, and Yen-Yu Chen1
Department of 1EE and 3CSIE, National Cheng Kung University, Tainan

Department of 2CSIE, National Changhua University of Education, Changhua
Taiwan, R.O.C.

E-mail: Prof. Jer Min Jou (周哲民), jou@j92a21.ee.ncku.edu.tw

Abstract — Because of the flourish of multi-processor
system-on-a-chips (MPSoCs) and on- or off-chip
high-speed networks, how to design an efficient arbiter,
although a classical problem, now becomes more and
more important. In the past, there were little or no work
that thoroughly discussed the functionality, design
issues and models of arbiters, which resulted in the
inferior arbiter design and usages. Here, we have aimed
at exploring the design space and the issues of operating
of arbiters, and proposed a new multi-function arbiter
design model and classification. With this new design
model, we could further know the required key points of
arbiter design, and thus have designed an efficient
integrated multi-function arbiter that suitable to many
different applications. A Round-Robin arbiter based on
this model has been designed; to best of our knowledge,
it is the fastest and smallest Round-Robin arbiter.

Index Terms — Multi-function arbiter, design space,
design model, round-robin, granularity, arbitrating
latency, waiting latency.

I. INTRODUCTION

With the rapid evolution of technology, the
complexity has become one of the most
constraining aspects in the design and
implementation of embedded multi-processor
system-on-a-chips (MPSoCs) [1], where many
IPs (Intellectual Property) such as processor cores,
memories, DSP processors, and peripheral
devices are integrated on a single die. These IPs
are shared one another in order to integrate and
operate efficiently as well as to reduce the system

area and cost. One of the important issues in
MPSoC design is to increase the computation
and/or communication performance among
sharing IPs. Therefore, the high-speed and
low-cost arbiters with efficient sharing arbitration
among them become critical.

As far as the efficiency is concerned, the
notable sharing communication resource in an
MPSoC is the shared on-chip switches, which are
shared by some or all of the computation elements.
Fig. 1 shows such an on-chip switch connected
with some IPs, which are treated as its input or
output masters by the I/O ports. If it is necessary
to transmit data between the input and output
masters, a request signal will be sent by the input
master to request the use authority of the on-chip
switch. Then these request signals will be
arbitrated by the arbiter and one of the masters
will be granted to monopolize the shared bus. As
the number of masters increases in a single chip
like many cores MPSoCs with thousand of cores
[4], the resource contention will increase quickly,
then the performance and fairness of the arbiters
dealing with the serious resource contentions
need more attention [1].

 Many arbiter designs have been proposed [2]
[3] [5], but they did not analyze and explore the
arbiter design space thoroughly, and failed to
achieve the arbiters’ high performance and/or

 - 1 -

design simplicity. Here, we focus on exploring the
design space and issues of arbiter operations, and
then propose a new arbiter design model and
classification. With this new design model, we
have already designed many new multi-function
arbiters with a high arbitration performance
and/or a less area. A Round-Robin arbiter based
on the proposed design model has been designed;
to best of our knowledge, it is one of the fastest
and smallest Round-Robin arbiters in the world.

...

...

...

...

…

Output
port 1

Output
port N

N×N Crossbar Switching Fabric

...

…

VOQs compete
for output port 1

VOQs compete
for output port N

…

Arbiter NArbiter 1
request
signals

Fig. 1. An n×n switch: block diagram, crossbar switch
fabric and its switch arbiters.

This paper is organized as follows: Section II
describes the background of the arbiter. Section
III illustrates some issues about the arbiter design,
and the corresponding solutions will be provided
in Section IV. Section V describes the new arbiter
design model, and the simulation results of our
arbiters compared with other existing ones are
shown in Section VI. Finally, conclusions will be
made in Section VII.

II. BACKGROUND

When a monopolized-only resource is shared
by N masters, every unit of usage time of the
resource (described as time unit below) can be
allocated to only one master. Therefore, if there

are many masters requesting a monopolized use
of the resource at the same time, an arbitration
scheme is needed to determine which one has the
usage authority of each time unit fairly and
efficiently. The time on which the arbiter has
serviced every master with a request is defined as
an arbitration round. It is determined by the
number of masters who request the resource
simultaneously, but does not exceed N time units.

When an arbiter works, not only the request
signals provided by each master but also some
other information must be considered by it, and
those important information about arbitration
includes: 1) Bandwidth (BW) request ratio of the
masters: For example, if the BW request ratio of
three masters are 3:2:1, then the number of 3
indicates that the bandwidth request quantity of
the first master is 3 time units of the resource
usage. 2) Waiting latency of each master: This
time is defined as the number of time units that the
master waits for the arbiter’s grant. 3) Resource
granularity: It indicates the maximum number of
data unit that a granted master could obtain from
the shared resource per time unit. The data unit is
defined as the basic unit of the quantum or
bandwidth that the shared resource could provide.
4) Arbitrating latency: It indicates the total
number of time units (or arbitrations) required by
the arbiter to arbitrate a master request. In other
words, the arbitrating latency of the arbiter could
be defined as the total time units between a master
request is first granted to the time the request is
fulfilled and finished. 5) Priority of each master:
It determines various authorities among different
masters. Under various arbitration schemes, it
brings about some arbitration interrupting
behavior choices: 6) Preemption or 7)
Non-preemption.

III. DESIGN ISSUES OF ARBITERS

In this section, the arbiter design space is

 - 2 -

explored and four important design issues of
arbiters are also discussed.

A. Issue about the BW request quantity and
waiting latency tradeoff

The masters which request the same resource
at the same time are usually arbitrated by a
conventional arbiter based on the values of their
BW request quantities, and the master with the
largest value is granted first. The waiting latency
of each master is, therefore, dependent on the
corresponding BW request quantity. A master
with smaller BW request quantity always has
larger waiting latency, and even starvation may
occur among masters. Shown in Fig. 2(a) is the
request schedule for three masters M1, M2, and
M3 with BW request quantities 6, 3, and 1,
respectively, and Mi on the time axis indicates
that the request of Mi is issued at that time. The
corresponding resource schedule, given in Fig.
2(b), is arbitrated according to the BW request
quantities of the masters. We can see that these
three masters issue their requests simultaneously
at time 1 and 11, and M1 gets granted earlier than
both M2 and M3 due to its larger BW request
quantity. However, if M2 or M3 needs less
waiting latencies for some reason, this arbitration
scheme depending only on the BW request
quantities of the masters no longer works,
although BW request quantity-based arbitration is
often r

B. Issue about the resource granularity and
arbitrating latency tradeoff

Both the arbitrating latency of masters and
resource utilization will be influenced by the
resource granularity. Conventionally, the
arbitration fairness of most arbiters is reserved by
servicing each master in a round-robin manner for
each arbitration round. In other words, each
master gains at most one access to the shared
resource in each arbitration round. The
round-robin arbitration scheme is adopted by
many arbiters because of its simplicity and
starvation-freeness. However, there is a
tight-coupled relation between resource
granularity and arbitrating latency for the
round-robin arbiters. The arbitrating latencies are
hence smaller for masters using coarse-grain
resource granularity, but this scheme may result
in severe resource over-allocation problem. For
example, masters M1, M2, and M3 requesting
three data units of shared resource simultaneously,
the resource schedule results (RSRs) based on 2
and 1 data units of resource granularity are shown
in Fig. 3(a) and (b), respectively. The arbitrating
latency of M1 (four time units) in Fig. 3(a) is
smaller than the one (seven time units) in Fig. 3(b).
The arbitrating latencies can hence be efficiently
reduced for arbiters with coarse-grain resource
granularity. However, this coarser resource
granularity will make the resource over-allocation
problem, e.g., each of the three masters in Fig. 3(a)
wastes one time unit at time 4, 5, and 6. Therefore,
how to tradeoff between arbitrating latency and
resource utilization has become an important
issue.

easonable and good.

…

21 3 4 5 6 7 8 9 10 11 12 13 14 15
Request Schedule

[time unit]

M1
M2
M3 M1

M1
M2

M1
M2 M1 M1

M1
M2
M3 M1

M1
M2

(a)

Resource Schedule
[time unit]

M1 M1 M1 M2 M1 M1 …

21 3 4 5 6 7 8

M2 M1 M2 M3 M1M1

9 10 11 12
Resource schedule
[data unit]
[time unit]

M1M1M1 M3M3 …

21 3 4 5 6

M2M2 M2 M3

Granularity = 2 data unit

21 3 4 5 6 7 8 9 10 11 12

(b)

Fig. 2. (a) Request schedule for masters M1, M2 and
M3. (b) The corresponding resource sched (a) ule.

 - 3 -

M1 M2 M3 M2 M3 M1 …

21 3 4 5 6 7 8

M1 M2 M3

9 10

Granularity = 1 data unit

21 3 4 5 6 7 8 9 10

Resource schedule
[data unit]
[time unit]

(b)

Fig. 3. (a) The RSR with resource granularity = 2. (b)
The RSR with resource granularity = 1.

C. Issue about the resource granularity and
fairness tradeoff

The arbitration fairness can be influenced by
the resource granularity. An arbiter is fair if (1) it
is work-conserving; i.e., it never leaves any
resource idle if there are requesting masters, and
(2) it arbitrates resource time units to masters in
exactly proportional to their BW request ratio.
Using finer resource granularity can provide more
precise bandwidth allocation and makes
arbitration fairer. For three masters M1, M2, and
M3 with BW request quantities 4, 2, and 1,
respectively, the RSRs corresponding to resource
granularities 1 and 2 are shown in Fig. 4(a) and (b),
respectively. In Fig. 4(b), the arbiter wastes one
time unit at time 8 since the resource granularity is
larger than its request data unit.

M1 M1 M1 M2 M2 M3 …

21 3 4 5 6 7 8

M1

BW allocation
M1 : M2 : M3 = 4 : 2 : 1

Resource Schedule
[time unit]

(a)

21

M1M1 …

3 4 5 6

M1M1 M2M2

7 8

M3

BW allocation
M1 : M2 : M3 = 4 : 2 : 2

Resource Schedule
[time unit]

(b)

Fig. 4. (a) The RSR with resource granularity = 1. (b)
The RSR with resource granularity = 2.

D. Issue about the integrity of arbiter design

Conventional arbiters are usually designed for
a single arbitration object, so the multiple
arbitration requirements cannot be satisfied at the

same time. For instance, a round-robin arbiter
cannot continuously provide smaller waiting
latency to the emergent masters; the
linear-priority arbiter does not provide both
preemptive and non-preemptive arbitration
behaviors; the waiting-latency-aware arbiters
give higher priories to masters with stricter
waiting latency requirement but lower priorities
to the others. The reason is that they cannot be
designed in an integrated and modular manner
because of the lack of a comprehensive arbiter
design model.

IV. SOLUTIONS TO THE DESIGN ISSUES OF

ARBITERS

To solve the problems about arbiter design
described in the previous section, the design space
is explored here and the solution to each design
issue is also proposed.

A. Solution about the issue about BW request
ratio and waiting latency tradeoff

To deal with the issue of BW request ratio and
waiting latency tradeoff, the following solution is
proposed. Since it is not appropriate to arbitrate
the masters, which have different waiting latency
requirements, based only on their BW request
quantities, an additional parameter accompanied
with each master, called the priority, is added.
This parameter is used to arbitrate the masters
under the BW request ratio constraint. The
masters that have smaller waiting latency
requirements are usually assigned higher
priorities, and the arbitration is made according to
their priorities and BW request ratio. The priority
value of each master can be assigned statically or
dynamically. It is defined as a positive integer pi
for master Mi, where pi=1 indicates the highest
priority. This priority-based BW request ratio
arbitration can be further classified into
non-equal-priority arbitration and equal-priority

 - 4 -

arbitration, which can then be implemented as a
BW request ratio-based linear-priority arbiter and
a round-robin arbiter, respectively.

There are two types of non-equal-priority
arbitration: preemption and non-preemption.
Preemption non-equal-priority arbitration allows
the higher-priority master to interrupt and
preempt the resource of the lower-priority master.
Preemption arbitration guarantees that
higher-priority masters will have smaller waiting
latency than lower-priority ones. This makes the
waiting latency of a master inversely proportional
to its priority value; i.e., the waiting latency of the
highest-priority master is the smallest. Fig. 5(a)
shows an example of preemption arbitration. At
time 2, the arbiter grants M3 to access the shared
resource for two time units, and then the highest
priority master M1 requests at time 3. At this time,
the granted shared resource of M3 will be
preempted by M1. In contrast to the preemption,
the non-preemption arbitration does not allow any
master to be interrupted as they are using the
shared resource. The higher-priority master has to
wait for the lower-priority master to finish its
shared resource usage continuously. The RSR of
the non-preemption arbitration is shown in Fig.
5(b), where the highest-priority master M1 has to
wait for the completion of M3 using the shared
resource. Compared with the preemption
arbitration, the arbitrating latencies of
lower-priority masters can be decreased in a
non-preemption arbitration, but the waiting
latency of higher-priority masters will be
increased. This results in a tradeoff between the
waiting latency and arbitrating latency of a
master.

M2 M3 M1M1 M3M3 …

21 3 4 5 6 7 8
21 3 4 5 6 7 8

M3 is preempted by M1

Resource schedule
[dara unit]
[time unit]

21

M2
M3 M3

p1 = 1, p2 = 2, p3 = 3.

21 3 4 5

M1
M3 M1……

21
M3 …
M3…

(a)

M2 M3M3 …

21 3 4 5 6 7 8
21 3 4 5 6 7 8

M3 can not be preempted

M1M1
Resource schedule
[data unit]
[time unit]

p1 = 1, p2 = 2, p3 = 3.

(b)

Fig. 5. (a) Preemption arbitration. (b) Non-preemption
arbitration.

B. Solution to the issue about resource
granularity and arbitrating latency tradeoff

The solution to solve the couple between
resource granularity and arbitrating latency is
proposed here. Since some arbitration algorithms
may satisfy portions of the requirements of
masters in each arbitration round like
“installment”, they suffer a situation in which the
arbiter needs many arbitration rounds to satisfy
masters with large amount of requirements and
increases their arbitrating latencies. To deal with
this problem, the non-preemption scheme is
adopted to arbitrate a shared resource to one
master non-preemptedly, and then its resource
granularity and arbitrating latency are decoupled.
Like the same conditions in Fig. 3(a) and (b), Fig.
6(a) and (b) show the RSRs of non-preemption.
The arbitrating latencies of all masters are
minimized and equal to their request values, and
the waiting latencies are growing inversely with
their priority values. To avoid the starvation
caused by non-preemption, a bandwidth-weight
tuning scheme could be used to regulate and to
limit the bandwidth gained by the masters.

 - 5 -

M1 …

Granularity = 2 service unit

21 3 4 5 6
21 3 4 5 6 7 8 9 10 11 12

M2 M3
Resource schedule
[data unit]
[time unit]

(a)

M1 M1 M1 M2 M2 M3 …M2 M3 M3

Granularity = 1 service unit

21 3 4 5 6 7 8 9 10
21 3 4 5 6 7 8 9 10

Resource schedule
[data unit]
[time unit]

(b)

Fig. 6. (a) The waiting latency of Fig. 3(a) is reduced
by non-preemption. (b) The waiting latency of Fig. 3(b)
is reduced by non-preemption.

C. Solution to the issue about resource
granularity and fairness tradeoff

The relation between resource granularity and
arbitrating latency can be decoupled by the
non-preemption design, so the finest resource
granularity is adopted for shared resource to
increase resource utilization and to keep fairness.
For fairness, a set of integers is used to represent
the BW request ratio of masters. Then a master
isolation scheme is applied to protect the
bandwidth of each master from being robbed by
other masters. The concept of master isolation is
described as follows. In a fixed amount of time,
we give each master some time units called BW
quota according to its BW request quantity. Every
time when a shared resource is used by a master,
its BW quota is decreased. When a master uses up
its BW quota, its following requests will be
ignored by the arbiter to prevent the bandwidth of
other masters from being robbed.

D. Solution to the issue about integrity

The proposed reconfigurable and modular
concept will be applied to design an arbiter to
fulfill versatile arbitration schemes. The modular
and reconfigurable arbiter can be reconfigured
modularly as a linear-priority arbiter with a
preemption or non-preemption mechanism to

favor higher-priority masters and lower-priority
masters with low waiting latency and low
arbitrating latency, respectively. On the other side,
the modular arbiter can be reconfigured as an
equal-priority arbiter like a round-robin arbiter to
prevent masters from starvation. Moreover, the
master isolation idea can also be implemented to
maintain the fairness between masters.

From the solutions described above, an arbiter
with complete arbitration schemes should have
the following essential input parameters: request
signal, priority, BW request quantity or BW
request ratio, and the choice of preemption or
non-preemption. Based on these arbitration
parameters, we have developed an arbiter design
model in the next section.

V. DEVELOPMENT OF THE NEW MULTI-FUNCTION

ARBITER DESIGN MODEL

After the discussions and analyses of arbiter
issues, arbitration factors, and their solutions
described above, the design space exploration and
development of a new arbiter design model with
multi-function are described in detail as follows.

A. Design space exploration of the arbiter design
model

Design space exploration of the arbiter design
model involves exploring alternate arbiter
configurations to form an efficient design model
with some essential factors about the arbiters.
Based on the arbiter design solutions above, we
find that three essential factors of arbitration are
priority, preemption, and bandwidth. These
factors will be explored to derive and to build the
multi-function arbiter design model. But, how
many configurations of those essential factors
(and their inverses) does the design space of the
multi-function arbiter design model have? How
many valid arbiter designs among the
configurations do the model and the space have?

 - 6 -

What is the processing order of these essential
factors in the multi-function design model for
design of any valid configurations of the arbiters?
As far as the design space is concerned, very
essential factor will make the arbiter having the
corresponding different arbitrating property. The
design space of a multi-function arbiter with some
or all of those factors or their inverses may be
wide, so an exact design model has to be explored.

Let us assume that the three essential factors
priority, preemption and bandwidth are labeled as
Ω, Φ and Ψ, respectively, and they also indicate
that the arbiters will be realized with
equal-priority, preemptive and
bandwidth-constraint properties, respectively. On
the other hand, label Ω’, Φ’ and Ψ’ indicates that
the arbiter will be realized with non-equal-priority,
non-preemptive and no bandwidth-constraint
properties, respectively. For example, an arbiter
with Ω, Φ’, and Ψ’ properties indicates that it is
an arbiter with the equal-priority, (then)
non-preemption and (finally) non-
bandwidth-constraint properties (circuit modules).
Note that the connection order of those factors is
also important; the hardware structure of the
ΩΦ’Ψ’ arbiter in the design model and the design
space has a priority control circuit module
connected to a non-preemption module, and then
followed by a bandwidth constraint control
module. Thus, the design space of an arbiter
design model with/without those three essential
factors and their inverses has at most 79 different
configurations (combinations), and each
configuration may or may not form a valid arbiter.
For arbiters designed with zero, one, two, and
three essential factors, they will form four
different sets of valid or invalid configurations of
the arbiter: S0, S1, S2, and S3 in the following,
respectively. The whole design space S of the
arbiters is the union of set S0, S1, S2, and S3, and
then 79 configurations will correspond to possibly

79 different arbiters.

S0 = {　}.

S1 = {Ω, Φ, Ψ, Ω’, Φ’, Ψ’}.

S2 = {ΩΦ, ΦΩ, Ω’Φ, ΦΩ’, ΩΦ’, Φ’Ω, Ω’Φ’,
Φ’Ω’, ΩΨ, ΨΩ, Ω’Ψ, ΨΩ’, ΨΩ’, Ψ’Ω,
Ω’Ψ’, Ψ’Ω’, ΦΨ, ΨΦ, Φ’Ψ, ΨΦ’, ΦΨ’,
Ψ’Φ, Φ’Ψ’, Ψ’Φ’}.

S3 = {ΩΦΨ, ΩΨΦ, ΦΩΨ, ΦΨΩ, ΨΩΦ, ΨΦΩ,
Ω’ΦΨ, Ω’ΨΦ, ΦΩ’Ψ, ΦΨΩ’, ΨΩ’Φ,
ΨΦΩ’, ΩΦ’Ψ, ΩΨΦ’, Φ’ΩΨ, Φ’ΨΩ,
ΨΩΦ’, ΨΦ’Ω, ΩΦΨ’, ΩΨ’Φ, ΦΩΨ’,
ΦΨ’Ω, Ψ’ΩΦ, Ψ’ΦΩ, Ω’Φ’Ψ, Ω’ΨΦ’,
Φ’Ω’Ψ, Φ’ΨΩ’, ΨΩ’Φ’, ΨΦ’Ω’,
Ω’ΦΨ’, Ω’Ψ’Φ, ΦΩ’Ψ’, ΦΨ’Ω’,
Ψ’Ω’Φ, Ψ’ΦΩ’, ΩΦ’Ψ’, ΩΨ’Φ’,
Φ’ΩΨ’, Φ’Ψ’Ω, Ψ’ΩΦ’, Ψ’Φ’Ω,
Ω’Φ’Ψ’, Ω’Ψ’Φ’, Φ’Ω’Ψ’, Φ’Ψ’Ω’,
Ψ’Ω’Φ’, Ψ’Φ’Ω’}.

S = S0 ∪ S1 ∪ S2 ∪ S3

For these 79 configurations or possible arbiters,
however, some of which are invalid (not an arbiter)
and should be removed to prune the design space.
The final pruned design space is then used to
derive and form the proposed arbiter design
model.

In the space, the priority factor determines what
types of the priority-based arbitration which an
arbiter uses, and an arbiter in nature must have at
least one priority-based arbitrating scheme to
handle the situation in which many masters
compete for a single resource. Thus, no matter
which choices we take, the priority factor always
has an effect on the arbitration. The priority factor
Ω must hence exist in the design space and then in
the arbiter model. Therefore, the configurations
which do not contain Ω (or Ω’) are removed from
the design space. The number of configurations

 - 7 -

remained in the space is now 65.
From the definitions of preemption [6], the

preemptive arbitration occurs only when masters
have different priority levels, called non-equal
priority arbitration. Thus, the preemption factor Φ
belongs to the sub-option under the non-equal
priority arbitration controlled by the priority
factor. Another option of the priority factor is the
equal-priority arbitration which cannot go with
the preemption arbitration since there is no
difference among priorities of all masters. In other
words, the preemption arbitration only occurs
when the arbiter has the non-equal-priority
arbitrating property, which is an option
determined by the priority factor. Thus, the
processing order in the design model is first the
priority factor and then the preemption factor. It
indicates that Φ must occur in the configurations
which contain Ω’ and at the right side of Ω’, and
does not occur in the configurations which
contain Ω. Therefore, configurations such as Ω’Ψ,
ΦΩ’ and ΩΦ are seen as invalid configurations.
The design space S is then reduced and only 22
configurations remain in S.

In terms of the shared resource arbitration,
priority and bandwidth factors are responsible for
granting resource usage orders and granting
resource usage times, respectively. The priority
factor decides the granting sequence of masters as
two or more masters request the shared resource
simultaneously, and the bandwidth factor Ψ
affects the percentage of bandwidth of shared
resource each master gets. Thus they are
independent of each other and orthogonal in the
design space. What is the processing order
between the priority factor and bandwidth factor?
From the view of a left-to-right, i.e. leaves-to-root,
tree-like classification, and the priority factor is
more necessary than the bandwidth factor, we let
the priority factor closer to the option at the inner

(right or root) side of the design mode (space).
Thus, it is better to let the bandwidth factor locate
at the outside (or the left-side) of the arbiter
design model. From the arbitration option at the
outer side (or the left-side), it classifies the model
into two main types. One of them contains arbiters
without BW-constraint, and the other one
contains arbiters with BW-constraint. Therefore,
it is better for Ψ to be located at the left side of Ω
in the design space, and configurations such as
ΩΨ, Ω’Ψ, … , and ΩΨ’ are eliminated. The
number of elements remained in the space is
become 27.

Moreover, since the bandwidth factor indicates
whether an arbiter is able to do bandwidth-
constraint arbitration. The configurations which
do not contain Ψ are the same as the ones with Ψ’.
In other words, Ψ is also necessary in the options
of the configurations. Thus, any configurations
not containing factor Ψ (Ψ or Ψ’) should be seen
as an invalid configuration. The number of them
is 10. The final number of the valid configurations
in set S for multi-function arbiter design space is
reduced to 6; that is S = { ΨΩ, Ψ’Ω, ΨΩ’Φ,
ΨΩ’Φ’, Ψ’Ω’Φ, Ψ’Ω’Φ’}.

B. Development of the multi-function arbiter
design model

Based on the fine pruned design space
explored above, the proposed arbiter design
model will now be derived. The processing order
of the three essential factors in the space is as
follows: bandwidth Ψ, priority Ω, and then
preemption Φ, which will be the order in the
design model. Each of them is then an option
considered from the right side to the left side in
the arbiter design model to be developed.

With these six configurations representing six
different arbiters, the proposed arbiter design
model is then formed and given in Table I. With

 - 8 -

the concept of the top-down design methodology,
we classify the arbiter design into six types from
the outer side to the inner side in the arbiter design
model (i.e., from left to right in Table I):
non-BW-constraint and equal-priority arbitration,
non-BW-constraint and non-equal-priority
arbitration without/with preemption, BW-
constraint and equal-priority arbitration,
BW-constraint and non-equal-priority arbitration
without/with preemption, which correspond to the
valid configurations (arbiters) Ψ’Ω, Ψ’Ω’Φ’,
Ψ’Ω’Φ, ΨΩ, ΨΩ’Φ’, and ΨΩ’Φ in set S,
respectively.

Table I. New arbiter design model.
Equal priority:

Problem D: Large AL for most masters
Non-preemptive:

Problem D is solved:
Reduce AL for
lower-priority
masters.

No BW
constraint:

Problem A:

Unfair.

Non-equal
priority:

Problem C: WL is
not directly
controlled by
priority.

Preemptive:
Problem C is solved:

WL is inversely
proportional to
priority.

Problem D: Large AL
for most masters

Equal priority:
Problem B is solved: WL is decoupled with

BW ratio; and WLs of all masters are
equal

Problem D: Large AL for most masters
Non-preemptive:

Problem D is solved:
Reduce AL for
lower-priority
masters.

BW constraint:

Problem A is

solved.
Problem B: WL

coupling with
BW ratio
problem.

Non-equal
priority:

Problem B is
solved: WL is
decoupled with
BW ratio.

Problem C: WL is
not directly
controlled by
priority.

Preemptive:
Problem C is solved:

WL is inversely
proportional to
priority.

Problem D: Large AL
for most masters

WL: waiting latency, AL: arbitrating latency.

The model of Table I first divides the arbiter
design into two directions, without BW constraint
and with BW constraint, depending on one of two
orthogonal factors, BW request quantity, that
represents whether masters have essential
bandwidth requirements. There are two problems

for arbitration without BW constraint, Problem A:
Unfair, and Problem B: Waiting latency, WL,
couples the BW request quantity. Problem A can
be solved by the left-bottom part of Table I
depicted as “Solution A is solved”, and Problem B
is solved by another facter, priority Ω, which is at
the second column of Table I, depicted as
“Solution B is solved”. Moreover, there is a
problem in non-equal-priority arbitration,
depicted as Problem C: Does the waiting latency
of a master grows inversely proportional to its
priority? In other words, can we control waiting
latencies of the masters just by regulating their
priorities? This problem can be solved by the
“Problem C is solved” at the third column of
Table I. However, preemption leads to the high
arbitrating latency as shown in Fig. 5(a). This
problem can be alleviated by the non-preemption
arbitration with “Problem D is solved”, using the
non-preemption scheme to trade off the waiting
latency and the arbitrating latency of a master.

With this model, the efficient architectures and
algorithms of the hardware of the arbiters had
been designed and implemented; we omit them
due to space limit, but some of design results are
given in the next section.

VI. EXPERIMENTAL AND DESIGN RESULTS

The results of round-robin arbiters, RRAs,
designed with the proposed new arbiter design
model, Ψ’Ω, are compared with other existing
arbiters: SA[2], PRRA[3], and IPRRA[3]. SA[2]
is the existing fastest round-robin arbiter, and
IPRRA[3] is the existing smallest round-robin
arbiter. All the designs are described in Verilog
and synthesized under the same typical operating
condition using Synopsys Design Vision
(2007.03-sp3) targeting the same TSMC 0.18μm
standard cell library. Fig. 7(a) and (b) show the
critical path delay and area cost of arbiters,
respectively. From these figures, we can see that

 - 9 -

our arbiter, RRA, outperforms the others at both
parts. To the best of our knowledge, our
round-robin arbiter is one of the fastest and
smallest round-robin arbiters in the world.

Other arbiters with different functions have
also been designed, and the results are given in
Fig. 8. However, the comparisons about them
could not be done here since no corresponding
arbiters from other work or the literature have
been found until now.

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600
Scale

C
ri

tic
al

 P
at

h
D

el
ay

 (n
s)

RRA
IPRRA
PRRA
SA

0

2000

4000

6000

8000

10000

12000

14000

16000

0 100 200 300 400 500 600
Scale

N
um

be
r

of
 N

A
N

D
2

ga
te

s

RRA
IPRRA
PRRA
SA

Fig. 7. Comparison of the arbiters in (a) critical path
delay and (b) area cost.

Fig. 8. Design results of the multi-function arbiters.

VII. CONCLUSIONS

In this paper, a new multi-function arbiter
design model which decouples an arbiter’s input
parameters and the arbitration output grants has
been explored and proposed. This model covers a
large design space and solves the arbitration

issues for designing a multi-function arbiter.
These issues include the couples and tradeoffs
between BW request ratio and waiting latency,
between resource granularity and arbitrating
latency or fairness, and finally, the issue about
integrity of the arbiter functions. With this
multi-function arbiter design model, the key
points required for an arbiter design can be further
obtained, and then a more appropriate and simpler
arbiter suitable for various applications can be
developed. It can be seen from the arbiter design
results that the round-robin arbiters designed with
the proposed model are fastest and smallest. In the
future, the development of the multi-resources
and multiple outputs model is one of our next
targets.

REFERENCES Number of masters Number of masters

[1] B. D. Theelen, A. C. Verschueren, Reyes, M.
P. J. Stevens, A. Nunez, “A scalable
single-chip multi-processor architecture with
on-chip RTOS kernel,” Journal of Systems
Architecture, Vol. 49, No. 12, 2003, pp.
619-639.

0
0.4
0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

0 100 200 300 400 500 600
Number of masters

C
ri

tic
al

 p
at

h
de

la
y

(n
s)

Ψ'Ω
Ψ'Ω'Φ'
Ψ'Ω'Φ
ΨΩ
ΨΩ'Φ'
ΨΩ'Φ

[2] E. S. Shin, V. J. Mooney, and G. F. Riley,
“Round-Robin Arbiter Design and
Generation,” Proc. Int. Symp. Sys. Syn. (ISSS),
pp. 243-248, 2002.

[3] S. Q. Zhengy and Mei Yang, “Algorithm-
Hardware Codesign of Fast Parallel
Round-Robin Arbiters”, IEEE transactions on
parallel and distributed systems, Vol. 18, No.
1, pp.84-95, Jan., 2007.

[4] S. Borkar, "Thousand Core Chips -- A
Technology Perspective," Proc. ACM/IEEE
44th Design Automation Conf., ACM Press,
2007, pp. 746-749.

[5] Yun-Long Lee, Jer Min Jou, Yen-Yu Chen,
and Guan-Shiue Wu, “An Optimal Arbiter
Design for NoC”, Proceedings of the 2008
International Computer Symposium, 2008.

[6] http://en.wikipedia.org/wiki/Preemptive_mult
itasking#References

 - 10 -

http://en.wikipedia.org/wiki/Preemptive_multitasking#References
http://en.wikipedia.org/wiki/Preemptive_multitasking#References

	I. INTRODUCTION
	II. Background
	III. Design Issues of Arbiters
	A. Issue about the BW request quantity and waiting latency tradeoff
	B. Issue about the resource granularity and arbitrating latency tradeoff
	C. Issue about the resource granularity and fairness tradeoff
	D. Issue about the integrity of arbiter design

	IV. Solutions to the Design Issues of Arbiters
	A. Solution about the issue about BW request ratio and waiting latency tradeoff
	B. Solution to the issue about resource granularity and arbitrating latency tradeoff
	C. Solution to the issue about resource granularity and fairness tradeoff
	D. Solution to the issue about integrity

	V. Development of the New Multi-Function Arbiter Design Model
	VI. Experimental and Design Results
	VII. Conclusions
	References

