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Abstract―Cross-Site Scripting (XSS) is a well-known 
type of web vulnerabilities which allows attackers to in-
ject the malicious scripts or codes to compromise the web 
application services. Based on the characteristics of client 
side script language, the attackers can launch XSS attack 
by a single HTTP request to a website easily. Therefore, 
detection of XSS is a critical issue for all website manag-
ers. In this paper, based on a machine learning approach, 
we propose a new method to detect XSS attacks on a web 
server.  We preprocess an HTTP request to a token se-
quence, and utilize Hidden Markov Model to determine 
whether an XSS attack exists in the HTTP request. By 
filtering HTTP requests on the server side, our approach 
can label each HTTP request whether it is an XSS attack 
or not.  Moreover, apart from other related methods, 
ours takes the proximity into consideration. The pro-
posed system performs well with high accuracy rate on a 
real data set collected from a private telecom company. 

Index Terms―Cross site script, hidden Markov model, 

web security, token sequence. 

1. Introduction 
Cross-Site Scripting (XSS) has become one of 

the most prevalent threats in web security recently. 
According to the report from Web Application Se-
curity Consortium (WASC) [6], the number of 
vulnerabilities which belong to XSS attack has 
grown to the largest proportion of all web vulnera-
bilities. On the other hand, to fit the demands of 
growing web, disappointedly, HTML has no capa-
bility to distinguish trusted code from inline data 
and the data sanded by users. This characteristic 
and the widely use of client side technologies that 
support dynamic web contents give attackers 
chances to inject malicious scripts or codes to 
compromise the web application services. 

XSS vulnerabilities exist if the web application 
takes the inputs from trustless users and use them 
to dynamically generate web pages without suffi-
ciently validating, filtering or encoding the sup-
plied data. Attackers can inject JavaScript or other 
browser executable content into web pages of legi-
timate sites with XSS vulnerabilities. When other 
users visit these legitimate sites and browse the 
web pages with malicious contents injected by at-
tackers, the malicious contents are executed in us-
ers’ browsers that cause users to become victims. 
By XSS exploits, attackers are able to have vic-
tims’ browsers execute malicious scripts or other 
browser executable content automatically, which 
may hijack users’ sessions, redirect users to mali-
cious sites, conduct phishing attacks, or even in-
stall malicious codes without users’ awareness. 

There are three main kinds of XSS: Reflected, 
Stored and DOM injection [11]. The cause of Re-
flected XSS is that the malicious content is re-
flected directly back to the browser while attackers 
inject malicious content to a web page of the vul-
nerable site. Reflected XSS exploits are delivered 
to victims via various ways. Most ways for deli-
vering Reflected XSS exploits are to construct a 
crafted URL which contains the malicious content 
as parameters, and then send emails to victims 
with some contents the victims might be interested 
in and a link to the crafted URL in the emails. 
When victims click the malicious link, Reflected 
XSS exploits are executed in victims’ browsers.  
The difference between Reflected and Stored XSS 
is that Reflected XSS reflects the malicious con-
tent directly back to the browser without storing it 



                                                                             

while Stored XSS stores the malicious content in a 
database or other back-end system. In a Stored 
XSS attack, the attacker injects malicious content 
to a vulnerable legitimate site first and the mali-
cious content is stored in the vulnerable site. When 
a user visits the vulnerable site later, the malicious 
content is retrieved from the database or back-end 
system, returned, unfiltered, in the HTML page 
and displayed to the user. Attackers may target 
sites such as social networking sites, discussion 
forums, or blogs where a large number of users 
will see materials provided by other people. 
DOM-Based exploits are implemented to manipu-
late the site’s JavaScript code and variables instead 
of the HTML elements. 

In this paper, we propose a new method that de-
tects XSS attacks on the web server based on a 
machine learning approach – Hidden Markov 
Model (HMM).  We preprocess an HTTP request 
to a token sequence and then use HMM to detect 
XSS attacks or anomaly behavior in the sequence. 
Our approach can be implemented in the web 
server or Web Application Firewall (WAF) for the 
detection of XSS anomaly attacks. 

The novelty of our approach is to treat the de-
tection of XSS attacks as a sequence labeling 
problem. We present a machine learning method 
based on probabilistic modeling that considers the 
correlation of consecutive tokens in the token se-
quences. By giving labels to the tokens, we can 
spot the starting and ending points of an attack. 

We evaluate this approach against a range of 
XSS attacks and demonstrate it effectiveness on 
real world traffic. We gathered access logs of web 
servers in a private telecom company as the data 
set. The result demonstrates that our approach 
achieves high detection rates in our experiments. 

This paper is organized as follows: Section 2 
contains a review of related work. Section 3 de-
scribes the system architecture of our approach. 
We describe our experiments with more details 
and results in Section 4 and conclude this work in 
Section 5. 

2. Related Work 
Many studies have been proposed for the detec-

tion of web attacks.  Ingham et al. [1] proposed 

an approach that utilizes DFA (Deterministic Finite 
Automata) induction to detect malicious web re-
quests. They tokenize HTTP requests and build a 
DFA model for the requests; then determine 
whether an HTTP request is an attack via a simi-
larity measure which is calculated for an HTTP 
request and the DFA. However, their research does 
not take the token correlation of sequences into 
consideration. Wang et al. [7] proposed a content 
anomaly detector that models a mixture of 
high-order n-grams to detect malicious packet 
content. However, this approach named Anagram 
suffers from lower accuracy when the data input is 
highly dynamic in data type and ordering like web 
traffic due to the use of hashes to raise its effi-
ciency.  

Song et al. [8] used mixtures of Markov chain 
model to deal with code-injection attacks in web 
layer. Compared to other related methods, their 
model performs efficiently with O(n) in its time 
complexity. For high variability of HTTP requests, 
this model may get more noise than other models 
that tokenize the HTTP requests in the prepro-
cessing step. Similarly, by tokenizing HTTP re-
quests, Roberson et al. [9] presented a method that 
uses a generalization technique to translate abnor-
mal HTTP requests into signatures for abnormal 
behavior. Collecting features in HTTP requests to 
form a classification problem is also an interesting 
approach. Kruegel and Vigna [10] developed an 
approach that detects web attacks by considering 
some attributes from the HTTP requests such as 
length, character distribution, ordering of parame-
ters and so on. 

There are other XSS detection mechanisms that 
are not based on the detection of anomaly behavior. 
We discuss them as follows. Saxena et al. [12] and 
Gundy et al. [13] have similar methods to defend 
XSS attacks by ensuring a fundamental document 
integrity property. Saxena et al. developed a new 
approach that combines randomization of web ap-
plication code and runtime tracking of trustless 
data both on the server and on the browser to 
combat XSS attacks. Gundy et al. presented Non-
cespaces to let a web application randomizes the 
XML namespace prefixes of tags in each docu-
ment before delivering it to the client, so that 
client can distinguish between trusted and trustless 



                                                                             

data. 
In addition, another two mechanisms aim to 

prevent XSS attacks from stealing the victim’s 
confidential information. To block URL requests, 
an approach called Noxes [14] provides a 
client-side web proxy, which can use manual and 
automatic rules to detect malicious content. Vogt et 
al. [15] tracked the flow in the browser in order to 
prevent malicious content from leaking sensitive 
information to others. For high dynamic data such 
as web-layer content, tokenization is an approach 
to eliminate noises on high dynamic data. Tokeni-
zation will be elaborated in next section. 
3. The Detection of Cross-Site Scripting Attacks 

There are many token-based methods (e.g. DFA) 
applied in web attack detections. However, most of 
them do not model token correlation well between 
a pair of consecutive tokens. In this study, we de-
sign a token sequence extractor to transform HTTP 
requests into token sequences. Furthermore, we 
intend to model the temporal relations in token 
sequences to identify XSS attacks by Hidden 
Markov Model (HMM).  Figure 1 shows the sys-
tem architecture which includes three components, 
namely: Token Sequence Extractor, HMM-based 
Token Correlator and XSS Attack Detector.  To-
ken Sequence Extractor transforms HTTP requests 
into token sequences. The HMM-based Token 
Correlator uses HMM to extract token correlation 
of neighboring tokens in labeled token sequences. 
XSS Attack Detector is responsible for determin-
ing whether an input token sequence contains any 
XSS attacks and where the attacks are in. 

Meanwhile, the system uses a data source and a 
HMM Parameter Profile. The data source contains 
labeled HTTP requests and HMM Parameter Pro-
file supports to build HMM-based Token Correla-
tor model. Labeled HTTP requests are the HTTP 
requests labeled by domain experts in advance. 
HMM Parameter Profile contains all parameters of 
HMM model and the output of the model to de-
termine labels of predicted token sequences via 
XSS Attack Detector. 
3.1 Feature Extraction for Tokenization 

In order to model token correlations of token 
sequences, we utilize Token Sequence Extractor to 

transform an HTTP request into a token sequence. 
Ingham et al. [1] tokenize HTTP requests accord-
ing to HTTP RFC standard [2]. However, it has the 
difficulty because some web browsers and related 
programs do not fully follow the RFC standard. 
Variation which makes anomaly detection system 
fail to profile attacks under different environments 
is another problem in tokenizing HTTP requests. 

 
Figure 1: System Architecture. 

In order to solve the problems mentioned in 
previous paragraph, we remove tokens from token 
sequences to reduce high variability if the tokens 
give no help to the system. For example, Ac-
cept-Language and Accept-Charset contained in 
HTML header are not important fields in our sys-
tem to detect XSS attacks, so the tokens will be 
eliminated in our Token Sequence Extractor. 

Table 1: Special Symbols used to identify a token 
boundary 

 
A token represents a semantic unit and therefore 

we can discuss the relationship between different 
units in a token sequence. In the process of trans-
forming HTTP requests to token sequences, we 
use special symbols to identify token boundaries. 
For instance, a GET URL string such as 
“/ics/index.php?id=Bob&pwd=3423” will be se-
parated into fourteen tokens.  Note that these 

~ ! @ # $ % ^ 
& * ( ) _ - + 
= ` [ ] { } \ 
| ; : ‘ “ , < 
. > / ?    
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Token Sequence 
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fourteen tokens should also go through the subse-
quent processes for removing meaningless or 
non-helpful tokens. Table 1 shows the special de-
limiter symbols used by Token Sequence Extrac-
tor. 

To produce token sequences, we propose a 
transformation algorithm illustrated in Algorithm 1. 
The algorithm accepts HTTP requests as the input 
and produces token sequences as the output. For 
an HTTP request, we split it into an array, and se-
quentially extract the elements in the transforma-
tion process. For each element, we find a token 
corresponding to it and produce a token sequence 
by combining those tokens. The set of token types 
is denoted by TS, which includes various token 
types. For example, we name the token whose 
original contents are related to script language as 
“script_word”. 

 
3.2 The Detection of Cross-Site Scripting Attacks 

Hidden Markov Model (HMM) includes a fi-
nite-state machine that transits its states by proba-
bility. In HMM, we do not know the states which 
are called hidden states, but we can infer state se-
quence based on the hint from observations. A 
Markov Chain is useful for estimating the proba-
bility for a sequence of events [16]. Since the or-
der of tokens is meaningful in a token sequence, it 
is suitable for utilizing HMM to correlate the to-

kens in neighboring locations. Before using HMM, 
there are three elements that should be specified: 1) 
the initial probabilities which specify the probabil-
ities of starting each state; 2) the transition proba-
bilities that represents the probabilities from one 
state to another state; and 3) the observation prob-
abilities, also called emission probabilities, which 
express the likelihoods of any observation that is 
generated from any state. 

We design two HMM models for HMM-based 
Token Correlator: one is responsible for profiling 
normal token sequences, and the other is responsi-
ble for profiling XSS token sequences. The model 
which represents normal behavior is denoted by 

nπ , and the other model which represents XSS 
behavior is denoted by xπ . We use nθ  to denote 
the maximum likelihood value of model nπ , and 

xθ  to denote the maximum likelihood value of 

xπ  according observed sequences, respectively. 
Algorithm 2 shows the details of XSS Attack De-
tector. One input is a token sequence, and the other 
two inputs are nθ  and xθ , which are the output 
of HMM-based Token Correlator. The output of 
XSS Attack Detector is the labeled token sequence. 
XSS Attack Detector determines labels of the to-
ken sequence such as normal or XSS attack by 
comparing nθ  and xθ . Parameter T represents 
the threshold value, and if nθ  and xθ are all 
smaller then T, we label the token sequence as an 
attack not belonging to XSS attack.  

HMM-based Token Correlator uses Expecta-
tion-Maximization (EM) algorithm to obtain the 
appropriate HMM model for normal and abnormal 
sequences. After feeding training data which is la-
beled by experts, hopfully we ontain converged 
HMM parameters such as the initial probabilities, 
the transition probabilities and the emission prob-
abilities for observations. 

4. Experiments 
In this section, we demonstrate our experiment 

result. First, we illustrate the training and test data 
sets, which include normal sequences and the se-
quences with XSS attacks. After that, we give de-
tails of the computation environment for our expe-
riments. We also explain all the parameters used in 

Algorithm 1: Generate Token Sequence 
Input: An HTTP request R 

Output: A token sequence X 

1. Y = (y1, y2,…,yn), and n is the length of Y; 

2. TS = (t1, t2,…,tm) , and m is the length of TS. TS 

represents the token set. 

3. Split R into array Y by special symbols ; 

4. P lists special symbols of R orderly, ex. p1 

represents the special symbol located before y1 

5. for each yi ∈Y = (y1, y2,…,yn) do 
6.  classify yi to suitable token TSt j ∈ ; 
7. append pi to X; 
8. append tj to X; 
9. end 
10. remove insignificant tokens and their 
types from X; 



                                                                             

our experiments. 

 
Finally, we analyze the characteristics of our 

proposed approach. We also show the effective-
ness of our method and compare it with other me-
thodologies, such as Logistic Regression and 
Naïve Bayes. 
4.1 Data set and Environment Description 

The training and test data sets were obtained 
from the access logs of web servers in a telecom 
company called Chunghwa Telecom Laboratories 
[17]. We took the ordinary access logs as normal 
training and test sets. To generate the access logs 
of XSS attacks, we used some tools and websites 
which provide the functionality of producing XSS 
attack strings. For example, CAL9000 [3] is an 
OWASP project and provides a collection of web 
application security testing tools. It gives the flex-
ibility and functionality that we need to generate 
the XSS attacks. On the other hand, RSnake [4] 
provides the XSS cheat sheet, which contains lots 
of XSS attack strings. We wrote some web pages, 
launched the XSS attacks, and got the access logs 
of XSS attacks.  

Table 2 lists all information about the data sets. 
The normal access logs were collected from Aug. 
20, 2008 to Jul. 20, 2009, and the access logs of 
XSS attacks were obtained at Aug.28 2009. The 
total number of entries in normal access logs is 
18,469, and training/test set contains 15,000/3469 
entries respectively.  The total number of entries 

in XSS access log is 110, and training/test set con-
tains 60/50 entries respectively. 

Table 2: Information about the data set 
 Normal XSS attack 
Duration Aug. 20th, 2008 

-Jul. 20th, 2009 
Aug.28th, 
2009 

# of access log 18469 110 
# of training/test  15000/3469 60/50 

4.2 Parameter Setting 
We utilized an HMM toolbox [5] based on 

MATLAB to justify our approach. Table 3 lists all 
the parameters that we used in our experiments. 
The training iteration of EM leads the log likelih-
ood of normal and XSS attack models converged 
to a constant value, as shown in Figure 2. There 
are 36 kinds of token types in our experiments, so 
the number of output symbol O is 36. We choose 
Hidden state number Q as 7 based on our expe-
rience.  

4.3 Experiment Results 

The evaluation results of our proposed method, 
as well as Logistic Regression, and Naïve Bayes 
are shown below. Table 4 shows the classification 
results of test set by three methods. The first row 
(Normal) and the first column (Normal) of our ap-
proach is 3459, which means that there are 3459 
data out of normal test set classified as normal be-
havior. Similarly, the first row (Normal) and the 
second column (XSS attack) corresponds to 10 and 
means that 10 entries out of normal test set is clas-
sified as XSS attacks. The rests are listed in the 
same manner. 

Figure 3 shows the false positive rate, precision 
and recall, comparing of three methods. First, the 
False Positive Rate means the proportion of 
normal behaviors that are erroneously reported as 
XSS attacks. Our approach can lead to 0.3% in the 
false positive rate and the other two methods lead 
to the false positive rates above 3%.  

The Precision can be regarded as a measure of 
exactness or fidelity for the proportion that is clas-
sified as XSS attacks. We can see that our method 
has the highest precision rate in comparison with 

Algorithm 2: XSS Attack Detector 
Input: A token sequence, and the other 
two inputs are nθ  and xθ which are the 
output of HMM-based Token Correlator. 
Output: Determine what label a token 
sequence is. 
1  T represents the threshold  
2  if nθ  > xθ  and nθ  >= T then 
3  Label the token sequence as Nor-
mal. 
4  else if nθ  <= xθ  and xθ  >= T then 
5 Label the token sequence as XSS 
attack. 
6  else 
7   Label the token sequence as Ab-
normal  

   



                                                                             

two other methods. 
The Recall is used to measure the classified 

XSS attacks the completeness for the whole XSS 
attacks. Our method has the 100% recall rate, 
which means that it can identify all the XSS at-
tacks in the test set. 

 
(a) 

 
(b) 

Figure 2: The log likelihood of (a) normal model  
and (b) XSS attack models. 

 
Table 3: All parameters used in our experiments 
Parameter (Symbol) Value  
Training iteration of EM (max_iter) 15 
Output symbol (O) 36 
Hidden state number (Q) 7 

 
 
 
 

Table 4: The confusion matrix of three methods 

 Normal  XSS  
attack 

Our Approach Normal 3459 10 
XSS attack 0 50 

Logistic 

Regression 

Normal 3214 255 
XSS attack 12 38 

Naïve Bayes Normal 3354 115 
XSS attack 3 47 

 
Figure 3: The false positive rate, precision and recall 

of three methods. 
5. Conclusion 

In this paper, we proposed a method to detect 
XSS based on HMM. We transform HTTP re-
quests into token sequences and then apply HMM 
to correlate tokens in the token sequences. The 
proposed method is effective in the sense that it 
successfully identifies XSS web attacks with high 
accuracy. It is also easy to plug-in the proposed 
method into web intrusion detection system or 
WAF for thorough protection on web applications. 
We have tested our approach on real-world access 
logs, and the experiment results show that our ap-
proach can achieve high accuracy and low false 
positive rates for various XSS attacks compared to 
other base line machine learning approaches.   

For the future work, we will utilize our ap-
proach to detect various kinds of web attacks, like 
SQL injection, CSRF attack, path traversal, etc. 



                                                                             

Moreover, to make our method more robust, we 
will test our model on large-scale data sets, in-
cluding not only access logs, but also other sources 
of IDS or  WAF. 
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