

Cross-Site Scripting Attack Detection Based on
Hidden Markov Model

1Yeng-Ting Wu, 1Shiou-Jing Lin, 2En-Si Liu, 2Hsing-Kuo Pao, 2Ching-Hao Mao, 2,3Hahn-Ming Lee
1Information & Communication Security Lab, Chunghwa Telecom Laboratories

2Department of Computer Science & Information Engineering, Taiwan Tech
3Institute of Information Science, Academia Sinica

{lyndon,sjlin}@cht.com.tw, {m9615046,pao,d9415004,hmlee}@mail.ntust.edu.tw

Abstract―Cross-Site Scripting (XSS) is a well-known
type of web vulnerabilities which allows attackers to in-
ject the malicious scripts or codes to compromise the web
application services. Based on the characteristics of client
side script language, the attackers can launch XSS attack
by a single HTTP request to a website easily. Therefore,
detection of XSS is a critical issue for all website manag-
ers. In this paper, based on a machine learning approach,
we propose a new method to detect XSS attacks on a web
server. We preprocess an HTTP request to a token se-
quence, and utilize Hidden Markov Model to determine
whether an XSS attack exists in the HTTP request. By
filtering HTTP requests on the server side, our approach
can label each HTTP request whether it is an XSS attack
or not. Moreover, apart from other related methods,
ours takes the proximity into consideration. The pro-
posed system performs well with high accuracy rate on a
real data set collected from a private telecom company.

Index Terms―Cross site script, hidden Markov model,

web security, token sequence.

1. Introduction
Cross-Site Scripting (XSS) has become one of

the most prevalent threats in web security recently.
According to the report from Web Application Se-
curity Consortium (WASC) [6], the number of
vulnerabilities which belong to XSS attack has
grown to the largest proportion of all web vulnera-
bilities. On the other hand, to fit the demands of
growing web, disappointedly, HTML has no capa-
bility to distinguish trusted code from inline data
and the data sanded by users. This characteristic
and the widely use of client side technologies that
support dynamic web contents give attackers
chances to inject malicious scripts or codes to
compromise the web application services.

XSS vulnerabilities exist if the web application
takes the inputs from trustless users and use them
to dynamically generate web pages without suffi-
ciently validating, filtering or encoding the sup-
plied data. Attackers can inject JavaScript or other
browser executable content into web pages of legi-
timate sites with XSS vulnerabilities. When other
users visit these legitimate sites and browse the
web pages with malicious contents injected by at-
tackers, the malicious contents are executed in us-
ers’ browsers that cause users to become victims.
By XSS exploits, attackers are able to have vic-
tims’ browsers execute malicious scripts or other
browser executable content automatically, which
may hijack users’ sessions, redirect users to mali-
cious sites, conduct phishing attacks, or even in-
stall malicious codes without users’ awareness.

There are three main kinds of XSS: Reflected,
Stored and DOM injection [11]. The cause of Re-
flected XSS is that the malicious content is re-
flected directly back to the browser while attackers
inject malicious content to a web page of the vul-
nerable site. Reflected XSS exploits are delivered
to victims via various ways. Most ways for deli-
vering Reflected XSS exploits are to construct a
crafted URL which contains the malicious content
as parameters, and then send emails to victims
with some contents the victims might be interested
in and a link to the crafted URL in the emails.
When victims click the malicious link, Reflected
XSS exploits are executed in victims’ browsers.
The difference between Reflected and Stored XSS
is that Reflected XSS reflects the malicious con-
tent directly back to the browser without storing it

while Stored XSS stores the malicious content in a
database or other back-end system. In a Stored
XSS attack, the attacker injects malicious content
to a vulnerable legitimate site first and the mali-
cious content is stored in the vulnerable site. When
a user visits the vulnerable site later, the malicious
content is retrieved from the database or back-end
system, returned, unfiltered, in the HTML page
and displayed to the user. Attackers may target
sites such as social networking sites, discussion
forums, or blogs where a large number of users
will see materials provided by other people.
DOM-Based exploits are implemented to manipu-
late the site’s JavaScript code and variables instead
of the HTML elements.

In this paper, we propose a new method that de-
tects XSS attacks on the web server based on a
machine learning approach – Hidden Markov
Model (HMM). We preprocess an HTTP request
to a token sequence and then use HMM to detect
XSS attacks or anomaly behavior in the sequence.
Our approach can be implemented in the web
server or Web Application Firewall (WAF) for the
detection of XSS anomaly attacks.

The novelty of our approach is to treat the de-
tection of XSS attacks as a sequence labeling
problem. We present a machine learning method
based on probabilistic modeling that considers the
correlation of consecutive tokens in the token se-
quences. By giving labels to the tokens, we can
spot the starting and ending points of an attack.

We evaluate this approach against a range of
XSS attacks and demonstrate it effectiveness on
real world traffic. We gathered access logs of web
servers in a private telecom company as the data
set. The result demonstrates that our approach
achieves high detection rates in our experiments.

This paper is organized as follows: Section 2
contains a review of related work. Section 3 de-
scribes the system architecture of our approach.
We describe our experiments with more details
and results in Section 4 and conclude this work in
Section 5.

2. Related Work
Many studies have been proposed for the detec-

tion of web attacks. Ingham et al. [1] proposed

an approach that utilizes DFA (Deterministic Finite
Automata) induction to detect malicious web re-
quests. They tokenize HTTP requests and build a
DFA model for the requests; then determine
whether an HTTP request is an attack via a simi-
larity measure which is calculated for an HTTP
request and the DFA. However, their research does
not take the token correlation of sequences into
consideration. Wang et al. [7] proposed a content
anomaly detector that models a mixture of
high-order n-grams to detect malicious packet
content. However, this approach named Anagram
suffers from lower accuracy when the data input is
highly dynamic in data type and ordering like web
traffic due to the use of hashes to raise its effi-
ciency.

Song et al. [8] used mixtures of Markov chain
model to deal with code-injection attacks in web
layer. Compared to other related methods, their
model performs efficiently with O(n) in its time
complexity. For high variability of HTTP requests,
this model may get more noise than other models
that tokenize the HTTP requests in the prepro-
cessing step. Similarly, by tokenizing HTTP re-
quests, Roberson et al. [9] presented a method that
uses a generalization technique to translate abnor-
mal HTTP requests into signatures for abnormal
behavior. Collecting features in HTTP requests to
form a classification problem is also an interesting
approach. Kruegel and Vigna [10] developed an
approach that detects web attacks by considering
some attributes from the HTTP requests such as
length, character distribution, ordering of parame-
ters and so on.

There are other XSS detection mechanisms that
are not based on the detection of anomaly behavior.
We discuss them as follows. Saxena et al. [12] and
Gundy et al. [13] have similar methods to defend
XSS attacks by ensuring a fundamental document
integrity property. Saxena et al. developed a new
approach that combines randomization of web ap-
plication code and runtime tracking of trustless
data both on the server and on the browser to
combat XSS attacks. Gundy et al. presented Non-
cespaces to let a web application randomizes the
XML namespace prefixes of tags in each docu-
ment before delivering it to the client, so that
client can distinguish between trusted and trustless

data.
In addition, another two mechanisms aim to

prevent XSS attacks from stealing the victim’s
confidential information. To block URL requests,
an approach called Noxes [14] provides a
client-side web proxy, which can use manual and
automatic rules to detect malicious content. Vogt et
al. [15] tracked the flow in the browser in order to
prevent malicious content from leaking sensitive
information to others. For high dynamic data such
as web-layer content, tokenization is an approach
to eliminate noises on high dynamic data. Tokeni-
zation will be elaborated in next section.
3. The Detection of Cross-Site Scripting Attacks

There are many token-based methods (e.g. DFA)
applied in web attack detections. However, most of
them do not model token correlation well between
a pair of consecutive tokens. In this study, we de-
sign a token sequence extractor to transform HTTP
requests into token sequences. Furthermore, we
intend to model the temporal relations in token
sequences to identify XSS attacks by Hidden
Markov Model (HMM). Figure 1 shows the sys-
tem architecture which includes three components,
namely: Token Sequence Extractor, HMM-based
Token Correlator and XSS Attack Detector. To-
ken Sequence Extractor transforms HTTP requests
into token sequences. The HMM-based Token
Correlator uses HMM to extract token correlation
of neighboring tokens in labeled token sequences.
XSS Attack Detector is responsible for determin-
ing whether an input token sequence contains any
XSS attacks and where the attacks are in.

Meanwhile, the system uses a data source and a
HMM Parameter Profile. The data source contains
labeled HTTP requests and HMM Parameter Pro-
file supports to build HMM-based Token Correla-
tor model. Labeled HTTP requests are the HTTP
requests labeled by domain experts in advance.
HMM Parameter Profile contains all parameters of
HMM model and the output of the model to de-
termine labels of predicted token sequences via
XSS Attack Detector.
3.1 Feature Extraction for Tokenization

In order to model token correlations of token
sequences, we utilize Token Sequence Extractor to

transform an HTTP request into a token sequence.
Ingham et al. [1] tokenize HTTP requests accord-
ing to HTTP RFC standard [2]. However, it has the
difficulty because some web browsers and related
programs do not fully follow the RFC standard.
Variation which makes anomaly detection system
fail to profile attacks under different environments
is another problem in tokenizing HTTP requests.

Figure 1: System Architecture.

In order to solve the problems mentioned in
previous paragraph, we remove tokens from token
sequences to reduce high variability if the tokens
give no help to the system. For example, Ac-
cept-Language and Accept-Charset contained in
HTML header are not important fields in our sys-
tem to detect XSS attacks, so the tokens will be
eliminated in our Token Sequence Extractor.

Table 1: Special Symbols used to identify a token
boundary

A token represents a semantic unit and therefore

we can discuss the relationship between different
units in a token sequence. In the process of trans-
forming HTTP requests to token sequences, we
use special symbols to identify token boundaries.
For instance, a GET URL string such as
“/ics/index.php?id=Bob&pwd=3423” will be se-
parated into fourteen tokens. Note that these

~ ! @ # $ % ^
& * () _ - +
= ` [] { } \
| ; : ‘ “ , <
. > / ?

HTTP Requests

Labeled HTTP
Requests

Token Sequence
Extractor

HMM-based Token
Correlator

XSS Attack
Detector

HTML Parameter
Profile

Training Phase

Testing Phase
Domain Experts

fourteen tokens should also go through the subse-
quent processes for removing meaningless or
non-helpful tokens. Table 1 shows the special de-
limiter symbols used by Token Sequence Extrac-
tor.

To produce token sequences, we propose a
transformation algorithm illustrated in Algorithm 1.
The algorithm accepts HTTP requests as the input
and produces token sequences as the output. For
an HTTP request, we split it into an array, and se-
quentially extract the elements in the transforma-
tion process. For each element, we find a token
corresponding to it and produce a token sequence
by combining those tokens. The set of token types
is denoted by TS, which includes various token
types. For example, we name the token whose
original contents are related to script language as
“script_word”.

3.2 The Detection of Cross-Site Scripting Attacks

Hidden Markov Model (HMM) includes a fi-
nite-state machine that transits its states by proba-
bility. In HMM, we do not know the states which
are called hidden states, but we can infer state se-
quence based on the hint from observations. A
Markov Chain is useful for estimating the proba-
bility for a sequence of events [16]. Since the or-
der of tokens is meaningful in a token sequence, it
is suitable for utilizing HMM to correlate the to-

kens in neighboring locations. Before using HMM,
there are three elements that should be specified: 1)
the initial probabilities which specify the probabil-
ities of starting each state; 2) the transition proba-
bilities that represents the probabilities from one
state to another state; and 3) the observation prob-
abilities, also called emission probabilities, which
express the likelihoods of any observation that is
generated from any state.

We design two HMM models for HMM-based
Token Correlator: one is responsible for profiling
normal token sequences, and the other is responsi-
ble for profiling XSS token sequences. The model
which represents normal behavior is denoted by

nπ , and the other model which represents XSS
behavior is denoted by xπ . We use nθ to denote
the maximum likelihood value of model nπ , and

xθ to denote the maximum likelihood value of

xπ according observed sequences, respectively.
Algorithm 2 shows the details of XSS Attack De-
tector. One input is a token sequence, and the other
two inputs are nθ and xθ , which are the output
of HMM-based Token Correlator. The output of
XSS Attack Detector is the labeled token sequence.
XSS Attack Detector determines labels of the to-
ken sequence such as normal or XSS attack by
comparing nθ and xθ . Parameter T represents
the threshold value, and if nθ and xθ are all
smaller then T, we label the token sequence as an
attack not belonging to XSS attack.

HMM-based Token Correlator uses Expecta-
tion-Maximization (EM) algorithm to obtain the
appropriate HMM model for normal and abnormal
sequences. After feeding training data which is la-
beled by experts, hopfully we ontain converged
HMM parameters such as the initial probabilities,
the transition probabilities and the emission prob-
abilities for observations.

4. Experiments
In this section, we demonstrate our experiment

result. First, we illustrate the training and test data
sets, which include normal sequences and the se-
quences with XSS attacks. After that, we give de-
tails of the computation environment for our expe-
riments. We also explain all the parameters used in

Algorithm 1: Generate Token Sequence
Input: An HTTP request R

Output: A token sequence X

1. Y = (y1, y2,…,yn), and n is the length of Y;

2. TS = (t1, t2,…,tm) , and m is the length of TS. TS

represents the token set.

3. Split R into array Y by special symbols ;

4. P lists special symbols of R orderly, ex. p1

represents the special symbol located before y1

5. for each yi ∈Y = (y1, y2,…,yn) do
6. classify yi to suitable token TSt j ∈ ;
7. append pi to X;
8. append tj to X;
9. end
10. remove insignificant tokens and their
types from X;

our experiments.

Finally, we analyze the characteristics of our

proposed approach. We also show the effective-
ness of our method and compare it with other me-
thodologies, such as Logistic Regression and
Naïve Bayes.
4.1 Data set and Environment Description

The training and test data sets were obtained
from the access logs of web servers in a telecom
company called Chunghwa Telecom Laboratories
[17]. We took the ordinary access logs as normal
training and test sets. To generate the access logs
of XSS attacks, we used some tools and websites
which provide the functionality of producing XSS
attack strings. For example, CAL9000 [3] is an
OWASP project and provides a collection of web
application security testing tools. It gives the flex-
ibility and functionality that we need to generate
the XSS attacks. On the other hand, RSnake [4]
provides the XSS cheat sheet, which contains lots
of XSS attack strings. We wrote some web pages,
launched the XSS attacks, and got the access logs
of XSS attacks.

Table 2 lists all information about the data sets.
The normal access logs were collected from Aug.
20, 2008 to Jul. 20, 2009, and the access logs of
XSS attacks were obtained at Aug.28 2009. The
total number of entries in normal access logs is
18,469, and training/test set contains 15,000/3469
entries respectively. The total number of entries

in XSS access log is 110, and training/test set con-
tains 60/50 entries respectively.

Table 2: Information about the data set
 Normal XSS attack
Duration Aug. 20th, 2008

-Jul. 20th, 2009
Aug.28th,
2009

of access log 18469 110
of training/test 15000/3469 60/50

4.2 Parameter Setting
We utilized an HMM toolbox [5] based on

MATLAB to justify our approach. Table 3 lists all
the parameters that we used in our experiments.
The training iteration of EM leads the log likelih-
ood of normal and XSS attack models converged
to a constant value, as shown in Figure 2. There
are 36 kinds of token types in our experiments, so
the number of output symbol O is 36. We choose
Hidden state number Q as 7 based on our expe-
rience.

4.3 Experiment Results

The evaluation results of our proposed method,
as well as Logistic Regression, and Naïve Bayes
are shown below. Table 4 shows the classification
results of test set by three methods. The first row
(Normal) and the first column (Normal) of our ap-
proach is 3459, which means that there are 3459
data out of normal test set classified as normal be-
havior. Similarly, the first row (Normal) and the
second column (XSS attack) corresponds to 10 and
means that 10 entries out of normal test set is clas-
sified as XSS attacks. The rests are listed in the
same manner.

Figure 3 shows the false positive rate, precision
and recall, comparing of three methods. First, the
False Positive Rate means the proportion of
normal behaviors that are erroneously reported as
XSS attacks. Our approach can lead to 0.3% in the
false positive rate and the other two methods lead
to the false positive rates above 3%.

The Precision can be regarded as a measure of
exactness or fidelity for the proportion that is clas-
sified as XSS attacks. We can see that our method
has the highest precision rate in comparison with

Algorithm 2: XSS Attack Detector
Input: A token sequence, and the other
two inputs are nθ and xθ which are the
output of HMM-based Token Correlator.
Output: Determine what label a token
sequence is.
1 T represents the threshold
2 if nθ > xθ and nθ >= T then
3 Label the token sequence as Nor-
mal.
4 else if nθ <= xθ and xθ >= T then
5 Label the token sequence as XSS
attack.
6 else
7 Label the token sequence as Ab-
normal

two other methods.
The Recall is used to measure the classified

XSS attacks the completeness for the whole XSS
attacks. Our method has the 100% recall rate,
which means that it can identify all the XSS at-
tacks in the test set.

(a)

(b)

Figure 2: The log likelihood of (a) normal model
and (b) XSS attack models.

Table 3: All parameters used in our experiments
Parameter (Symbol) Value
Training iteration of EM (max_iter) 15
Output symbol (O) 36
Hidden state number (Q) 7

Table 4: The confusion matrix of three methods

 Normal XSS
attack

Our Approach Normal 3459 10
XSS attack 0 50

Logistic

Regression

Normal 3214 255
XSS attack 12 38

Naïve Bayes Normal 3354 115
XSS attack 3 47

Figure 3: The false positive rate, precision and recall

of three methods.
5. Conclusion

In this paper, we proposed a method to detect
XSS based on HMM. We transform HTTP re-
quests into token sequences and then apply HMM
to correlate tokens in the token sequences. The
proposed method is effective in the sense that it
successfully identifies XSS web attacks with high
accuracy. It is also easy to plug-in the proposed
method into web intrusion detection system or
WAF for thorough protection on web applications.
We have tested our approach on real-world access
logs, and the experiment results show that our ap-
proach can achieve high accuracy and low false
positive rates for various XSS attacks compared to
other base line machine learning approaches.

For the future work, we will utilize our ap-
proach to detect various kinds of web attacks, like
SQL injection, CSRF attack, path traversal, etc.

Moreover, to make our method more robust, we
will test our model on large-scale data sets, in-
cluding not only access logs, but also other sources
of IDS or WAF.

Acknowledgements

This work was supported in part by Chunghwa
Telecom Laboratories under grants TL-97-7401,
also by the National Science Council under grants
NSC 97-2221-E-011-105.

REFERENCE
[1] K. L. Ingham, A. Somayaji, J. Burge, and S.

Forrest, “Learning DFA representations of
HTTP for protecting web applications,” vol.
51, no. 5. New York, NY, USA: Elsevier
North-Holland, Inc., 2007, pp. 1239-1255.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, and T. Berners-Lee,
“Hypertext transfer protocol - http/1.1.”
United States: RFC Editor, 1999.

[3] CAL9000,
http://www.owasp.org/index.php/Category:O
WASP_CAL9000_Project

[4] RSnake, http://ha.ckers.org/xss.html
[5] HMM Toolbox for matlab,

http://people.cs.ubc.ca/~murphyk/Software/H
MM/hmm.html

[6] WASC, “Web Application Security Consor-
tium”, http://www.webappsec.org/

[7] K. Wang, J. J. Parekh, and S. J. Stolfo, “Ana-
gram: A content anomaly detector resistant to
mimicry attack,” in 9th Recent Advances in In-
trusion Detection (RAID), 2006, pp. 226-248

[8] Y. Song, AD. Keromytis and SJ. Stolfo,
“Spectrogram: A mixture-of-markov-chains
model for anomaly detection in web traffic,”
in the 16th Annual Network and Distributed
System (NDSS), 2009.

[9] W. Robertson, G. Vigna, C. Kruegel, R.A.
Kemmerer, “Using generalization and charac-
terization techniques in the anomaly-based
detection of web attacks,” in Proceedings of
Network and Distributed System Security
Symposium conference, 2006, Internet Society,
2006

[10] C. Kruegel, G. Vigna, “Anomaly detection of
web-based attacks,” in Proceedings of the 10th

ACM conference on computer and communi-
cations security, ACM Press (2003),
pp.251-261

[11] OWASP Top 10 2007-Cross Site Script-
ing, http://www.owasp.org/index.php/Top_10_
2007-A1

[12] P. Saxena, D. Song, and Y. Nadji, “Document
structure integrity: A robust basis for
cross-site scripting defense,” in 16th Annual
Network & Distributed System Security Sym-
posium, San Diego, CA, USA, Feb. 2009.

[13] M. V. Gundy and H. Chen, “Noncespaces:
using randomization to enforce information
flow tracking and thwart crosssite scripting
attacks,” 16th Annual Network & Distributed
System Security Symposium, 2009.

[14] E. Kirda, C. Kruegel, G. Vigna, and N. Jova-
novic. “Noxes: A Client-Side Solution for Mi-
tigating Cross Site Scripting Attacks,” In
Proceedings of the ACM Symposium on Ap-
plied Computing (SAC), Dijon, France, April
2006.

[15] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Cross-Site Script-
ing Prevention with Dynamic Data Tainting
and Static Analysis,” In Proceedings of the
Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February
2007.

[16] D. Jurafsky and J. H. Martin, “An introduction
to natural language processing, computational
linguistics, and speech recognition,” Oct 10,
2006

[17] Chunghwa Telecom Laboratories,
http://www.chttl.com.tw/

http://www.owasp.org/index.php/Category:OWASP_CAL9000_Project�
http://www.owasp.org/index.php/Category:OWASP_CAL9000_Project�
http://ha.ckers.org/xss.html�
http://people.cs.ubc.ca/~murphyk/Software/HMM/hmm.html�
http://people.cs.ubc.ca/~murphyk/Software/HMM/hmm.html�
http://www.webappsec.org/�
http://www.owasp.org/index.php/Top_10_2007-A1�
http://www.owasp.org/index.php/Top_10_2007-A1�
http://www.owasp.org/index.php/Top_10_2007-A1�

	1Yeng-Ting Wu, 1Shiou-Jing Lin, 2En-Si Liu, 2Hsing-Kuo Pao, 2Ching-Hao Mao, 2,3Hahn-Ming Lee

