

Abstract—JXTA (Juxtapose) is emerging as the next

generation P2P (peer to peer) platform and has been

adopted by many applications, such as instant messaging

systems, file sharing systems, and real-time collaboration

platforms, etc. However, JXTA is lack of keyword search.

Without the support of keyword search, the query must

contain the exact full name of a desired resource. It is

inconvenient for users in this aspect. In this paper, we

propose a mechanism called JXTA Keyword Search (JKS)

with the support of Chinese Keyword Partition (CKP). JKS

has two objectives. First, it is providing keyword search

upon JXTA. New publishing and discovery schemes are

proposed for keyword search. Second, it is designing a

Chinese Keyword Partition method to enhance the number

of exact matches. Experimental results, based on real data

obtained from some notable portal sites, show that the

number of exact matches of the proposed JKS is

comparable to that of KAD with English queries.

Furthermore, JKS is 237% less than KAD in terms of

bandwidth cost with English queries. The proposed JKS

performs much better than KAD with mixed queries

(English + Chinese). The research results are applicable

for P2P applications (e.g. file sharing, multimedia

streaming sharing, internet service discovery, etc.) built on

JXTA.

Keywords — Discovery service, JXTA, keyword search, peer to

peer network.

1. INTRODUCTION

XTA is a set of protocols which provide different
network devices to communicate and collaborate in

a P2P manner. JXTA is a common framework
provided for P2P application development. There are
several advantages of JXTA. (1) It accepts
heterogeneous devices like PCs and mobile devices
[2], [3]. (2) There is a J2ME version for mobile
devices to build applications to access JXTA
networks [4]. (3) It provides firewall routing

1 This work was supported by the National Science Council under Grants

NSC96-2628-E-009-140-MY3 and NSC97-3114-E-009-001.

capabilities [2]. It is used by many projects to
establish their applications [5], [6], [7]. It is emerging
as a next-generation P2P platform [8].

There are two types of P2P overlay networks:
structured and unstructured [9]. Most structured P2P
networks are based on distributed hash table (DHT)
technology. The advantage of DHT is its
cost-effectiveness on query routing. Given a key, it
guarantees to find an object within bounded cost. But
it is useful only when the user has the exact file name.
Most of the time, the user may only know partial
information [10]. Thus, augmenting DHT with a
keyword-based search capability is a valuable
extension [11].

JXTA uses loosely-consistent DHT (LC-DHT) as
the underlying query routing mechanism. The
operation is like DHT which stores a file index in a
selected peer according to some kind of hash values.
However, it is also lack of keyword search. There are
two objectives for this research. The first objective is
designing the keyword search function upon JXTA.
The second objective is designing a Chinese
Keyword Partition (CKP) method to enhance the
number of exact matches.

The rest of this paper is organized as follows. The
preliminary knowledge of JXTA is presented in
Section 2. Section 3 discusses related work. Section 4
depicts design approach. Experimental results and
discussion are shown in Section 5. Section 6 gives
concluding remarks.

2. PRELIMINARIES

2.1 Introduction of JXTA [5]

JXTA was started by Sun Microsystems in 2001.
Network devices can join the JXTA network by
applications they run if it conforms to the JXTA set
of protocols and could parse XML. An advertisement

Keyword Search for Enhancing JXTA Discovery
Service in Peer to Peer Networks 1

Tsung-Hsuan Chang Kuochen Wang Chung-Yuan Hsu
Department of Computer Science Department of Computer Science Department of Computer Science
National Chiao Tung University National Chiao Tung University National Chiao Tung University

Hsinchu 300, Taiwan Hsinchu 300, Taiwan Hsinchu 300, Taiwan

sam0408.cs95g@nctu.edu.tw kwang@cs.nctu.edu.tw theone0615@gmail.com

J

is an XML document. JXTA uses advertisements to
describe resources. Resources can include files,
documents, pipes, and media etc. [12]. An example
of a pipe advertisement is showed in Fig. 1.

Fig. 1. An example pipe advertisement [12].

 The JXTA network is composed of connected
peers. There are several kinds of peers. Two of them
(rendezvous peer and edge peer) are shown in the Fig.
2. The other kinds of peers are not discussed in this
paper. Most peers in a JXTA network are edge peers.
An edge peer can perform search, process discovery
requests from others, but doesn’t involve forwarding
discovery requests. Rendezvous peers have a list of
other rendezvous peers and communicate with each
other in order to maintain the list. They help
propagate discovery requests to other peers.

Fig. 2. JXTA network organization.

2.2 JXTA routing, publish and discovery service

Previous section gives an overview of JXTA. Here
we briefly describe JXTA routing, publish and
discovery service [13].

Routing

In JXTA, each rendezvous peer has a Rendezvous

Peer View (RPV) which is an ordered list of known
rendezvous peers by their peer IDs. A RPV is
maintained through exchanging rendezvous peer
information or through well-known seeding
rendezvous peers [14]. Moreover, the message
received from or sent to other rendezvous peers
would update the RPV [13]. The RPVs on different
rendezvous peers are not always consistent due to
peer joining and leaving. But they will eventually
converge to a consistent RPV when changes in the
network are not too frequent [13].

For routing a key in a traditional DHT, suppose
h(key) is the hash value of the key. The key is routed
to a peer whose ID is close to the hash value of the
key. In LC-DHT, the proportion of h(key) to the
maximum hash value is computed first. A
rendezvous peer is selected from the RPV according
to the proportion. Then the key is routed to the
selected peer.

Publish

The file owner allows others to search its files by
publishing the index entries. Each entry contains a
pair of <field, value> which is extracted from an
advertisement. An advertisement is created from
each file and contains information of the file. Table 1
shows some index entries extracted from an
advertisement shown in Fig. 1.

Table 1. Some index entries extracted from Fig. 1.

In an edge peer, the steps of publish are listed
below:
(1) Create an advertisement of files and store it into

the local advertisement database.
(2) Extract index entries from the local

advertisement database and send these entries to a
connected rendezvous peer.

(3) In a rendezvous peer: retrieve entries from index
messages and store them into the index entry
database.

(4) In a rendezvous peer: for each entry of index
messages, use a routing mechanism to send each

Edge

Edge

RDV

RDV
RDV

Edge Edge

RDV = Rendezvous peer
Edge = Edge peer

<?xml version="1.0"?>

<!DOCTYPE jxta:PipeAdvertisement>

<jxta:PipeAdvertisement

xmlns:jxta="http://jxta.org">

<Id>

urn:jxta:uuid-59616261646162614E504720

503250338E3E786229EA460DADC1A176

B69B731504

</Id>

<Type>JxtaUnicast</Type>

<Name>TestPipe</Name>

</jxta:PipeAdvertisement>

entry to a different rendezvous peer and then the
received peer stores it.

Discovery

Discovery service helps users to find out who owns
files they are looking for. JXTA discovery service
allows user input one set <Field, Value> (e.g. <name,
“A Whole World”>) and finds out advertisements
which contain it. Since an RPV is not always
consistent, it is possible to route a query to an
incorrect rendezvous peer. JXTA designed a

limited-range walker algorithm to cope with it. In
this case, the query walks along rendezvous peers in
both directions of the RPV. The walker is stopped
when a result is found, the end of RPV is reached, or
a defined hop count is run out [13].

In an edge peer, the steps of discovery are listed
below:
(1) Create a query message that contains user input,

and then send the query message to a connected
rendezvous peer.

(2) In a rendezvous peer: search its local
advertisement database.

(2a) Find results: return found advertisements to
the query peer.

(2b) No result: go to step 3.
(3) In a rendezvous peer: search its index entry

database.
(3a) Find results: forward the query to the peers

which have published the index entry. The
owner peer then returns the desired
advertisement to the query requester.

(3b) No result: if the rendezvous peer is the
responsible peer go to step 5; otherwise, go to
step 4.

(4) Forward the query to a responsible rendezvous
peer. The receiving peer will start from step 2.

(5) Start the walker algorithm (described above).
The JXTA publish and discovery scenario is

illustrated in Fig. 3. The number nearby an arrow line
is corresponding to the step described above.

3. RELATED WORK

3.1 JXSE-CMS [15]

JXSE-CMS (content manager service) provides
file sharing and retrieving services on JXTA. It also
provides metadata search, but this function can’t be
used in the remote search because an index is found

only when a query is routed to the rendezvous peer
which contains the index. JXSE-CMS define its own
content advertisement which could contain content id
(cid), length, description, name and etc. The cid field
contains the unique 128-bit MD5 checksum of the
file. The index of an advertisement is published by
the underlying JXTA functions.

Fig. 3. JXTA publish and discovery scheme.

3.2 Rich metadata searches [16]

In Fig. 4, the metadata search layer is implemented
based on the existing CMS. The abundant metadata is
added into an advertisement so that much more
searchable attributes could be supported in a query
expression. The query could include author,
publisher, etc. But this mechanism can’t work in a
recent JXTA version in the internet because the
resource is stored in a selected peer according to
some kind of a hash value. The metadata search only
works in a local network.

Fig. 4. Metadata architecture.

GUI layer

Metadata search layer

Content manager service

JXTA

Physical network

3a

Discovery 3a

Ri Rendezvous peer
Ei Edge peer

4

3

2 4
3

2 1

4

3
2 1

Index

Store

E1

R1

R2

R4

R3

E2

Publish

3.3 KAD [17]

There are many DHT-based methods that were
proposed but very few of them are wildly deployed
[18]. KAD is one of these and is based on Kademlia
networks. Several papers pointed out that there are
several million users using KAD [18]. In the
following, we briefly describe about operations
related to the keyword search in KAD. The overview
below includes keyword partition, publishing objects
and searching objects.

Keyword partition

The keyword sets are extracted by ripping names
of objects. A name is ripped by some special
characters, e.g. space, ‘.’, ‘,’, ‘:’, ‘-’, ‘_’, ‘*’, ‘?’, etc.
The keywords that consist of two or less letters are
deleted [19]. For example, the keyword set of “A
Whole World” is {“Whole”, “World”}.

Publish objects

A peer enables other peers access its owning files
by publishing references. There are two kinds of
references: source key and keyword key [18].
(1) Source key

A source key is computed by hashing the content
of the file. It is used to search the peers owning the
file.
(2) Keyword key

A keyword key is computed by hashing the
keyword gained from the keyword partition
described above. It is used to search the files whose
name contains the keyword.

The 2-level publishing scheme publishes these two
kinds of references. The benefit of the 2-level scheme
is decreasing number of publishing references [17].
The references are stored in the peers whose KAD ID
agrees in the first 8 bits with the reference [20]. The
2-level publishing scheme is described as follows:
(1) Source publishing

It finds and stores a source key in the responsible
peers. The address information of a publishing
peer is stored with the key.

(2) Keyword publishing
It finds and stores a keyword key in the
responsible peers. The source key and related
information of a published file (e.g. size, type,
name, etc.) are stored with the key.

Fig. 5. KAD publishing scheme.

Search objects

Like publishing, searching files is also a 2-level
scheme: keyword search and source search.

(1) Keyword search

The hash value of the first word of user input is
computed. The rest of words and additional attributes
are packed in form of a search tree. A query consists
of a hash value of the first keyword and a search tree.
The query is routed to the peers that have a KAD ID
close to the hash value. The matching results are
responded from the peers and carry the information
of source keys and files. Fig. 5 describes the
publishing scheme.

(2) Source search

A user chooses a desired file from returned results.
Then the source key of the file is used for searching
the peers who have the file. The returned results
would be added into the download queue of the file.

Finally, Table 2 shows the comparison of the
existing methods described above and the proposed
JKS.

4. DESIGN APPROACH

As mentioned before, the proposed JKS has two
objectives: (1) adding a keyword search function
upon JXTA; (2) designing a Chinese Keyword
Partition (CKP) method into JXTA. The latest Java

PEER (111111)

File name
A Whole

World

Source
Key

001110

Keyword
“Whole”
(000010)

Keyword
“World”
(111101)

PEER (001111)

Source
Key

(001110)

Client
(111111)

IP/PORT…

PEER (000011)

“Whole”
(000010)

Source Key
(001110) …

Source publishing
Keyword publishing

PEER (111100)

“World”
(111101)

Source Key
(001110) …

Table 2. Qualitative comparison of existing approaches.

 JXSE-CMS
[15]

Rich [16] KAD [17] JKS (Proposed)

P2P network JXTA JXTA Kademlia JXTA

Search capability Metadata Metadata Keyword +
Attribute

Keyword + Attribute

Query key Content id or exact file name1 Keyword + Attribute

Special feature N/A N/A N/A Chinese Keyword
Partition (CKP)

Number of exact matches Low Low Medium High

Bandwidth cost Low Low High Medium

Storage cost Low Low Low High

implementation of JXTA is JXSE 2.5. JKS is based
on JXSE 2.5.

4.1 Keyword search

The solution of how to add keyword search
functionality upon JXTA is described in two parts:
publish and discovery.

Publish

The publish scheme allows to publish several
keywords for a single file. It involves adding
keyword partition, a new advertisement, and
modifying the publishing behavior of each
rendezvous peer. The keyword partition algorithm
will be described in Section 4.2. The publish scheme
uses the content advertisement extended from
JXSE-CMS to describe files, which is detailed as
follows.

To let users search files by file attributes (e.g.
author), the related pairs can added into
advertisements, (e.g. <Author> David). These
attributes are not index entries but are used when
determining whether a query and an advertisement
match. The index entries are extracted from “name”
and “cid” fields of the content advertisement. Then
the entries are sent to the connected rendezvous peer.
When the rendezvous peer receives entries, it stores
the entries with field “cid” into the index entry
database. If the entry field is “name,” the keywords
are extracted by the keyword partition algorithm.
These keywords are added into entries and also store
into the index entry database with field “keyword.”
Then the entry with field “name” is discarded.

In the original JXTA source code, the rendezvous
peer distributes each entry to other rendezvous peers
to store. The 2-tier hierarchical architecture allows to
further decrease network traffic and storage cost. If
there are multiple same entries, only one entry is sent.
Besides, the sources of entries are all changed to the
rendezvous peer. During the discovery phase, the
query would be routed to the rendezvous peer and
then be forwarded to the real publisher.

The steps of file publishing are listed below:
(1) Create an advertisement and save it in a local

advertisement database.
(2) Extract index entries from the local

advertisement database and pack these entries into
an index message.

(3) Send the index message to the connected
rendezvous peer.

(4) In the rendezvous peer: retrieve entries from the
index message and store them into the index entry
database. If an entry field is “name,” it is not stored.
Keywords are obtained by ripping file name, and
keyword pairs are stored into the index entry
database.
In the rendezvous peer: for each entry of the index

message, remove duplicated entries and change the
source to the rendezvous peer. Then use the routing
mechanism to send each entry to a different
rendezvous peer and store it.Fig. 6 shows the
publishing scenario and the number nearby each
arrow line is corresponding to the step described
above.

Fig. 6. Flowchart of file publishing.

Discovery

The discovery service enables users to lookup
desired files by keywords and file attributes. To
enable keyword and attribute discovery, the format
of a query is changed. In the original JXTA, a query
includes type, threshold (maximum response
number), attr, value, query ID, source peer ID, etc.
Attr and value is the pair of <field, value> which was
mentioned before.

A new query format is defined by adding three new
kinds of tags into the original query format. These
tags are: <Number>, <Append> and <Attribute>.
<Number> is used to ask how many entries of <Attr,
Value> in the peer. <Append> contains keywords.
<Attribute> contains file attributes. Both <Append>
and <Attribute> are used to filter the results,
searched by <Attr, Value>, to refine the results.

To start a query, a user inputs some keywords and
file attributes. To avoid generating large network
traffic, a query is created for each keyword and an
added tag <Number> is included in the query.
Queries are first routed to peers who might contain
index entries for the keyword. The receiving peer
checks if the tag <Number> is set and the number of
entries for the keyword is returned. After receiving
the number of entries for each keyword, the keyword
with minimum number is set in tag <Value>. The tag
<Attr> contains “keyword.” The rest of keywords are
set in tag <Append>, and file attributes are set in tag
<Attribute>.

Then, a query is routed to the peer who might
contain an index entry of <“keyword”, Value>. The
peer forwards the query to peers who published the
entries. To decrease network traffic, only ten peers

are selected for forwarding. Besides, only one query
is sent if two entries are published from the same peer.
After the query is forwarded to the entry publisher,
the <“keyword”, Value> specified in the query is
used to retrieve advertisements which contain it. If
either <Append> or <Attribute> is set, it is used to
filter the results. The matching results are returned to
the requester.

The steps of the discovery scheme are listed below:
(1) Rip keywords from user input (use the keyword

partition algorithm described in the publish
scheme).

(2) Ask for the index number of each keyword.
(3) If one of the numbers is zero, the discovery

process terminates. Pack and send the query to a
connected rendezvous peer.

(4) The connected rendezvous peer sends a query to
the peer who is responsible for storing the index
entries of the query keyword.

(5) The peer receiving the query finds out peers who
published the index entry containing the query
keyword. Then forwards the query to found peers.

(6) The peer receiving the forwarding query is a
rendezvous peer who is connected to the real
publisher. The peer finds out these publishers and
forwards the query to the found peers.

(7) The peer sends found advertisements to the
query peer.

Fig. 7. Flowchart of discovering the file “World

Map”.

A user chooses a desired file from returned results.
If there are not enough file owner peers acquired

from returned results, the cid of the file is used for
searching the peers who have the desired file. This
process is like the KAD source key search. The
discovery scheme is illustrated in Fig. 7. The number
nearby an arrow line is corresponding to the step
described above.

4.2 Chinese keyword partition (CKP)

The aim of CKP is to let files with Chinese names
increase their possibilities of being searched out. In
other words, increase the number of exact matching
results for a query containing Chinese keywords. The
character characteristic of Chinese sentences makes
it difficult to be partitioned by the keyword partition
algorithm of KAD because it does not have spaces
between each character. Users who publish files need
to manually add some special delimiters between
Chinese characters. But some users may not know
how to separate or are not diligent to change all files’
names. It results in only a subset of files with Chinese
names being searched out if a user uses a complete
file name to query.

CKP provides a method to automatically
distinguish Chinese keywords from file names. CKP
involves a Chinese keyword list (CKL) and a
keyword partition algorithm. Each rendezvous peer
needs to maintain a CKL. The list contains records in
form of <Keyword, Frequency>. The Keyword is
Chinese. When a rendezvous peer receives a query
from other peers, it gets a keyword set from the query
by using the CKP algorithm. For each keyword in the
keyword set, a rendezvous peer checks whether the
keyword is contained in the CKL. If there is no
record for the keyword, it adds a record <keyword,
1> into the CKL. Otherwise, it adds 1 to Frequency
of the old record.

The CKL needs to be maintained to control the use
of storage. When the number of records in the CKL
exceeds 2,000, all records with frequency less than 3
are removed. When the total frequencies of all
records exceed 100,000, the frequencies of all
records are divided by 2. If the original frequency is 1,
the record is deleted. If the number of records in the
CKL is less than 200, a peer uses its RPV to ask for
records from other rendezvous peers. Each
transmission is limited to 200 records selected from
the top of the CKL. A peer would continually ask for
records until the number of records exceeds 200.

An array TK (Top Keywords) contains 200
keywords with the most frequencies in the CKL. It is
updated once per hour and after asking for record
transmission from one of rendezvous peers. The
proposed keyword partition algorithm, the CKP
algorithm, is presented in Fig. 8.

Fig. 8. Chinese keyword partition (CKP) algorithm.

From the CKP algorithm, if the file name contains

any keyword of TK, the keyword is retrieved and
added into the keyword set. The overhead of CKP
can be examined from three aspects: network traffic,
storage cost and CPU load.

Network traffic

It is produced by record transmissions among
rendezvous peers. It only occurs when the number of
records in the CKL is less than 200. If the number of
records exceeds 200, it seldom goes down to the
number less than 200 again because the list keeps
growing while queries keep coming. If there are
enough queries in the network, the demand for

Chinese Keyword Partition (CKP)

Algorithm:

INPUT file_name
OUTPUT R_Keyword_Set
Key_Set = Split file_name by special characters

{space, ‘.’, ‘,’, ‘:’, ‘-’, ‘_’, ‘*’, ‘?’, etc.}
For each Keyword in Key_Set

Split Keyword if it consists of Chinese and
English and then add results into
Keyword_Set

For each Keyword in Keyword_Set
IF Keyword is not Chinese THEN

IF Keyword.length > 2 THEN
Add Keyword into R_Keyword_Set

ENDIF

ELSE //Keyword is Chinese
Add Keyword into R_Keyword_Set

FOR i = 1 to 200
IF Keyword contains TK[i] THEN

 Add TK[i] into R_Keyword_Set
ENDIF

ENDIF
return R_Keyword_Set

transmission will be very low and the network traffic
is little.

Storage cost

It is mainly produced by the CKL. Suppose each
record in the CKL is 50 bytes (46 bytes for Keyword
(string) and 4 bytes for Frequency (Integer)). When
the CKL has the maximum record number 2,000, the
size of the CKL is 2,000 * 50 bytes = 100 KB. 100
KB is small compared to the memory size currently
(512 MB, 1 G …).

CPU load

CPU load is evaluated by the elapsed system time
from the beginning to the end of executing the CKP
algorithm. A simple test program in Java was written
to run the CKP algorithm. The program was run on a
PC (AMD Athlon(tm) 64 X2 Dual Core Processor
3600+ (2.01 GHz) CPU, 1 GB RAM, Windows XP).
Fig. 9 shows that it takes 6.5 seconds to run the CKP
algorithm 100,000 times. The overhead of running
the CKP is little.

Fig. 9. The elapsed system times for running the CKP
algorithm various number of times.

5. EVALUATION AND DISCUSSION

5.1 Experiment environment

Table 3 gives description about four kinds of data
collected for experiments. Mixed queries consist of
Chinese and English queries with a ratio of
approximately 5:2. Two kinds of files were produced
in the same way. First, 2000 queries with most
frequencies were selected from query data. Second,
each query obtained five website titles by Google
SOAP search API [23]. The total number of websites
is 10,000 and the titles of websites are treated as file
names. Third, each file name is assigned a replicate
number according to Zipf’s law, and each file name
is replicated this number of times. The total number

of file names after replication is 100,000. Finally, file
names were distributed among peers according to
Zipf’s law at runtime. In addition, all peers in the
system are stable (no leaving or joining) and the
replication mechanism for publishing is removed for
easy evaluation. Table 4 shows some system
parameters.

Table 3. Experiment data.

Table 4. The system parameters used in the
experiments.

5.2 Experimental results

We wrote a simulation program in Java SE 6 to
simulate and evaluate the performance of JKS, JXTA
and KAD. Table 5 gives definitions for measured
metrics.

Table 5. Definitions for measured metrics.

Number of exact matches (no duplicate)

In the first experiment, it is to show how the CKP
algorithm affects the number of exact matches. All
queries were sent from one peer. After receiving
responses, each result is counted as one while

duplicate results were removed. Fig. 10 shows
simulation results using two kinds of data (English
and mixed: Chinese + English). JXTA is zero in both
data because it needs a query that exactly matches to
the file name.

For the number of exact matches, the proposed
JKS is 1% less than KAD when data is English and
81% more than KAD when data is mixed. It is
because JKS publishes more keywords according to
most popular query keywords (TK). Besides, if a file
name contains a string with a mix of Chinese,
English or number, the string is partitioned and more
keywords are published. The growth of published
references increases with the number of exact
matches.

Fig. 10. Number of exact matches (no duplicate)

Bandwidth cost

In the second experiment, it aims to show the
network traffic produced by the keyword search. The
bandwidth cost consists of publish cost and discovery
cost. Since the number of publish messages is ten
times bigger than the number of discovery messages
[26], [27], the bandwidth cost is computed as
follows:

 Bandwidth cost = Publish cost *10 + Discovery

cost (1)

Fig. 11 shows the publish cost using two kinds of
data (English and mixed). JXTA is 2 in both data
because it publishes one index entry for each file and
each index entry is transmitted twice. One is from an
edge peer to a connected rendezvous peer; the other
is transmitted to the responsible peer.

For the publish cost, JKS is 474% less than KAD
with English data and is 163% less than KAD with
mixed data. There are two reasons for this. One is
because JKS uses a 2-tier hierarchical architecture.
The rendezvous peer publishes the index entries from

many connected edge peers. When there are
duplicate index entries, only one is published. The
other reason is that attributes and file information are
attached to the keyword key published in KAD. So
when there is a same keyword appeared in two file
names, the keyword is published twice in KAD but
only once in JKS. However, when mixed data is used,
the performance improvement margin is smaller. The
reason is that the CKP can retrieve more keywords
from the file name so that more index entries can be
published.

Fig. 11. Publish cost.

Fig. 12. Discovery cost.

Fig. 12 shows the discovery cost using two kinds of

data (English and mixed). JXTA is around 26 in both
data because when a query finds nothing in the
responsible rendezvous peer it goes walking. In the
walking, it visits other rendezvous peers.

JKS has 89% and 95% more discovery cost than
KAD when the data are English and mixed,
respectively. The reason is as follows. KAD is a
2-level search scheme that searches the source key in
the first level. The abundant information published
with the keyword key gives the query sufficient
information to determine whether it matches the

query. It avoids routing a query to too many peers to
find out whether there are matched files.

Fig. 13. Bandwidth cost.

Fig. 13 shows bandwidth cost computed according

to equation (1). The bandwidth cost of JKS is 237%
less than that of KAD with English data, and is 12%
less than that of KAD with mixed data. The result
shows JKS is better than KAD in both kinds of data.

Storage cost

In this experiment, the aim is to show the storage
overhead. The storage cost is calculated after all files
are published. In JXTA, all index entries stored in the
index entry database are counted. In KAD, all stored
references are counted. Fig. 14 shows storage cost
using two kinds of data (English and mixed). The
result of JXTA is near twice in the number of files in
both data. It is because each entry is stored in a
connected rendezvous peer and a responsible peer.

JKS has 70% more storage cost than KAD in both
kinds of data. There are two reasons. One is the index
entry is stored in a connected rendezvous peer and a
responsible peer. The other reason is due to that KAD
is a 2-level publish scheme. Assume that there is a
file and the number of keywords in the file name is 3.
KAD stores four references for the file (three
keyword keys and one source key). If there is another
identical file published, this file will produce only
one stored reference (source key). The keyword keys
are stored only once for all identical files. This
feature saves large storage cost when there are many
identical files. Nevertheless, the memory price is
very cheap. Today, one 2G memory only costs
US$33 [28].

Fig. 14. Storage cost.

6 CONCLUSIONS

In this paper, we have presented the design and
evaluation of keyword search with Chinese Keyword
Partition (CKP) upon JXTA. Experimental results
have shown that CKP helps JKS to achieve 81%
more number of exact matches compared to KAD
with mixed queries. In terms of bandwidth cost, JKS
is 237% and 12 % less than KAD with English quires
and mixed queries, respectively. The overhead is that
JKS produces 70% more storage cost than KAD.
Nevertheless, the storage cost is very cheap
nowadays. The keyword search function can be used
by many P2P applications, like video on demand
(VOD) streaming, file sharing, etc. In addition, our
CKP design is simple and can be extended to other
languages.

REFERENCES

[1] N. Nakamura, S. Takahama, L. Barolli, J. Ma,
and K. Sugita, "A Multiplatform P2P System: its
implementation and applications," in Proc. of the

19th International Conference on Advanced

Information Networking and Applications, vol. 1,
pp. 171-176, 2005.

[2] A. Akram and R. Allan, "Comparison of JXTA
and WSRF," in Proc. of the 7th IEEE

International Symposium on Cluster Computing

and the Grid, pp. 761-766, May 2007.
[3] S. Venot and Y. Lu, "On-demand mobile

peer-to-peer streaming over the JXTA Overlay,"
in Proc. of the International Conference on

Mobile Ubiquitous Computing, Systems, Services

and Technologies, pp. 131-136, November 2007.

[4] “JXTA CMS” [Online]. Available:
https://jxse-cms.dev.java.net/

[5] “JXTA community projects,” [Online]. Available:
https://jxta.dev.java.net.

[6] “JXTA company spotlight,” [Online]. Available:
https://jxta.dev.java.net/companyarchive.htm.

[7] “SourceForge,” [Online]. Available:
http://sourceforge.net/search/?type_of_search=s
oft&type_of_search=soft&words=jxta.

[8] T. Kim, H. Lee, and H. Cheon, "Implementation
of a service oriented architecture based on JXTA
for new business models (ICCAS 2007)," in Proc.

of the International Conference on Control,

Automation and Systems , pp. 2402-2406,
October 2007.

[9] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and
S. Lim, "A survey and comparison of
peer-to-peer overlay network schemes,"
Communications Surveys & Tutorials, IEEE, vol.
7, pp. 72-93, 2005.

[10] Y.-J Joung, L.-W. Yang, and C.-T. Fang,
"Keyword search in DHT-based peer-to-peer
networks," IEEE Journal on Selected Areas in

Communications, vol. 25, pp. 46-61, January
2007.

[11] L. Liu, K. D. Ryu, and K.-W. Lee, "Keyword
fusion to support efficient keyword-based search
in peer-to-peer file sharing," IEEE International

Symposium on Cluster Computing and the Grid,
pp. 269-276, April 2004.

[12] “JXTA Java Standard Edition v2.5: Programmers
Guide,” [Online]. Available:
https://jxta-guide.dev.java.net.

[13] N. Théodoloz, "DHT-based Routing and
Discovery in JXTA," Master’s Thesis, School of
Computer and Communication Sciences,
February 2004.

[14] M. Abdelaziz, B. Traversat, E. Pouyoul, "Project
JXTA: A Loosely-Consistent DHT Rendezvous
Walker," Mar. 2003. [Online]. Available:
http://www.jxta.org/docs/jxta-dht.pdf.

[15] “JXSE CMS,” [Online]. Available:
https://jxse-cms.dev.java.net.

[16] X. Xiang, Y. Shi, and L. Guo, "Rich metadata
searches using the JXTA content manager

service," in Proc. of the 18th International

Conference on Advanced Information

Networking and Applications, vol. 1, pp. 624-629,
2004.

[17] R. Brunner, “A performance evaluation of the
Kad-protocol,” Master’s Thesis, University of
Mannheim and Institut Eurecom, 2006.

[18] M. Steiner, T. En-Najjary, and E. W. Biersack,
"A global view of KAD," in Proc. of the 7th ACM

SIGCOMM Conference on Internet Measurement,
pp.117-122, 2007.

[19] “eMule,” [Online]. Available:
http://www.emule-project.net/home/perl/general.
cgi?l=1.

[20] D. Carra and E. W. Biersack, "Building a reliable
P2P system out of unreliable P2P clients: the case
of KAD," in Proc. of the ACM CoNEXT

Conference, No. 28, 2007.
[21] “AOL query log,” [Online]. Available:

http://www.gregsadetsky.com/aol-data.
[22] “Yahoo,” [Online]. Available:

http://tw.buzz.yahoo.com/live_kw.php.xml.
[23] “Google Soap Search API,” [Online]. Available:

http://code.google.com/apis/soapsearch.
[24] D. Stutzbach, S. Y. Zhao, and R. Rejaie,

"Characterizing files in the modern Gnutella
network," Multimedia Systems, vol. 13, pp. 35-50,
Sep. 2007.

[25] X. Jin, W.-P. K. Yiu, and S.-H. G. Chan,
"Supporting multiple-keyword search in a hybrid
structured peer-to-peer network," in Proc. of the

IEEE International Conference on

Communications, pp. 42-47, June 2006.
[26] M. Steiner, W. Effelsberg, T. En-Najjary, and E.

W. Biersack. “Load reduction in the KAD
peer-to-peer system,” in Proc. of 5th

International Workshop on Databases,

Information Systems and Peer-to-Peer

Computing, 2007.
[27] M. Steiner, T. En-Najjary, and E. W. Biersack,

"Exploiting KAD: possible uses and misuses,"
ACM SIGCOMM Computer Communnication

Review, vol. 37, pp. 65-70, 2007.
[28] “NOVA,” [Online]. Available:

http://www.nova.com.tw.

