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Abstract 
Irregular array redistribution has been paid 

attention recently since it can distribute different size 
of data segment to heterogeneous processors 
according to their computational ability.  It’s also the 
reason why it has been kept an eye on load balance.  
High Performance Fortran Version 2 (HPF2) provides 
GEN_BLOCK distribution format which facilitates 
generalized block distributions.  In this paper, we 
present a Multi-level scheduling method to minimize 
the communication cost in such operation.  The main 
idea of the proposed technique is to specify two 
categories of messages and schedule separate steps.  
The performance evaluation is given in section 5.  The 
results show the proposed method successfully adapts 
to such environment and minimize the length of 
schedules.  

1. Introduction 

Parallel computing systems such as PC clusters provide 
powerful computational ability to solve various kinds 
of scientific problems.  A complex scientific problem 
may consist of several computation phases, each phase 
is responsible for different purposes and requires 
different data distribution scheme.  In order to achieve 
a good load balance, it is necessary to redistribute data 
according to distribution scheme.  Generally, data 
distribution can be classified into regular and irregular.  
The regular distribution employs BLOCK, CYCLIC and 
BLOCK-CYCLIC(c) to specify array decomposition.  
The irregular distribution uses user-defined function to 
specify unevenly array decomposition such as 
GEN_BLOCK. 

 

PARAMETER (old = /9, 8, 9, 16, 25, 33/) 

!HPF$ PROCESSORS P(6) 
REAL A(100), new (6) 

!HPF$  DISTRIBUTE A (GEN_BLOCK(old)) onto P 
!HPF$ DYNAMIC 

new = /28, 17, 5, 10, 22, 18/ 
!HPF$  REDISTRIBUTE A (GEN_BLOCK(new)) 

 

Above is a code segment that High Performance 
Fortran version 2 (HPF2) provides the GEN_BLOCK 
distribution format to facilitate generalized block 
distribution.  The old and new are defined as the 
distribution schemes of the source and destination 
processors (nodes), respectively.  DISTRIBUTE 
directive decomposes array A onto 6 processors 
according to the old scheme in source phase.  When the 
program goes to next phase, REDISTRIBUTE 
directive realign array A according to new scheme. 

Two-Phase Degree Reduction algorithm (TPDR) 
[3] is one of the efficient scheduling algorithms that 
provide a schedule of data redistribution for better load 
balancing.  After generating messages according to old 
and new schemes, messages are scheduled by TPDR in 
minimum time steps and with cost as lower as possible.  
Local message reduction (LMR) [3], which is an 
optimization technique, shows TPDR can still be 
improved by given appropriate cost of messages.  
Authors of LMR find the cost function of messages 
could be redefined to present more practical cost for 
each message.  The experiments show the 
improvement of LMR on TPDR by improving the cost 
function.  In [3], messages can be classified into two 
categories: one is to be transmitted from one node to 
another (remote data access); the other one is to be 
transmitted in local memory (local data access, which 
is happened in the same node).  LMR defines remote 
access time (RAT) for remote data access and local 
access time (LAT) for local data access.  Both of RAT 
and LAT represent the transmitting rate while 



transmitting data with the fixed size.  The ratio of 
remote to local access time (RLR) is defined as RAT 
divided by LAT.  The performance evaluation in [3] 
shows TPDR with LMR can give better schedules in 
most cases. 

Schedules illustrate steps for messages to be 
transmitted in proper time.  The cost of each step is 
represented by the largest cost of messages.  The total 
cost of a schedule is the summation of costs of each 
step.  A phenomenon is observed that most messages 
of local data access do not dominate the cost of each 
step because they are not large enough in practical.  
Since a node can send and receive only one message in 
the same time step [3], the arranged position of each 
message becomes important.  Generally, messages of 
local data access do not dominate the cost of schedule 
steps, the position should not be occupied if a better 
schedule could be given.  For decreasing costs of data 
redistribution, messages of local data access are picked 
out and to be arranged in a specific time step. 

We have implemented the proposed optimization 
technique to improve TPDR scheduling algorithm.  
The performance evaluation shows that the proposed 
optimization technique provides performance 
improvement in most GEN_BLOCK array redistribution 
cases. 

The rest of this paper is organized as follows.  
Section 2 presents a brief survey of related work.  
Definitions and an example of schedule are given in 
section 3.  In section 4, the multi-level communication 
scheduling method is introduced to reduce the cost of 
data redistribution.  We also provide an example to 
demonstrate the improvement.  In section 5, the 
simulation results and performance analysis are given 
to weigh the pros and cons.  Finally, the conclusions 
are presented in section 6. 

2. Related Work 

Many methods have been developed for performing 
array redistribution.  Researches were proposed for 
regular and irregular problems [7] in multi-computer 
compiler techniques or runtime support techniques.  A 
brief survey of related work is given bellow. 

Researches for regular array redistribution are 
classified into three categories: the communication sets 
identification; message packing and unpacking 
techniques; communication optimizations.  Researches 
for communications sets identification techniques 
include the PITFALLS [15] and the ScaLAPACK [14] 
methods for index sets generation.  CFS and ED are 

proposed for sparse array distribution by Lin and 
Chung [13].  Researches for message packing and 
unpacking techniques include ECC method [1] which 
was proposed for a processor to pack/unpack array 
elements efficiently.  Researches for communication 
optimizations include the processor mapping 
techniques [6, 8] for minimizing data transmission 
overheads.  Lim et al. [20] proposed the multiphase 
redistribution strategy to reduce message startup cost.  
The communication scheduling approaches were 
proposed to avoid node contention in [4, 12]. 

Researches for irregular array redistribution are 
focused on message generation and communication 
efficiency.  Researches for message generation include 
a symbolic analysis method which was proposed by 
Guo et al. [9].  Researches for communication 
efficiency include improving the relocation scheduling 
algorithm [17] by combining the divide-and-conquer 
and relocation algorithms.  HCS and HRS were 
proposed by Chang et al. [2] to improve the solutions 
of data access on data grids.  Chen et al. [3] proposed 
TPDR scheduling algorithm to reduce communication 
cost and LMR to improve the result of TPDR. 

3. Preliminary 

To simplify the presentation, notations and 
terminology used in this paper are defined as follows: 

Definition 1: Given an irregular GEN_BLOCK 
redistribution on a 1-D array A[1:N] over P processors, 
SPi denotes the source processors of array elements 
A[1:N]; DPi denotes the destination processors of array 
elements A[1:N], where 0 ≤ i ≤ P−1. 

Definition 2: Given a bipartite graph G = (V, E) to 
represent the communication patterns of an 
GEN_BLOCK array redistribution on A[1:N] over P 
processors, vertices of G are used to represent the 
source and destination processors.  Figure 1 gives an 
example of bipartite graph representing communication 
patterns between four source and destination 
processors with seven messages to be communicated. 

Definition 3: Given a directed bipartite graph G = 
(V, E), Degreemax denotes the maximal in-degree (or 
out-degree) of vertices in G.  For example, the bipartite 
graph shown in Figure 2 is with Degreemax = 3, which 
is equal to the out-degree of the white vertex. 
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Figure 1: A bipartite graph representing 
communication patterns.  

 

Figure 2: A bipartite graph with Degreemax=3. 

The communication time depends on the length1 
of each communication step.  The length of a step is 
dominated by the largest message.  In general, the 
transmission cost is directly proportional to the length 
of total steps2 which determines the data transmission 
overheads.  To avoid node contention in a time step, 
three scheduling policies are described as follows: 
� An SP sends a message to only one DP and can 

not send another message to another DP in the 
same communication step. 

� DP receives a message from only one SP and can 
not receive another message from another SP in 
the same communication step. 

� A processor can send a message and receive 
another message simultaneously. 

Given old and new GEN_BLOCK distribution 
schemes, the communication patterns are illustrated in 
Figure 3 (a).  Above SP0~5 are numbers representing 
old scheme, below DP0~5 are numbers representing 
new scheme.  Arrows between SP and DP represent 
messages while redistributing data from source 
processors to destination processors.  The m1~11 
represent the index of messages and the numbers above 
the index are the theoretical cost which are the most 
important reference for algorithms to schedule 
messages.  Since a processor can send and receive only 

                                                           
1 Length of a scheduling step is equal to the maximal 
data size of messages in this scheduling step. 
2 Length of a schedule is the sum of length of all 
scheduling steps. 

one message in one step, there must be four time steps 
at least due to Degreemax is four.  Figure 3 (b) gives a 
schedule of Figure 3 (a).  In Figure 3 (b), there are four 
steps and 11 messages in relative row of steps 
represent the data to be transmitted in relative time 
steps.  The cost of each step is dominated by the 
messages with largest cost.  The cost of step 1, 2, 3 and 
4 are 14, 15, 18 and 10, respectively.  The length of 
this simple schedule is 57, which is the summation of 
four costs. 

 
DP0    DP1     DP2    DP3    DP4   DP5 

  9  8   9   2  14   3  5   10  7  15  18 

9     8       9      16     25    33 

m9 m8 m7 m6 m5 m4 m3 m2 m1 

SP0    SP1     SP2     SP3    SP4   SP5 

m10 m11 

28     17      5      10     22    18  
(a)  

A simple schedule 

No. of step No. of message Cost of step 

Step 1 m1(9), m5(14), m9(7) 14 

Step 2 m2(8), m6(3), m10(15) 15 

Step 3 m3(9), m7(5), m11(18) 18 

Step 4 m4(2), m8(10) 10 

Total cost 57  
(b) 

Figure 3: (a) A bipartite graph representing 
communications between SP and DP.  (b) A simple 
schedule of old and new GEN_BLOCK distribution 
schemes. 

4. The Proposed Method 

In Figure 3 (b), the messages that dominate the cost of 
each step can be found easily, which are m5, m10, m11 
and m8 for step 1~4, respectively.  If the RLR is 
considered for more practical cost of messages, the 
message which dominates the cost of each step may be 
changed.  Figure 4 shows the effect of RLR on cost of 
local data access.  Costs of messages such as m1, m9 
and m11 are divided by RLR and are reduced to the 
values in relative round brackets while the RLR is 
assumed 8.  The cost of each step in column of “Effect 
of RLR” in Figure 4 reflects more practical 
transmission cost instead of those in column of “Cost 
of step” in Figure 3 (b).  The dominator of step 3 is 



changed from m11 to m3 since the cost of m11 is not 
large as expected in Figure 4.  As mentioned in section 
1, messages of local data access do not dominate the 
cost of steps in many cases.  Therefore, the key 
position should not be occupied by them if a better 
schedule could be given by scheduling algorithms. 

 
A simple schedule 

No. of step No. of message Effect of RLR 

Step 1 m1(1.25), m5(14), m9(0.875) 14 

Step 2 m2(8), m6(3), m10(15) 15 

Step 3 m3(9), m7(5), m11(2.25) 9 

Step 4 m4(2), m8(10) 10 

Total cost 48  
Figure 4: Column of effect of LMR shows the changes 
of theoretical cost of m1, m9 and m11 and the dominator 
of step two is changed. 

The LMR describes the importance of 
distinguishing both data accesses from each other.  
Above example in Figure 4 shows that local data 
access plays a dominator at first, but has small effect in 
step 3.  Such situations can influence scheduling 
algorithms not to arrange messages well in the key 
positions, like m11 which could be scheduled in other 
steps instead.  Since the position of messages can 
influence others, local data access should be processed 
additionally for lower costs of GEN_BLOCK data 
redistribution. 

Definition 4: Given a directed bipartite graph G = 
(V, E), SPi and DPj ∈ V, where 0 ≤ i, j ≤ P−1.  The mk 
∈ E, where P ≤ k ≤ 2P−1.  While i = j, mk represents 
the messages of local data access, otherwise mk 
represents remote data access. 

The proposed multi-level communication 
scheduling method (MLC) schedules messages of local 
data access and remote data access in separate steps for 
GEN_BLOCK data redistribution.  The first level 
processes the arrangement of local data access, the 
second level is responsible for the arrangement of 
remote data access.  MLC is performed by following 
processes: 
 
1. Find out messages mk which are transmitted by 

SPi and DPj, where i = j. 
2. Divide the cost of above found mk using RLR. 
3. To give a schedule of first level. 
4. Find Degreemax and start a new step. 
5. If Degreemax > 2, sort vertices with Degreemax in 

decreasing order according to data size and give 
{ v1, v2, v3, …} ∈ V.  Select a mk with relative 

minimal cost from each vertex in {v1, v2, v3, …} 
and then arrange the message in step.  

6. Arrange more mk, whose cost is smaller than the 
length and has not been arranged in any step, if 
possible. 

7. Degreemax = Degreemax -1. If Degreemax > 2, 
repeat processes 4~7. 

8. Use coloring theory to arrange mk in two steps. 
9. Exchange position of any mk in the two-step 

schedule if lower cost is achievable. 
10. To give a schedule of second level. 

 
Figure 5 is a schedule given by MLC.  The values 

in last column also reflect more practical transmission 
costs.  The result shows that removing local data 
access from mk can help scheduler handle key positions 
better and reduce total length of a schedule.  Following 
above processes of MLC, the messages of local data 
access are selected first.  In the example shown in 
Figure 3 (a), the candidates are m1, m9 and m11, and are 
arranged in step 4 in Figure 5.  After that, all of mk are 
messages of remote data access.  The processes then go 
to 4~7 and arrange m4 and m7 in step 3.  Using 
processes 8 and 9, MLC arranges messages in two 
steps at last.  The length of this schedule is 31.25 and is 
smaller than the length in Figure 4. 
 

A schedule of MLC 

No. of step No. of message Effect of RLR 

Step 1 m2(8), m5(14), m8(10), m10(15) 15 

Step 2 m3(9), m6(3) 9 

Step 3 m4(2), m7(5) 5 

Step 4 m1(1.25), m9(0.875), m11(2.25) 2.25 

Total cost 31.25 
 

Figure 5: A schedule of MLC. 

5. Performance Evaluation 

To evaluate the performance of proposed methods, 
MLC were implemented along with TPDR.  A huge 
amount of cases were provided to evaluate MLC and 
TPDR.  1,000 cases were provided for each 
comparison, and 12,000 were provided in total.  Array 
size in each GEN_BLOCK distribution scheme is 10,000.  
The numbers of nodes, P, are 8, 32 and 128 in three 
simulation comparisons, respectively.  The Avg 
represents the value of array size divided by P.  Four 
sets of lower bounds and upper bounds were provided 
to define the size range of each node as shown in 
Figure 6. 



 
Size range of each node

Symbol of ranges Lower bound 

α 0.5* Avg 

β 1 

γ 1 

δ 1 

Figure 6: Lower bounds and upper bounds of four size 
ranges for each node. 

Figures 7~9 give the results of comparing 
and TPDR with various number of nodes and different 
size range of nodes.  In Figure 7, the 
were compared on 8 nodes with α
plots of MLC better represents ML
than TPDR; the plots of TPDR better represents 
performs better than MLC; the plot
represent the costs of schedules given by 
and TPDR are the same.  Results in Figure 
MLC outperforms TPDR in most cases
δ on 8 nodes.  Comparing the results
better with α is found much less than the 
with β due to lots of tie cases.  The size range 
smaller than β and results in little variation.  Since the 
variation is not large, the choices of dominators 
become few and result of the same 
While comparing the results with
numbers of MLC better and TPDR 
and number of the same is decrease
variation. 

Figure 7: The results of comparisons on 
different range of node size. Avg is 1250.
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comparisons on 8 nodes over 
is 1250. 

number of nodes and smaller Avg, the 
on 32 nodes in Figure 8.  
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in about 65% to 75% cases.  Due to the 

he importance of local 

data access drops a little.  The number of 
is increased due to more combinations 
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Figure 8: The results of comparisons on 32 nodes over 
different range of node size. 

While the number of nodes increases to 128, the 
advantage of TPDR method emerges
128 nodes and smaller Avg, the importance of remote 
data access increases substantially
MLC method disappears.  With 
β and γ, the variation is relative low and compresses 
the chances for MLC method to find better schedules.
Although TPDR performs good with 
not performs as well as 
variation is higher and is good for local data access 
oriented scheduling methods.

Figure 9: The results of comparisons on 128 nodes 
over different range of node size. 
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6. Conclusions 

In this paper, we have presented multi-level 
communication scheduling method to minimize the 
communication cost in irregular data redistribution.  
The proposed method adapts different data transmitting 
rate by modifying the communication cost using RLR 
and scheduling two categories of messages in separate 
steps.  The performance analyses show MLC performs 
better in most cases and adapts to high variation of data 
arrangement in data redistribution. 
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