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Abstract

Irregular array redistribution has been paid
attention recently since it can distribute differesize
of data segment
according to their computational ability. It's @ghe

reason why it has been kept an eye on load balance

High Performance Fortran Version 2 (HPF2) provides
GEN_BLOCK distribution format which facilitates

generalized block distributions. In this paper, we
present a Multi-level scheduling method to minimize
the communication cost in such operation. The main
idea of the proposed technique is to specify two

categories of messages and schedule separate stepgrocessors (nodes),

The performance evaluation is given in sectionlbe

to heterogeneous processors’

IHPF$ PROCESSORK(6)
REAL A(100),new (6)
IHPF$ DISTRIBUTEA (GEN_BLOCK(ld)) ontoP
IHPF$ DYNAMIC
new = /28, 17, 5, 10, 22, 18/
IHPF$ REDISTRIBUTEA (GEN_BLOCK(ew))

Above is a code segment that High Performance
Fortran version 2 (HPF2) provides tiGEN BLOCK
distribution format to facilitate generalized block
distribution. Theold and new are defined as the
distribution schemes of the source and destination
respectively. DISTRIBUTE
directive decomposes arraj. onto 6 processors

results show the proposed method successfully adaptaccording to theld scheme in source phase. When the

to such environment and minimize the length of
schedules.

1. Introduction

Parallel computing systems such as PC clustersg@ov
powerful computational ability to solve various #&

of scientific problems. A complex scientific prebi
may consist of several computation phases, eackepha
is responsible for different purposes and requires
different data distribution scheme. In order thiage

a good load balance, it is necessary to redistridata
according to distribution scheme. Generally, data
distribution can be classified into regular anédgular.
The regular distribution employl. OCK, CYCLI C and
BLOCK-CYCLI C(c) to specify array decomposition.
The irregular distribution uses user-defined fumttio
specify unevenly array decomposition such
GEN_BLOCK.

PARAMETER (ld = /9, 8, 9, 16, 25, 33/)

program goes to next phase, REDISTRIBUTE
directive realign arrajx according tanew scheme.
Two-PhaseDegree Reductioralgorithm TPDR
[3] is one of the efficient scheduling algorithnisat
provide a schedule of data redistribution for bettad
balancing. After generating messages accordirgdto
andnew schemes, messages are scheduledRBRin
minimum time steps and with cost as lower as ptessib
Local message reductiofMR) [3], which is an
optimization technique, show3PDR can still be
improved by given appropriate cost of messages.
Authors of LMR find the cost function of messages
could be redefined to present more practical cost f
each message. The experiments show the
improvement olLMR on TPDR by improving the cost
function. In [3], messages can be classified imo
categories: one is to be transmitted from one rtode
another (remote data access); the other one ito b
transmitted in local memory (local data accessctvhi
is happened in the same nodd)MR defines remote
access time RAT) for remote data access and local
access timel(AT) for local data access. Both BAT
and LAT represent the transmitting rate while



transmitting data with the fixed size. The ratib o
remote to local access timRLR is defined aRAT
divided by LAT. The performance evaluation in [3]
shows TPDR with LMR can give better schedules in
most cases.

Schedules illustrate steps for messages to beoptimizations

transmitted in proper time. The cost of each step
represented by the largest cost of messages. otfdle t
cost of a schedule is the summation of costs oh eac

proposed for sparse array distribution by Lin and
Chung [13]. Researches for message packing and
unpacking techniques include ECC method [1] which
was proposed for a processor to pack/unpack array
elements efficiently. Researches for communication
include the processor mapping
techniques [6, 8] for minimizing data transmission
overheads. Limet al [20] proposed the multiphase
redistribution strategy to reduce message startgp. ¢

step. A phenomenon is observed that most message¥he communication scheduling approaches were

of local data access do not dominate the cost ofi ea
step because they are not large enough in practical
Since a node can send and receive only one message
the same time step [3], the arranged position chea
message becomes important.
local data access do not dominate the cost of sided
steps, the position should not be occupied if debet
schedule could be given. For decreasing costataf d
redistribution, messages of local data accessiekeg
out and to be arranged in a specific time step.

We have implemented the proposed optimization
technique to improveTPDR scheduling algorithm.

proposed to avoid node contention in [4, 12].
Researches for irregular array redistribution are

focused on message generation and communication

efficiency. Researches for message generationdecl

Generally, messages & symbolic analysis method which was proposed by

Guo et al [9]. Researches for communication
efficiency include improving the relocation schedgl
algorithm [17] by combining the divide-and-conquer
and relocation algorithms. HCS and HRS were
proposed by Chanegt al [2] to improve the solutions
of data access on data grids. Cleerl. [3] proposed
TPDR scheduling algorithm to reduce communication

The performance evaluation shows that the proposedcost and-MR to improve the result ofFPDR

optimization  technique provides performance
improvement in mosBEN _BLOCK array redistribution
cases.

The rest of this paper is organized as follows.
Section 2 presents a brief survey of related work.
Definitions and an example of schedule are given in
section 3. In section 4, threulti-level communication
scheduling methods introduced to reduce the cost of
data redistribution. We also provide an example to
demonstrate the improvement. In section 5, the
simulation results and performance analysis arergiv
to weigh the pros and cons. Finally, the conclusio
are presented in section 6.

2. Related Work

Many methods have been developed for performing
array redistribution.
regular and irregular problems [7] in multi-compute
compiler techniques or runtime support techniquas.
brief survey of related work is given bellow.
Researches for regular array redistribution are
classified into three categories: the communicasiets
identification; message packing and unpacking
techniques; communication optimizations. Researche
for communications sets identification techniques
include thePITFALLS[15] and theScaLAPACK]14]
methods for index sets generatio@FS and ED are

3. Preliminary

To simplify the presentation, notations and
terminology used in this paper are defined as Vato

Definition 1: Given an irregularGEN_BLOCK
redistribution on a 1-D arraf{1:N] over P processors,
SP, denotes thesource processorsf array elements
A[1:N]; DP; denotes théestination processorsf array
elementsA[1:N], where 0<i < P-1.

Definition 2: Given a bipartite grap& = (V, E) to
represent the communication patterns of
GEN BLOCK array redistribution orA[1:N] over P
processors, vertices db are used to represent the
source and destination processors. Figure 1 gives
example of bipartite graph representing commurocati
patterns between four source and destination

an

Researches were proposed forprocessors with seven messages to be communicated.

Definition 3: Given a directed bipartite graggh=
(V, E), Degreg,.x denotes the maximal in-degree (or
out-degree) of vertices iB. For example, the bipartite
graph shown in Figure 2 is wifDegreg,., = 3, which
is equal to the out-degree of the white vertex.



one message in one step, there must be four tieps st
at least due t@egreg . is four. Figure 3 (b) gives a
schedule of Figure 3 (a). In Figure 3 (b), thex=faur
steps and 11 messages in relative row of steps

m s M 7 represent the data to be transmitted in relativee ti
m; 4 Me steps. The cost of each step is dominated by the
messages with largest cost. The cost of step3 add
DP, DP, DP, DP; 4 are 14, 15, 18 and 10, respectively. The lemdth

this simple schedule is 57, which is the summatibn
Figure 1. A Dbipartite graph representing four costs.
communication patterns.

DP, DP; DP, DP; DP, DPs
28 17 5 10 22 18

Figure 2: A bipartite graph witbegreg,.=3.

(a)
The commur_lica_tion time depends on the Iehgth_ A simple schedule
of each communication step. The length of a step i
. No. of step No. of message Cost of step
dominated by the largest message. In general, the
transmission cost is directly proportional to teedth Step1 | m(9), my(14), m(7) 14
of total stepSwhich determines the data transmission Step 2 | my(8), my(3), myo(15) 15
overheads. To avoid node contention in a time, step Step 3 | ma(9), my(5), muy(18) 18
three scheduling policies are described as follows:
® An SPsengdg a message to only dpe and can Stepd | m2). m10) 10
not send another message to anoErin the Total cost 57
same communication step. (b)
® DP receives a message from only @fand can Figure 3: (a) A Dbipartite graphrepresenting
not receive another message from anofiein communications betweeSP and DP. (b) A simple
the same communication step. schedule ofold and new GEN BLOCK distribution

® A processor can send a message and receiveschemes.

another message simultaneously.

Given old and new GEN BLOCK distribution
schemes, the communication patterns are illustiated 4- The Proposed M ethod
Figure 3 (a). AbovesSR s are numbers representing
old scheme, below DPs are numbers representing
new scheme. Arrows betweeBP and DP represent
messages while redistributing data from source
processors to destination processors. Thgg
represent the index of messages and the numbeve abo
the index are the theoretical cost which are thatmo
important reference for algorithms to schedule
messages. Since a processor can send and rengjive o

In Figure 3 (b), the messages that dominate thieafos
each step can be found easily, which @gemyg, my;

and mg for step 1~4, respectively. If thBLR is
considered for more practical cost of messages, the
message which dominates the cost of each step enay b
changed. Figure 4 shows the effeciRifRon cost of
local data access. Costs of messages such,asy

and my; are divided byRLR and are reduced to the
values in relative round brackets while tRR is

1 Length of a scheduling step is equal to the makima assumed 8. The cost of each step in column oftEff

data size of messages in this scheduling step. of RLR 'in Figure 4 reflects more practical
2 Length of a schedule is the sum of length of all transmission cost instead of those in column ofstCo

scheduling steps. of step” in Figure 3 (b). The dominator of stefs3




changed frommy; to ms since the cost ofny; is not minimal cost from each vertex irv{ v, va, ...}

large as expected in Figure 4. As mentioned itiGgec and then arrange the message in step.

1, messages of local data access do not dominate th6.  Arrange moram,, whose cost is smaller than the
cost of steps in many cases. Therefore, the key length and has not been arranged in any step, if
position should not be occupied by them if a better possible.

schedule could be given by scheduling algorithms. 7. Degregax = Degregux -1. If Degregux > 2,
repeat processes 4~7.

A simple schedule 8.  Use coloring theory to arrangg in two steps.
No. of step No. of message Effect of RLR 9. Exchange position of anyn in the two-step
Step 1 | my(1.25).my(14). mo(0.875) 14 schedule if lower cost is achievable.
' ' 10. To give a schedule of second level.
Step2 | my(8), my(3), Mio(15) 15
Step 3 | my(9), my(5), muy(2.25) 9 Figure 5 is a schedule given MLC. The values
Step4 | my(2), my(10) 10 in last column also reflect more practical transiois
Total cost 18 costs. The result shows that removing local data

access fronm, can help scheduler handle key positions
Figure 4: Column of effect dfMR shows the changes  petter and reduce total length of a schedule. ofitig
of theoretical cost afy, m andmy; and the dominator  gpove processes ®ILC, the messages of local data
of step two is changed. access are selected first. In the example shown in
Figure 3 (a), the candidates ang my andm,, and are
The LMR describes the importance of arranged in step 4 in Figure 5. After that, alhgfare
distinguishing both data accesses from each othermessages of remote data access. The processegothen
Above example in Figure 4 shows that local data @ 4~7 and arrangen, and my in step 3. Using
access plays a dominator at first, but has smigitein ~ Processes 8 and 94LC arranges messages in two
step 3. Such situations can influence schedulingSteps at last. The length of this schedule is3arfl is
algorithms not to arrange messages well in the keySmaller than the length in Figure 4.
positions, likemy; which could be scheduled in other

steps instead. Since the position of messages can Aschedule of MLC

influence others, local data access should be psece No. of step No. of message Effect of RLRR

additionally for lower costs ofGEN BLOCK data Step 1 | my(8), my(14), mg(10), myo(15) 15

redistribution. Step2 | my(9), my(3) 9
Definition 4: Given a directeq pipartite graph = Step3 | mu(2). m() 5

(V, E), SR andDP; O V, where (< i, j < P-1. Themy

O E, whereP < k< 2P-1. Whilei =j, m represents Step 4 | m(1.25) my(0.875),mys(2.25) 225

the messages of local data access, otherwige Total cost 31.25

represents remote data access. Figure 5: A schedule d¥ILC.

The  proposed multi-level  communication
scheduling metho{MLC) schedules messages of local
data access and remote data access in separatdécstep . Performance Evaluation
CGEN BLOCK data redistribution. The first level
processes the arrangement of local data access, the
second level is responsible for the arrangement of
remote data accessMLC is performed by following
processes:

To evaluate the performance of proposed methods,
MLC were implemented along withPDR A huge
amount of cases were provided to evaludteC and
TPDR 1,000 cases were provided for each
comparison, and 12,000 were provided in total. asrr
size in eaclEN_BL OCK distribution scheme is 10,000.
The numbers of node®, are 8, 32 and 128 in three
simulation comparisons, respectively. Thivg
represents the value of array size dividedPbyFour
sets of lower bounds and upper bounds were provided
to define the size range of each node as shown in
Figure 6.

1. Find out messagesy which are transmitted by
SR andDP;, wherei =j.

Divide the cost of above found, usingRLR

To give a schedule of first level.

Find Degregxand start a new step.

If Degreg,ax > 2, sort vertices witlbegreg,a in
decreasing order according to data size and give
{v1, Vo, V5, ...} O V. Select amy with relative

abrwn



Size range of each nc
Symbol of ranges Lower bound Upper bound
a 0.5* Avg 2* Avg
8 1 2* Avg
Y 1 4* Avg
3 1 8* Avg

Figure 6 Lower bounds and upper bounds of four :
ranges for each node.

Figures 7~9give the results of comparinMLC
and TPDRwith various number of nodes and differ
size range of nodes. In FiguretieMLC andTPDR
were compared on 8 nodes with 8, y andé. The
plots of MLC better representsLC performs better
thanTPDR the plots ofTPDRbetter represenflTPDR
performs better tharMLC; the plos of the same
representthe costs of schedules given both MLC
andTPDRare the sameResults in FigurZ show that
MLC outperformsTPDRin most case with «, f, y and
d on 8 nodes. @mparing the resul of MLC, theMLC
better witha is found much less than ttMLC better
with B due to lots of tie cases. h& size rangof a is
smaller thar} and results in little variation. Since t
variation is not large,the choices of dominato
become few andesult of the samis relative higher.
While comparing the resultaith B, y and §, both
numbers oMLC better andrPDRbetter are increased
and number of the same decreasd due to larger
variation.

Comparison of MLC and TPDR on 8 nodes

800

600 B MLC better

400 TPDR better

B The same

Number of cases

200

a B v [

Range of node size

Figure 7: The results afomparisons 018 nodes over
different range of node sizAvgis 1250

With morenumber of nodes arsmallerAvg, the
tie cases are almost disappeams32 nodein Figure 8.
In the results of comparison, th&l.C performs better
than TPDRin about 65% to 75% cases. Due to
increased number of nodesetimportance of loc:

data access drops a littldhe number o TPDR better

is increased due toare combination:of schedules to
be chosen with growing number of remote data ac

messages, bMILC has advantage tcerform better in
most cases.

Comparison of MLC and TPDR on 32 nodes

800
B MLC better

600
TPDR better

400

Number of cases

B The same
200
0

a B % 6
Range of node size

Figure 8: The results afomparisons on 32 nodes o
different range of node sizAvgis 312.5.

While the number of nodes increases to 128
advantage of PDRmethod emergein Figure 9. With
128 nodes and smalléwvg the importance of remo
data access increasgshstantiall and the advantage of
MLC method disappearadith small upper bound af,
B andy, the variation is relative low and compres
the chances foMLC method to find better schedul
Although TPDR performs good witta, B andy, it can
not performs as well aMLC with § where the
variation is higher and is good for local data as
oriented scheduling methsd

Comparison of MLC and TPDR on 128 nodes

800

600 B MLC better

400 TPDR better

B The same

Number of cases

200

0

Range of node size

Figure 9: The results ofomparisons on 128 nod
over different range of node si:Avgis 78.125.



6. Conclusions

In this paper, we have presented multi-level
communication scheduling method to minimize the [9]
communication cost in irregular data redistribution
The proposed method adapts different data trariagitt
rate by modifying the communication cost usiRgR
and scheduling two categories of messages in depara
steps. The performance analyses siMivC performs [10]
better in most cases and adapts to high variafiotata
arrangement in data redistribution.
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