
Multi-Level Communication Scheduling for Irregular Data Redistribution

Shih-Chang Chen1 and Ching-Hsien Hsu2

1 Institute of Engineering and Science
2 Department of Computer Science and Information Engineering

Chung Hua University, Hsinchu, Taiwan 300, R.O.C.

{scc, robert}@grid.chu.edu.tw

Abstract
Irregular array redistribution has been paid

attention recently since it can distribute different size
of data segment to heterogeneous processors
according to their computational ability. It’s also the
reason why it has been kept an eye on load balance.
High Performance Fortran Version 2 (HPF2) provides
GEN_BLOCK distribution format which facilitates
generalized block distributions. In this paper, we
present a Multi-level scheduling method to minimize
the communication cost in such operation. The main
idea of the proposed technique is to specify two
categories of messages and schedule separate steps.
The performance evaluation is given in section 5. The
results show the proposed method successfully adapts
to such environment and minimize the length of
schedules.

1. Introduction

Parallel computing systems such as PC clusters provide
powerful computational ability to solve various kinds
of scientific problems. A complex scientific problem
may consist of several computation phases, each phase
is responsible for different purposes and requires
different data distribution scheme. In order to achieve
a good load balance, it is necessary to redistribute data
according to distribution scheme. Generally, data
distribution can be classified into regular and irregular.
The regular distribution employs BLOCK, CYCLIC and
BLOCK-CYCLIC(c) to specify array decomposition.
The irregular distribution uses user-defined function to
specify unevenly array decomposition such as
GEN_BLOCK.

PARAMETER (old = /9, 8, 9, 16, 25, 33/)

!HPF$ PROCESSORS P(6)
REAL A(100), new (6)

!HPF$ DISTRIBUTE A (GEN_BLOCK(old)) onto P
!HPF$ DYNAMIC

new = /28, 17, 5, 10, 22, 18/
!HPF$ REDISTRIBUTE A (GEN_BLOCK(new))

Above is a code segment that High Performance
Fortran version 2 (HPF2) provides the GEN_BLOCK
distribution format to facilitate generalized block
distribution. The old and new are defined as the
distribution schemes of the source and destination
processors (nodes), respectively. DISTRIBUTE
directive decomposes array A onto 6 processors
according to the old scheme in source phase. When the
program goes to next phase, REDISTRIBUTE
directive realign array A according to new scheme.

Two-Phase Degree Reduction algorithm (TPDR)
[3] is one of the efficient scheduling algorithms that
provide a schedule of data redistribution for better load
balancing. After generating messages according to old
and new schemes, messages are scheduled by TPDR in
minimum time steps and with cost as lower as possible.
Local message reduction (LMR) [3], which is an
optimization technique, shows TPDR can still be
improved by given appropriate cost of messages.
Authors of LMR find the cost function of messages
could be redefined to present more practical cost for
each message. The experiments show the
improvement of LMR on TPDR by improving the cost
function. In [3], messages can be classified into two
categories: one is to be transmitted from one node to
another (remote data access); the other one is to be
transmitted in local memory (local data access, which
is happened in the same node). LMR defines remote
access time (RAT) for remote data access and local
access time (LAT) for local data access. Both of RAT
and LAT represent the transmitting rate while

transmitting data with the fixed size. The ratio of
remote to local access time (RLR) is defined as RAT
divided by LAT. The performance evaluation in [3]
shows TPDR with LMR can give better schedules in
most cases.

Schedules illustrate steps for messages to be
transmitted in proper time. The cost of each step is
represented by the largest cost of messages. The total
cost of a schedule is the summation of costs of each
step. A phenomenon is observed that most messages
of local data access do not dominate the cost of each
step because they are not large enough in practical.
Since a node can send and receive only one message in
the same time step [3], the arranged position of each
message becomes important. Generally, messages of
local data access do not dominate the cost of schedule
steps, the position should not be occupied if a better
schedule could be given. For decreasing costs of data
redistribution, messages of local data access are picked
out and to be arranged in a specific time step.

We have implemented the proposed optimization
technique to improve TPDR scheduling algorithm.
The performance evaluation shows that the proposed
optimization technique provides performance
improvement in most GEN_BLOCK array redistribution
cases.

The rest of this paper is organized as follows.
Section 2 presents a brief survey of related work.
Definitions and an example of schedule are given in
section 3. In section 4, the multi-level communication
scheduling method is introduced to reduce the cost of
data redistribution. We also provide an example to
demonstrate the improvement. In section 5, the
simulation results and performance analysis are given
to weigh the pros and cons. Finally, the conclusions
are presented in section 6.

2. Related Work

Many methods have been developed for performing
array redistribution. Researches were proposed for
regular and irregular problems [7] in multi-computer
compiler techniques or runtime support techniques. A
brief survey of related work is given bellow.

Researches for regular array redistribution are
classified into three categories: the communication sets
identification; message packing and unpacking
techniques; communication optimizations. Researches
for communications sets identification techniques
include the PITFALLS [15] and the ScaLAPACK [14]
methods for index sets generation. CFS and ED are

proposed for sparse array distribution by Lin and
Chung [13]. Researches for message packing and
unpacking techniques include ECC method [1] which
was proposed for a processor to pack/unpack array
elements efficiently. Researches for communication
optimizations include the processor mapping
techniques [6, 8] for minimizing data transmission
overheads. Lim et al. [20] proposed the multiphase
redistribution strategy to reduce message startup cost.
The communication scheduling approaches were
proposed to avoid node contention in [4, 12].

Researches for irregular array redistribution are
focused on message generation and communication
efficiency. Researches for message generation include
a symbolic analysis method which was proposed by
Guo et al. [9]. Researches for communication
efficiency include improving the relocation scheduling
algorithm [17] by combining the divide-and-conquer
and relocation algorithms. HCS and HRS were
proposed by Chang et al. [2] to improve the solutions
of data access on data grids. Chen et al. [3] proposed
TPDR scheduling algorithm to reduce communication
cost and LMR to improve the result of TPDR.

3. Preliminary

To simplify the presentation, notations and
terminology used in this paper are defined as follows:

Definition 1: Given an irregular GEN_BLOCK
redistribution on a 1-D array A[1:N] over P processors,
SPi denotes the source processors of array elements
A[1:N]; DPi denotes the destination processors of array
elements A[1:N], where 0 ≤ i ≤ P−1.

Definition 2: Given a bipartite graph G = (V, E) to
represent the communication patterns of an
GEN_BLOCK array redistribution on A[1:N] over P
processors, vertices of G are used to represent the
source and destination processors. Figure 1 gives an
example of bipartite graph representing communication
patterns between four source and destination
processors with seven messages to be communicated.

Definition 3: Given a directed bipartite graph G =
(V, E), Degreemax denotes the maximal in-degree (or
out-degree) of vertices in G. For example, the bipartite
graph shown in Figure 2 is with Degreemax = 3, which
is equal to the out-degree of the white vertex.

m7

m6

m5

m4

m3

m2

m1

DP0 DP1 DP2 DP3

SP0 SP1 SP2 SP3

Figure 1: A bipartite graph representing
communication patterns.

Figure 2: A bipartite graph with Degreemax=3.

The communication time depends on the length1
of each communication step. The length of a step is
dominated by the largest message. In general, the
transmission cost is directly proportional to the length
of total steps2 which determines the data transmission
overheads. To avoid node contention in a time step,
three scheduling policies are described as follows:
� An SP sends a message to only one DP and can

not send another message to another DP in the
same communication step.

� DP receives a message from only one SP and can
not receive another message from another SP in
the same communication step.

� A processor can send a message and receive
another message simultaneously.

Given old and new GEN_BLOCK distribution
schemes, the communication patterns are illustrated in
Figure 3 (a). Above SP0~5 are numbers representing
old scheme, below DP0~5 are numbers representing
new scheme. Arrows between SP and DP represent
messages while redistributing data from source
processors to destination processors. The m1~11
represent the index of messages and the numbers above
the index are the theoretical cost which are the most
important reference for algorithms to schedule
messages. Since a processor can send and receive only

1 Length of a scheduling step is equal to the maximal
data size of messages in this scheduling step.
2 Length of a schedule is the sum of length of all
scheduling steps.

one message in one step, there must be four time steps
at least due to Degreemax is four. Figure 3 (b) gives a
schedule of Figure 3 (a). In Figure 3 (b), there are four
steps and 11 messages in relative row of steps
represent the data to be transmitted in relative time
steps. The cost of each step is dominated by the
messages with largest cost. The cost of step 1, 2, 3 and
4 are 14, 15, 18 and 10, respectively. The length of
this simple schedule is 57, which is the summation of
four costs.

DP0 DP1 DP2 DP3 DP4 DP5

 9 8 9 2 14 3 5 10 7 15 18

9 8 9 16 25 33

m9 m8 m7 m6 m5 m4 m3 m2 m1

SP0 SP1 SP2 SP3 SP4 SP5

m10 m11

28 17 5 10 22 18
(a)

A simple schedule

No. of step No. of message Cost of step

Step 1 m1(9), m5(14), m9(7) 14

Step 2 m2(8), m6(3), m10(15) 15

Step 3 m3(9), m7(5), m11(18) 18

Step 4 m4(2), m8(10) 10

Total cost 57
(b)

Figure 3: (a) A bipartite graph representing
communications between SP and DP. (b) A simple
schedule of old and new GEN_BLOCK distribution
schemes.

4. The Proposed Method

In Figure 3 (b), the messages that dominate the cost of
each step can be found easily, which are m5, m10, m11
and m8 for step 1~4, respectively. If the RLR is
considered for more practical cost of messages, the
message which dominates the cost of each step may be
changed. Figure 4 shows the effect of RLR on cost of
local data access. Costs of messages such as m1, m9
and m11 are divided by RLR and are reduced to the
values in relative round brackets while the RLR is
assumed 8. The cost of each step in column of “Effect
of RLR” in Figure 4 reflects more practical
transmission cost instead of those in column of “Cost
of step” in Figure 3 (b). The dominator of step 3 is

changed from m11 to m3 since the cost of m11 is not
large as expected in Figure 4. As mentioned in section
1, messages of local data access do not dominate the
cost of steps in many cases. Therefore, the key
position should not be occupied by them if a better
schedule could be given by scheduling algorithms.

A simple schedule

No. of step No. of message Effect of RLR

Step 1 m1(1.25), m5(14), m9(0.875) 14

Step 2 m2(8), m6(3), m10(15) 15

Step 3 m3(9), m7(5), m11(2.25) 9

Step 4 m4(2), m8(10) 10

Total cost 48
Figure 4: Column of effect of LMR shows the changes
of theoretical cost of m1, m9 and m11 and the dominator
of step two is changed.

The LMR describes the importance of
distinguishing both data accesses from each other.
Above example in Figure 4 shows that local data
access plays a dominator at first, but has small effect in
step 3. Such situations can influence scheduling
algorithms not to arrange messages well in the key
positions, like m11 which could be scheduled in other
steps instead. Since the position of messages can
influence others, local data access should be processed
additionally for lower costs of GEN_BLOCK data
redistribution.

Definition 4: Given a directed bipartite graph G =
(V, E), SPi and DPj ∈ V, where 0 ≤ i, j ≤ P−1. The mk
∈ E, where P ≤ k ≤ 2P−1. While i = j, mk represents
the messages of local data access, otherwise mk
represents remote data access.

The proposed multi-level communication
scheduling method (MLC) schedules messages of local
data access and remote data access in separate steps for
GEN_BLOCK data redistribution. The first level
processes the arrangement of local data access, the
second level is responsible for the arrangement of
remote data access. MLC is performed by following
processes:

1. Find out messages mk which are transmitted by

SPi and DPj, where i = j.
2. Divide the cost of above found mk using RLR.
3. To give a schedule of first level.
4. Find Degreemax and start a new step.
5. If Degreemax > 2, sort vertices with Degreemax in

decreasing order according to data size and give
{ v1, v2, v3, …} ∈ V. Select a mk with relative

minimal cost from each vertex in {v1, v2, v3, …}
and then arrange the message in step.

6. Arrange more mk, whose cost is smaller than the
length and has not been arranged in any step, if
possible.

7. Degreemax = Degreemax -1. If Degreemax > 2,
repeat processes 4~7.

8. Use coloring theory to arrange mk in two steps.
9. Exchange position of any mk in the two-step

schedule if lower cost is achievable.
10. To give a schedule of second level.

Figure 5 is a schedule given by MLC. The values

in last column also reflect more practical transmission
costs. The result shows that removing local data
access from mk can help scheduler handle key positions
better and reduce total length of a schedule. Following
above processes of MLC, the messages of local data
access are selected first. In the example shown in
Figure 3 (a), the candidates are m1, m9 and m11, and are
arranged in step 4 in Figure 5. After that, all of mk are
messages of remote data access. The processes then go
to 4~7 and arrange m4 and m7 in step 3. Using
processes 8 and 9, MLC arranges messages in two
steps at last. The length of this schedule is 31.25 and is
smaller than the length in Figure 4.

A schedule of MLC

No. of step No. of message Effect of RLR

Step 1 m2(8), m5(14), m8(10), m10(15) 15

Step 2 m3(9), m6(3) 9

Step 3 m4(2), m7(5) 5

Step 4 m1(1.25), m9(0.875), m11(2.25) 2.25

Total cost 31.25

Figure 5: A schedule of MLC.

5. Performance Evaluation

To evaluate the performance of proposed methods,
MLC were implemented along with TPDR. A huge
amount of cases were provided to evaluate MLC and
TPDR. 1,000 cases were provided for each
comparison, and 12,000 were provided in total. Array
size in each GEN_BLOCK distribution scheme is 10,000.
The numbers of nodes, P, are 8, 32 and 128 in three
simulation comparisons, respectively. The Avg
represents the value of array size divided by P. Four
sets of lower bounds and upper bounds were provided
to define the size range of each node as shown in
Figure 6.

Size range of each node

Symbol of ranges Lower bound

α 0.5* Avg

β 1

γ 1

δ 1

Figure 6: Lower bounds and upper bounds of four size
ranges for each node.

Figures 7~9 give the results of comparing
and TPDR with various number of nodes and different
size range of nodes. In Figure 7, the
were compared on 8 nodes with α
plots of MLC better represents ML
than TPDR; the plots of TPDR better represents
performs better than MLC; the plot
represent the costs of schedules given by
and TPDR are the same. Results in Figure
MLC outperforms TPDR in most cases
δ on 8 nodes. Comparing the results
better with α is found much less than the
with β due to lots of tie cases. The size range
smaller than β and results in little variation. Since the
variation is not large, the choices of dominators
become few and result of the same
While comparing the results with
numbers of MLC better and TPDR
and number of the same is decrease
variation.

Figure 7: The results of comparisons on
different range of node size. Avg is 1250.

With more number of nodes and
tie cases are almost disappears on 32 nodes
In the results of comparison, the M
than TPDR in about 65% to 75% cases. Due to the
increased number of nodes, the importance of local

0

200

400

600

800

α β γ

N
u

m
b

e
r

o
f

ca
se

s

Range of node size

Comparison of MLC and TPDR on 8 nodes

Size range of each node

 Upper bound

2 * Avg

2 * Avg

4 * Avg

8 * Avg

: Lower bounds and upper bounds of four size

give the results of comparing MLC
with various number of nodes and different

, the MLC and TPDR
α, β, γ and δ. The

MLC performs better
better represents TPDR

the plots of the same
the costs of schedules given by both MLC

Results in Figure 7 show that
in most cases with α, β, γ and

omparing the results of MLC, the MLC
is found much less than the MLC better

he size range of α is
and results in little variation. Since the

the choices of dominators
esult of the same is relative higher.

with β, γ and δ, both
 better are increased

decreased due to larger

comparisons on 8 nodes over
is 1250.

number of nodes and smaller Avg, the
on 32 nodes in Figure 8.

MLC performs better
in about 65% to 75% cases. Due to the

he importance of local

data access drops a little. The number of
is increased due to more combinations
be chosen with growing number of remote data access
messages, but MLC has advantage to p
most cases.

Figure 8: The results of comparisons on 32 nodes over
different range of node size.

While the number of nodes increases to 128, the
advantage of TPDR method emerges
128 nodes and smaller Avg, the importance of remote
data access increases substantially
MLC method disappears. With
β and γ, the variation is relative low and compresses
the chances for MLC method to find better schedules.
Although TPDR performs good with
not performs as well as
variation is higher and is good for local data access
oriented scheduling methods.

Figure 9: The results of comparisons on 128 nodes
over different range of node size.

δ

Comparison of MLC and TPDR on 8 nodes

MLC better

TPDR better

The same

0

200

400

600

800

α β γ

N
u

m
b

e
r

o
f

ca
se

s

Range of node size

Comparison of MLC and TPDR on 32 nodes

0

200

400

600

800

α β γ

N
u

m
b

e
r

o
f

ca
se

s

Range of node size

Comparison of MLC and TPDR on 128 nodes

The number of TPDR better
ore combinations of schedules to

be chosen with growing number of remote data access
has advantage to perform better in

comparisons on 32 nodes over
different range of node size. Avg is 312.5.

While the number of nodes increases to 128, the
method emerges in Figure 9. With

, the importance of remote
substantially and the advantage of

With small upper bound of α,
, the variation is relative low and compresses

method to find better schedules.
performs good with α, β and γ, it can

not performs as well as MLC with δ where the
variation is higher and is good for local data access

s.

comparisons on 128 nodes
over different range of node size. Avg is 78.125.

γ δ

Range of node size

Comparison of MLC and TPDR on 32 nodes

MLC better

TPDR better

The same

γ δ

Range of node size

Comparison of MLC and TPDR on 128 nodes

MLC better

TPDR better

The same

6. Conclusions

In this paper, we have presented multi-level
communication scheduling method to minimize the
communication cost in irregular data redistribution.
The proposed method adapts different data transmitting
rate by modifying the communication cost using RLR
and scheduling two categories of messages in separate
steps. The performance analyses show MLC performs
better in most cases and adapts to high variation of data
arrangement in data redistribution.

REFERENCES

[1] Sheng-Wen Bai and Chu-Sing Yang, “Essential
Cycle Calculation Method for Irregular Array
Redistribution,” IEICE Transactions on
Information and Systems, Vol. E89-D, No. 2, pp.
789-797, Feb. 2006.

[2] Ruay-Shiung Chang, Jih-Sheng Chang and Shin-
Yi Lin, “Job scheduling and data replication on
data grids,” Future Generation Computer
Systems, Vol. 23, No. 7, pp. 846-860, Jul. 2007.

[3] Shih-Chang Chen and Ching-Hsien Hsu, “ISO:
Comprehensive Techniques Toward Efficient
GEN_BLOCK Redistribution with
Multidimensional Arrays,” Parallel Computing
Technologies - Lecture Notes in Computer
Science, Vol 4671, pp. 507-515, Springer-Verlag,
Sep. 2007. (PaCT’07)

[4] Frederic Desprez, Jack Dongarra and Antoine
Petitet, “Scheduling Block-Cyclic Data
redistribution,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 9, No. 2, pp. 192-
205, Feb. 1998.

[5] Ching-Hsien Hsu, Sheng-Wen Bai, Yeh-Ching
Chung and Chu-Sing Yang, “A Generalized
Basic-Cycle Calculation Method for Efficient
Array Redistribution,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 11, No.
12, pp. 1201-1216, Dec. 2000.

[6] Jih-Woei Huang and Chih-Ping Chu, “A flexible
processor mapping technique toward data
localization for block-cyclic data redistribution,”
The Journal of Supercomputing, Vol. 45, No. 2,
pp. 151-172, Aug. 2008.

[7] Minyi Guo, “Communication Generation for
Irregular Codes,” The Journal of
Supercomputing, Vol. 25, No. 3, pp. 199-214,
2003.

[8] Minyi Guo and Yi Pan, “Improving

communication scheduling for array
redistribution,” Journal of Parallel and
Distributed Computing, Vol. 65, No. 5, pp. 553-
563, May 2005.

[9] Minyi Guo, Yi Pan and Zhen Liu, “Symbolic
Communication Set Generation for Irregular
Parallel Applications,” The Journal of
Supercomputing, Vol. 25, No. 3, pp. 199-214, Jul.
2003.

[10] Amit Karwande, Xin Yuan and David K.
Lowenthal, “An MPI prototype for compiled
communication on ethernet switched clusters,”
Journal of Parallel and Distributed Computing,
Vol. 65, No. 10, pp. 1123-1133, Oct. 2005.

[11] S. D. Kaushik, Chua-Huang Huang, J.
Ramanujam and P. Sadayappan, “Multi-phase
array redistribution: modeling and evaluation,”
Proceeding of IEEE International Parallel
Processing Symposium (IPPS’95), pp. 441-445,
Apr. 1995.

[12] Young Won Lim, Prashanth B. Bhat and Viktor
K. Prasanna, “Efficient Algorithms for Block-
Cyclic Redistribution of Arrays,” Algorithmica,
Vol. 24, No. 3-4, pp. 298-330, Jul. 1999.

[13] Chun-Yuan Lin and Yeh-Ching Chung, “Data
distribution schemes of sparse arrays on
distributed memory multicomputers,” The
Journal of Supercomputing, Vol. 41, No. 1, pp.
63-87, Jul. 2007.

[14] Loic Prylli and Bernard Touranchean, “Fast
runtime block cyclic data redistribution on
multiprocessors,” Journal of Parallel and
Distributed Computing, Vol. 45, No. 1, pp. 63-72,
Aug. 1997.

[15] Shankar Ramaswamy, Barbara Simons, and
Prithviraj Banerjee, “Optimizations for Efficient
Array Redistribution on Distributed Memory
Multicomputers,” Journal of Parallel and
Distributed Computing, Vol. 38, No. 2, pp. 217-
228, Nov. 1996.

[16] Rajesh Sudarsan and Calvin J. Ribbens,
“Efficient Multidimensional Data Redistribution
for Resizable Parallel Computations,” Fifth
International Symposium on Parallel and
Distributed Processing and Applications, Vol.
4742, pp. 182-194, 2007.

[17] Hui Wang, Minyi Guo and Daming Wei,
“Message Scheduling for Irregular Data
Redistribution in Parallelizing Compilers,”
IEICE Transactions on Information and Sysmtes,
Vol. E89-D, No. 2, pp. 418-424, Feb. 2006.

