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Abstract―In this paper, we propose a method to make 
the mobile robots building a vision-based hierarchical 
map and then quickly localizing itself by this map. The 
top-level map is a topological map which consists of 
“Places”. Topological map is represented through the 
graph and suitable for the large-scale environments. In 
this map, the vertices comprise some visual information 
for efficiently and robustly identifying the “Places” of the 
robot’s environment and the edges denote the spatial rela-
tion between these “Places”. The visual information con-
sists of the characteristics of segments and SIFT features. 
The former indexes “Place” coarsely and the latter is with 
the capability of indentifying the position within the cur-
rent Place finely. When localizing itself, we merely com-
pute the similarity by voting corresponding SIFT features 
between current information and the vertices indexed 
with the similar characterization of segments. This locali-
zation is efficient because of the low time complexity of 
characterization of segments and the few candidates of the 
sets of SIFT features. In the other aspect, the scale, orien-
tation and illumination invariant of SIFT features make 
this localization robust. 
Index Terms―monocular, vision, global localization, in-
door, hierarchical. 

I. INTRODUCTION 

In recent years, the mobile robots enter human’s 
life progressively rather than just stay in factories 
or laboratories [1] [2], hence localization and navi-
gation become the fundamental abilities. In the 
other words, the robots must have the ability to 
know its current position over time and find the 
path to the destination [3]. 

There are many kinds of sensors with a capabili-
ty to navigate in the unstructured environment, 
such as laser scanners, ultrasonic sensors, cameras 
and etc. The methodology to solve this problem for 
indoor settings by laser scanners is not an open 
problem anymore [4] [5] [6], but the laser scanners 

are expensive. Because of the rich information car-
ried by pictures and the low cost of cameras, many 
people change their direction on these visual de-
vices and put aside the old ones, laser scanners and 
ultrasonic sensors [7] [8]. However, solving this 
problem by visual sensors is still a great challenge. 

The two key problems of mobile robot localiza-
tion are global localization and local position 
tracking. Global localization is the problem to de-
termine the robot’s position in a previously learned 
map without any other information more than 
where the robot is. Global localization gives mobile 
robots capabilities to deal with initialization and 
recovery from“kidnaps” [9] [10]. Local position 
tracking is the problem to keep estimating the cur-
rent position of the robot by the previous path and 
current sensor readings when it move around the 
environment [11]. 

For navigation tasks, the robot constructs a map 
when wandering the unknown environment in the 
first. There are two major paradigms of map, topo-
logical maps and metric maps. Topological maps 
[12] [13] are graph-based representation and is na-
turally inspired from human behaviors [14]. This 
model encodes the spatial relations between the 
places. The pro and con are sparse data but difficult 
to navigate directly. In the other way, metric maps 
represent [15] [16] environments by grids. The in-
formation carried by each cell of the grid is the ab-
sence of an obstacle or not. The strengths and 
weaknesses are more accurate representation and 
easy to navigate, but the time complexity and space 
complexity is much higher. In our approach, we 
combine these two paradigms for taking both ad-
vantages of them. 

                                                                             



In this paper, we propose an efficient vi-
sion-based global localization method. When con-
structing the map, we take the characterization of 
segments of every image as the index for speeding 
up and extract the SIFT features for robust match-
ing. Thus, it is necessary to develop techniques for 
more efficient localization. 

 
Fig.1 Corresponding SIFT features between two images. 

II. PROBLEM DESCRIPTION AND PRELIMINARIES 
III. PLACE IDENTIFICATION 

A. Image Segmentation 
We use the graph-based segmentation algorithm 

which is proposed by Felzenszwalb et al. to seg-
ment the image efficiently [17]. There are many 
methods to segment images, such as clustering 
method, histogram-based method, etc. This method 
uses the graph-based representation to define a pre-
dicate for measuring the evidence of a boundary 
between two regions by comparing two quantities: 
one is intensity differences across the boundary, 
and the other is intensity differences between 
neighboring pixels attached to one region. 

Based on this predicate, this algorithm can pro-
duce segmentation that satisfies global properties – 
running in time  for  image pixels. 
Fig(a) is the original 320x240 pixels image and 
Fig(b) is the result of image segmentation by the 
algorithm with parameters 

(log )O n n

σ  = 0.5 and  = 500, 
where 

k
σ  is the standard deviation of the Gaussian 

filter to smooth the image and  is used to tune 
the size of components. 

k

In our approach, we construct a hierarchical da-
tabase map. The top-level map is a topological map 
which is represented as a graph. Each vertex of this 
graph indicates a “Place” which is a collection of 
sequential images and contains the visual informa-
tion, named “Place Identification”, for efficiently 
identifying this “Place”. Additionally, a small data-
base map is attached to each vertex for subsequent 
robust localization. 

For achieving efficient and robust localization in 
the large-scale environment by previous built map, 
we cluster a series of some successive images into 
a “Place” and use some salient characteristics as 
identity of the Place. By going through this section, 
the reader will understand how we cluster the suc-
cessive images into Place and extract the visual in-
formation as Place Identification. 

B. Scale Invariant Feature Transform 
The scale invariant feature transform (SIFT) has 

been proposed by D. Lowe [18]. This feature has 
highly capability to against the change of scale, 
orientation and partial illumination. The descriptor 
we get is of dimension 128. The Fig.1 is the cor-
responding pairs of SIFT features between two im-
ages with the different views of a building. 

 

A. Diagram of Clustering 
The procedure of clustering is shown in Figure 2.  
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Fig. 2 Diagram of Clustering 

 
After acquiring the image frame, we segment the 

image into some components using an efficient 
graph-based image segmentation which is proposed 
by Felzenszwalb et al. [17]. The details of the algo-Fig(a) Original image.       Fig(b) Result image. 

                                                                             



, where  is number of color bin, and  denotes 
the number of pixels within color bin i . 

n iarithm of image segmentation is mentioned in Sec-
tion II-A. After image segmentation, we encode the 
segment components by computing simple global 
visual information; namely, expand color histogram, 
which would be introduced in Section III-B. 

For consideration of spatial relation, we choose 
the improved method of computing color histo-
gram – Expand Color Histogram [19], which is ex-
pressed as below: B. Segment Encoding 

The procedure of segment encoding is shown as 
Figure 3. First, we segment a digital image as a few 
of segments by the method which is mentioned in 
Section II-A. Then, we encode these segments by 
expand color histogram. Finally, the input image 
would be represented as a few of expand color his-
togram. 

After we segment the image using the algorithm 
as mentioned in Section II-A, we encode the image 
segments by computing a visual information –color 
histogram. We compute the expand color histogram 
of each segmented component. 

In the beginning, we transform the RGB color 
space to HIS color space. The color space conver-
sion equation is: 

(1) 
Because hue is probably superior for human in-

terpretation, we only take the channel of hue of the 
HSI color space. 

 
Color histogram is one of the common methods 

to compute the visual information of images. The 
representation is: 

1 2( , ,..., )nA a a a=  
(2) 

 
 
 
 
 
 
 
 
 
 
 
 
 

1 1 2 2( , , , ,..., , )n n
x y x y x yA a a a a a a=  

(3) 
where  is number of color bin, n ( , )i i

x y  denotes 
the average value of coordinate of pixels within 
color bin . 

a a

i
 

 
 
 
 
 

Fig. 4 The color histogram of Fig (a) 
 
 
 
 
 
 

 

Fig. 3 Diagram of Clustering 
  

 

Fig. 5 The expand color histogram of Fig (b) 
 
We use the expand color histogram to compute 

tion of the segment components 
which have been selected previously. Then, we as-
sign these histograms to the Place Identification. 

the visual informa
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There are many kinds of measurement of differ-
ence between two histograms, such as least square, 
Euclidean distance, etc. Here, we choose the Euc-
lidean distance for our difference measurement. 
Because the size of each segment component is not 
equal necessarily, this expand histogram would be 
normalized by the size of the area of the component. 
Therefore, the difference between the expand color 
histograms of A and B is: 
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, where i
xa
A
 is the value of the color bin  in the 

histogram . 
i

 
C. Methodology of Clustering 

After segment encoding, each image is 
represented as some expand color histograms. We 
define the similarity between two set of expand 
color histogram as the number of similar histo-
grams. We use the incremental strategy to perform 
clustering process which is shown as Algorithm 1. 

                                                                             



 
 

 

 

 

 

 

rithm 1: Algorithm of Image ClustAlgo ering 

IV

 as 
s the image in Place. 

A.

We represent the th image of 
the 

. DATABASE MANAGEMENT AND LOCALIZATION 

Because we use database map in our approach, 
we introduce how we manage and access our hie-
rarchical database map. In the top-level map, we 
use the characteristics of segments of the query 
image as index to find the Place which is the entry 
of the database in the bottom level. Then, convert 
the query image into the inverted index of visual 
vocabulary using the method which is mentioned in 
this Section. Finally, assign the inverted index
index of the image which i

 Image Representation 
After clustering a series of successive images 

into a Place, we collect these images to build the 
local spatial map. i

j th Place as: 
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 Database Management 
In our approach, we use the hierarchical database 
h two levels. The top-level is the Place databas

M  which is indexed by the Place Identification 
im  as shown in Figure 6. Each vertex of top-level 

map is an entry of the local spatial database iL  in
the bottom-level map. The bottom-level map con-
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Fig. 6 The diagram of the hierarchical database 
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 Robust Localization 
The localization is achieved by two stages. The 

first is to identify the Place in the topological map 
by finding the entry of the database into the bot-
tom-level map according to Place Identification. 
The second is to locate the position of the local 
spatial map by computing the dissimilarity between 
the query image which is represented as inverted 
index and the 

 
 
 
 
 
 

Fig. 7 The diagram of the localization 

In Figure 7, we compute the index graph by en-
coding the segments of the query image. Simulta-
neously, we extract the SIFT features from query 
image. Then, we use the characteristics of segments 
as index to find the current Place and the entry of 
the database in the bottom-level map. Additionally, 
we convert the SIFT features into inverted index 
using the visual vocabulary which is attached to the 
current Place. Finally, we locate the 
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where the query image qimg  indicates. First, we 
segment the query image using the method which is 
mentioned in Section II-A. Then, we encode the 
segment of the image after segmentation using the 
method which is mentioned in Section III-B. Final-

, we identify the current Place using Algorithm
 
 
 
 
 
 

Algorithm 2: Algorithm of Place Identify 

In Algorithm 2, dissimilarity is the function 
which computes the measurement of the dissimilar-
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V. EXPERIMENTS 
A. Hardware of the Experimental System 

Experiments are held on our newly designed ro-
bot, Home Robot. Home Robot is equipped with a 
laser rangefinder, ultrasonic sensing system. Fur-
thermore, with an on-board dome camera, the 
Home Robot has an even wider range of view 
which allows self-localization algorithms based on 
vision to be run more efficiently. The Home Robot 
is designed to have a friendly appearance, the pic-
ture below shows what it looks like. 

 
 
 
 
 
 
 
 

Fig. 10 Some clusters within open Lab 

Fig. 8 Home Robot 

 

B. Experimental Environment 
The one of our experimental environment is a 

home environment in Open Lab. This environment 
contains five rooms, such as living room, bath 
room, shown in Figure 9. 

 
C. Performance of Clustering 

In the open Lab, we took about 400 pictures by 
the camera which is equipped with Home Robot. 
The average number of clusters is 63. The average 
number of images within each cluster is 6.34. The 
sequences of images in Figure 10 are some clusters 
within open Lab. 

 
 
 
 
 
 
 

D. Performance of Global Localization 
In the open Lab, we simultaneously take pictures 

by the camera equipped with Home robot and 
record the world coordinates. Although the num-
bers of total images are about 2000, we only con-
struct database by 400 images. Because the moving 
speed of Home Robot is slow, we merely select one 
from five images to construct out database. 

In this experiment, the output is the world coor-
dinate. To avoiding returning the wrong coordinate, 
we set a threshold of the similarity of inverted in-
dex. If similarity between inverted index of the 
most two similar images is lower than the threshold, 
we return“insufficient information＂and the robot 
would wander and take other pictures for localiza-
tion. 

There are some correct results in Figure 11(a). 
The text of the above textbox is the world coordi-
nates of test image. The text of the below textbox is 
the information of result. The first item of the be-
low textbox is current cluster. The second item de-
notes the similarity of inverted index between these 
images. The last item is world coordinate of result 
image. If the similarity of inverted index is smaller 
than 0.1, we would return“insufficient informa-
tion＂and make the robot take other pictures for 
performing localization. 

In certain condition, we would get incorrect re-
sults, such as complex scenes, similar scenes, and 
etc. We list some incorrect results in Figure 11(b). 
In the first image of Figure 11(b), the scene of test 
image is very complex, so that the image segmen-
tation would be meaningless for classify and iden-
tify.  

 
 
 
 
 
 
 
Fig. 11(a) Correct results.     Fig. 11(b) Incorrect results. 

 
Fig. 9 The home environment in Open Lab 

                                                                             



                                                                             

In the future, we would improve the rate of rec-
ognition by pre-processing these images. 

In this experiment, if the threshold of inverted 
index is higher, the number of cases of
“insufficient information＂would be more. Be-
cause the wrong coordinate would cause the robot 
damage, we set a higher threshold. There are 235 
correct results within 300 test images. The rate of 
correct recognition is 0.783. On the other part, 
there are 9 false positive within 300 test images. 
The rate of false positive is 0.03. The average dis-
tance between test image and result image is 
0.67m. 

 

IV. CONCLUSION 
In this paper, we propose a method which uses 

the combination of two types of features to denote 
a location. One type of features is the texture cha-
racterization which is simple and time-conserving. 
However, its toleration of illumination and view-
point changes is low. The other type of feature is 
SIFT feature which robust against scale, orientation 
and partial illumination. At the same time, the time 
consumption of computing this feature is huge. We 
take the respective advantages of both. This method 
of solving global localization problem is robust and 
efficient. 
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