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Abstract—In this paper, we propose a method for
automatic camera calibration and model reconstruction
from image sequences. Our camera calibration method
is based on the recent works of structure from motion
that recover camera motions via a set of corresponding
feature points extracted from images. The refinement of
camera parameters is achieved by exploiting the concept
of silhouette coherence. Eventually, a modified volumetric
graph-cut algorithm is used for model reconstruction
from the set of calibrated images. We use an occlusion
robust photo-consistency metric, which does not require
geometric heuristics about the object, to seek the optimal
surface that captures the concavities. At the same time,
a set of surface points identified from silhouettes are
enforced as hard constraints to preserve protrusions.

The camera calibration results of the proposed method
are comparable to that of manual calibration even on real
data, and the results of model reconstruction are also
satisfactory. Since our method does not require images
being calibrated in advance, it is suitable for digital
archives and virtual exhibition of museum artifacts.

Index Terms—Structure from Motion, Visual Hull,
Volumetric Graph-Cut, Silhouette Coherence, Photo-
Consistency

I. INTRODUCTION

Recently, constructing geometric models directly
from photographs has received more and more inter-
est in computer vision community. It is particularly
suitable for acquisition of high quality 3D models
of museum artifacts, which can be used in digital
archives and 3D visualization for user interaction
without physical access, such as applying virtual
reality on museum exhibition [18][6][5].

However, manual camera calibration is not trivial
in the model acquisition pipeline. It is especially
tedious when calibrating a large set of images. As a
result, an automatic camera calibration is essential.
The motivation of our work is thus to reconstruct
models from a set of uncalibrated images.

Among all the available camera calibration tech-
niques, point-based methods are the most popular.
But the dependence upon the presence of distinc-
tive feature points on the object surface makes
the calibration results inaccurate for objects with
regular patterns or absence of texture. An alternative
approach is to use the object outlines or silhouettes
as the criterion of camera calibration when feature
points are unavailable or unreliable.

Since mid-seventies there have already been
image-based modeling methods that compute a
coarse shape of an object from its silhouettes di-
rectly [21][22][12], such as the visual hull intro-
duced by Baumgart [2]. Silhouettes are often as-
sumed or required as input by many multi-view
stereo algorithms in order to reconstruct a visual
hull that serves as an initial estimate of the scene
geometry. We adhere to this assumption that sil-
houettes are available and take advantages of both
point-based and silhouette-based methods in our
automatic camera calibration procedure. The cam-
era parameters are estimated with an incremental
structure from motion framework and then refined
by a silhouette coherence optimization process.

After we have obtained a set of self-calibrated
images, the 3D model reconstruction is the task of
our concern. To pursue details on the object surface,
color or texture consistency among different views
is usually used as a measure for evaluating the
visual compatibility within the input images. Multi-
view stereo reconstruction can be formulated as
an optimization problem with the photo-consistency
measure defined as the cost function, algorithms
such as graph-cut can be used to obtain global opti-
mal solution [34][35]. Photo-consistency measures
alone, however, are usually insufficient to preserve
protrusion on the object surface due to the tendency



of graph-cut for shorter pathes, and hence some
constraints can be enforced in the optimization to
prevent over-carving [34][32][13]. We propose a
simple method to identify from silhouettes a set
of points which are believed to lie on the object
surface and constrain the reconstructed surface to
pass through or close to these points.

The remainder of this paper is organized as fol-
lows. In Section II we review the related work. Sec-
tion III describes our approach for camera calibra-
tion and model reconstruction. Experimental results
are shown in Section IV, and Section V concludes
this work.

II. RELATED WORK

There are two main categories of works related
to ours: camera calibration and multi-view stereo.

A. Camera Calibration

Among all automatic camera calibration tech-
niques, point-based methods are the most popular
since they can provide accurate estimation results
when feature points on the object surfaces are
available and reliable. They typically utilize the
correspondences of features such as corner points
among images. One approach aims to recover cam-
era parameters and sparse 3D scene geometry from
image sequences is well known as structure from
motion (SfM).

Snavely et al. [31] presented a SfM procedure to
automatically compute viewpoints for a collection
of photographs and a set of scene points at the same
time. The proposed method takes an incremental
approach that adds cameras into the optimization
process one at a time to avoid getting stuck at bad
local minima, which is similar to that of Brown and
Lowe [3] with several improvements and has been
proved to be robust over a variety of real-world
images from Internet.

However, point-based methods may fail when
dealing with textureless objects or man-made ar-
tifacts whose feature points are not reliable. An
alternative way is to adopt the silhouette-based
methods which use the object outlines or silhouettes.
Hernández et al. [17] introduced the concept of
silhouette coherence, which exploits all information
contained in the contours of silhouettes and can

be considered as a generalization of the epipolar
tangency constraints [28][9].

For the two categories each has its advantages,
we would like to incorporate both of them into our
calibration procedure.

B. Multi-View Stereo

There are numbers of promising multi-view
stereo techniques with capability to recover dense
3D models from calibrated images [29]. According
to the representation of scene geometry, they can
simply be categorized into two main categories: (1)
algorithms that recover individual depth map for
each image, and (2) algorithms that use a volumetric
representation of shape.

In the first category, a reference image is selected
and the corresponding depth map is constructed
by assigning a disparity or depth value to each
pixel. This kind of image-based representation is
convenient particularly for smaller data sets, but a
further process to merge multiple depth maps into
a single mesh is necessary to capture the complete
geometry.

The second category contains methods that rep-
resent the volume directly. The visual hull, first
introduced by Baumgart in his PhD thesis [2],
is a classical reconstruction technique. The basic
concept is to create a 3D representation of an object
by its silhouettes within several images from dif-
ferent viewpoints. However, it is unable to capture
concavities on the object surface and can only be
an approximation of the object’s geometry.

Vogiatzis et al.[34] proposed an inspiring ap-
proach that poses multi-view stereo reconstruction
as a 3D segmentation problem which aims to op-
timally partition the space into ”foreground” and
”background”. A volumetric graph-cut algorithm
with a continuous photo-consistency function de-
fined on the surfaces is then used to seek the
globally optimal solution. Since graph-cut prefers
shorter cut, an inflationary term is added to the
optimization procedure to prevent over-carving. The
approach was improved later with a robust shape-
independent scheme which treats occluded pixels
as outliers when commuting photo-consistency for
each scene point [35].

Nevertheless, a uniform ballooning term does
not guarantee exact silhouette consistency. An al-



Fig. 1. System Overview

ternative way is to enforce silhouette consistency
constraints in graph-cut algorithm. Specifically, the
reconstructed shape when reprojected must coin-
cide with the corresponding silhouette. Sinha and
Pollefeys [30] used a complicated graph structure
to reconstruct surfaces that exactly satisfies all the
silhouette constraints while maximizing the photo-
consistency. Wu [36] proposed an iterative graph-cut
algorithm which adjusts the weights of the graph
edges according to the previous solution cuts to
obtain shapes that perfectly match the observed
silhouettes, and recovers surface details with a gra-
dient descent optimization. In Tran and Davis [32],
a set of ”constrained points” which are likely to
lie on the true surface are identified and taken as
hard constraints that force the solution cut to pass
through or close to those points. Furukawa and
Ponce [13] adopted a similar approach but used a
combinational structure of the visual hull to obtain
constraints.

Our method is thus inspired by those works
mentioned above, where a common idea is to en-
force both photometric and geometric consistency
constraints throughout the modeling process.

III. METHOD

A. Overview

An overview of our approach is illustrated in
Fig. 1. Given a set of uncalibrated images and their
corresponding silhouettes, we first recover camera
motions with an incremental structure from motion
(SfM) approach. A further refinement of camera

parameters is achieved by exploiting silhouette co-
herence constraints. To reconstruct a 3D model of
the target object from calibrated images, we identify
a set of surface points from silhouettes, define an
occlusion robust measurement of photo-consistency
for each surface point, and seek the optimal sur-
face by enforcing both photometric and geometric
consistency constraints in graph-cut optimization.

B. Problem Formulation

A perspective projection camera model is con-
sidered in our system where each camera can be
parameterized by a projection matrix with 11 de-
grees of freedom. Making the common additional
assumptions that the pixels are square, the center
of projection is coincident with the image center,
known or ideal aspect ratio and the skew factors,
and ignoring radial distortion, the number of param-
eters can be reduced to 7: three parameters for the
orientation and three parameters for the translation,
which together define the camera pose, and one
additional parameter for focal length. Without loss
of generality, the focal length can be considered
constant among all images and the intrinsic matrix
is identical when using the same camera during
photographing. As a consequence, the camera pro-
jection matrix Pi of image Ii can be decomposed
as follows:

Pi = K[Ri|ti] = K[R(ωi)|ti], (1)

where R(ωi) corresponds to the 3D rotation by an
angle θi about a fixed axis specified by the unit
vector n̂i:

R(ωi) = I+sin θi[n̂i]×+(1−cos θi)[n̂i]
2
×, ωi = θin̂i.

(2)
Given a set of N images Ii of a rigid object

and their corresponding silhouettes Si, our goal is
to recover automatically all the projection matrices
P = {Pi} as a set of 6N + 1 parameters Θ =
[f, ωi, ti], and reconstruct the 3D model from the
auto-calibrated images.

C. Features Detection and Feature Matching

The first step is to detect features in each image.
We choose SIFT (Scale Invariant Feature Trans-
form) [24] feature detectors for its invariance not
only to image rotation and translation, but also



to image scale and a substantial range of affine
distortion, noises, and changes in illumination.

Since each surface point is observed from mul-
tiple images, a single feature may correspond to
features in many images. Once features have been
extracted from all images, they need to be matched
or tracked among images to identify the corre-
spondences. We use Mount’s approximate nearest
neighbors library [1] to efficiently match features
for each image pair in the 128−dimension SIFT
feature space, and use RANSAC [11] to robustly
estimate a fundamental matrix for the pair to find a
set of geometrically consistent matches.

Matching features across images are then col-
lected into a connected set, which is called a track
as in [31]. Only consistent tracks that contain no
more than one feature in one image are kept for
camera estimation.

D. Incremental Structure from Motion

After consistent feature tracks among images
have been identified, a structure from motion pro-
cedure is used to recover camera motions and 3D
locations of the corresponding surface points. It can
be seen as an optimization problem which attempts
to minimize the reprojection errors computed from
the recovered parameters, i.e., the sum of distances
between the projections of each surface point and
its corresponding image positions. Algorithms such
as the Levenberg-Marquardt algorithm [27] can be
used to solve this non-linear least squares problem.

However, this kind of algorithms are usually
only guaranteed to find local minima and hence
depend on good initialization to find the optimal
solution. It is very likely that the large-scale SfM
problem will get stuck in some bad local minima if
camera motions and 3D positions of surface points
were estimated all together right at the beginning.
Therefore we adopt an incremental approach, first
proposed by Brown and Lowe [3] and refined by
Snavely et al. [31], which adds new cameras into
the optimization ones at a time. Specifically, the
camera parameters of and the tracks observed by the
new camera are incorporated into the optimization
process.

The SfM procedure begins with a single pair of
views which contains the largest number of matches
along a large enough baseline. Once the camera

parameters of the initial pair and 3D locations of
the observed feature points stabilize, another camera
that shares the largest number of feature points is
added into the optimization. The intrinsic and ex-
trinsic parameters of the new camera are initialized
using the direct linear transform (DLT) approach
[16] inside a RANSAC procedure.

Tracks observed by at least one of the recov-
ered cameras and the new camera at the same
time are then added into the optimization, subject
to the constraint where their locations estimated
using triangulation are well-conditioned. Provided
with initial estimates, the sparse bundle adjustment
library provided by Leourakis and Argyros [23] is
used to simultaneously refine the 3D structure and
camera parameters by minimizing the reprojection
errors between the observed and projected image
locations of feature points at each iteration.

The optimization procedure is repeated until there
is no remaining camera that observes any recon-
structed 3D points.

E. Refinement with Silhouette Coherence

A further refinement for camera parameters is
carried out by exploiting the rigidity property of
3D objects and the concept of silhouette coherence
introduced by Hernández et al [17]. In brief, given
a set of silhouettes Si of a 3D object taken from
different points of view and the corresponding set
of camera projection matrices Pi, we would like
to measure how likely the silhouettes could be
generated by the real object given those projection
matrices. Camera calibration can again be formu-
lated as an optimization problem where silhouette
coherence is treated as an energy function to be
maximized by varying camera parameters.

Since visual hull is constructed as the intersec-
tion of visual cones generated by the silhouettes
of the scene and the associated camera projec-
tion matrices [2], it is very sensitive to errors in
forgound/background segmentation and inaccurate
camera parameters. If the segmentation and the
camera parameters are both perfect, the recon-
structed visual hull will be a convex surface that
capture the approximate geometry of the real object
and contains the object, and its back-projection with
respect to the image frame will be exactly the same
as the original silhouette. But in practice, either



Fig. 2. Project the reconstructed visual hull back onto image Ii.
The back-projection of visual hull SV

i is shown in dark gray and the
original silhouette Si is shown in red.

the silhouettes are noisy or the camera projection
matrices are inaccurate, which typically result in a
smaller reconstructed visual hull, and the projected
silhouettes will be inconsistent with the original
silhouettes, e.g., the reconstructed silhouettes are
contained in the original ones.

Based on the above observation, we can use the
reconstructed visual hull to measure the silhouette
coherence as follows:

• Compute the visual hull V by a set of silhou-
ettes Si and the corresponding set of camera
projection matrices Pi.

• Project the reconstructed visual hull back onto
all images to generate a set of projected silhou-
ettes SV

i .
• Compare the projected silhouettes SV

i with the
original ones Si, as shown in Fig. 2.

We define the similarity C between original sil-
houette Si and the reprojected silhouette SV

i as

C(Si, S
V
i ) = 1 −

∫
(Si

∪
SV

i ) −
∫

(Si
∩

SV
i )∫

Si

, (3)

in which we concern not only the area of intersec-
tion between two silhouettes but also the area of
their subtraction at the same time. That is, we want
to maximize the area of intersection with penalty
for the part of reconstructed silhouette outside of
the original one as shown in Fig. 3.

Unlike Hernández et al. who adopt a δ-offset
silhouette contour approach to overcome the high
computational cost for calculating the integration of
silhouette area, we turn to the GPU to obtained
silhouettes by rendering the reconstructed visual
hull for efficiency. On the other hand, it is very time-
consuming if we reconstruct the visual hull when-
ever the camera parameters change even slightly

(a) (b) (c)

Fig. 3. Correlation between two silhouettes. The projection of
reconstructed visual hull SV

i is shown in dark gray and the original
silhouette Si is shown in red. (a) The reconstructed silhouette is
contained in the original silhouette. (b) The reconstructed silhouette
contains the original silhouette. (c) Part of the reconstructed silhouette
intersect the original silhouette.

and evaluate the silhouette coherence from the dy-
namically reconstructed visual hull. For this reason,
we reconstruct the visual hull at the beginning
of each iteration with cameras projection matrices
obtained from the previous iteration, and exploit the
silhouette coherence defined as Equation (3) to find
the optimal solution of the projection matrix that
best fits the current visual hull for each camera
independently. Although cameras are not taken into
the optimization process as a whole during the same
iteration, it is supposed that the overall silhouette
coherence will be improved after many iterations as
long as each camera has been refined in its turn.

F. Volumetric Graph-Cuts with Surface Constraints

To reconstruct 3D models from calibrated images,
we first introduce the measure of photo-consistency
for each scene point, and give a description of
the graph structure we used to apply the graph-
cut algorithm. Finally, we show how to impose
silhouette constraints into the optimization.

Given a sequence of N calibrated images, the
photo-consistency of a 3D point x in space can be
evaluated by projecting the point back to all images
where it is visible and computing the normalized
cross-correlation(NCC) among them. To discard the
visibility computation, a voting technique similar to
the one proposed in [35] is used. The basic idea is
to treat all potential causes of mismatches such as
occlusion, image noise, lack of texture, shadows or
highlights as outliers in the matching process. More
specifically, we define the photo-consistency value



Fig. 4. Project a potential scene point x back into the selected
reference image Ii and its neighbor Ij ; compute the NCC score
between the projected patches.

ρ(x) for the given point x as

ρ(x) = exp

{
−µ

N∑
i=1

VOTEi(x)

}
, (4)

where µ represents the rate of decay and is related
to the distribution of votes among all scene points.

The photo-consistency function ρ(x) is the same
as in [35], but the value of VOTEi(x) is computed
in a slightly different way:

• Project the 3D point x onto a reference image
Ii and its k nearest images N (i) whose camera
poses cj∈N (i) are closest to ci.

• Compute the k correlation scores between im-
age Ij∈N (i) and the reference image Ii. The
score is evaluated using normalized cross-
correlation (NCC) between two nc × nc win-
dows centered on the projections of x on each
of the views Ii and Ij∈N (i), as shown in Fig. 4.

• The score defines the correlation between two
projected patches and the 3D location x gets a
vote if the score is higher than a threshold ε as
follows:

VOTEi(x) =
∑

j∈N (i)

Cij(x), (5)

where Cij(x) is a binary function that stands
for the agreement of photometric consistency
between the projections of x on Ii and Ij:

Cij(x) =

{
1, if NCC(x̂i, x̂j) ≥ ε
0, otherwise . (6)

From the definition in Equation (5), the maxi-
mum votes VOTEi(x) that a scene point x can
get is k. Dividing the summation of VOTEi(x) in
Equation (4) by N × k we can map the function

values to the nonnegative interval [0, 1] and obtain
a normalized function.

As mentioned in [35], the graph-cut algorithm
usually prefers shorter cuts, which may result in
cutting off the protrusive parts of the object surface,
hence an inflationary (ballooning) term is added to
alleviate such flatten phenomenon. Intuitively, one
can imagine that there exists a force from inside of
the object that tries to inflate or distend the object
like blowing up a balloon. The graph-cut algorithm
is then used to find the optimal object surface which
minimizes a surface integral of photo-consistency
and maximizes volume at the same time.

To adopt the graph-cut algorithm for volumetric
stereo, a graph structure is constructed by first
quantized the 3D space into voxels of size h×h×h
and creating a graph node for each voxel. Each node
is connected to its 6-neighbors by edges with weight

wij =
4πh2

3
ρ(

xi + xj

2
), (7)

where xi and xj are centers of two neighboring
voxels, and ρ(x) is the matching cost function
defined in Equation (4);

Besides the weighted edges joining two neighbor-
ing nodes in the graph, each node is also connected
to the Source node and the Sink node which
represent ”object” and ”empty space” respectively.
For voxels that are sure to be outside of the object,
the weight of the edge connecting the corresponding
nodes to the Sink node are set to infinity in
order to ensure that they remain outside of the
reconstructed shape. For the remaining voxels, the
weights of the edges connecting the nodes to the
Source node are set to wb = λh3, which stands for
the ballooning force that encourage the object that
fill in the bounding volume. The configuration of
the graph is shown in Fig. 5.

However, the photo-consistency measure alone
are not always sufficient to preserve protrusions
and pursue concavities on the object surface at the
same time since it depends on the characteristic
of the object and the quality of input images. The
powerful silhouette cue is again incorporated into
the optimization process as a shape prior to recover
more accurate geometry.

Let x be a 3D point which is believed to lie on
the true surface of the object but is outside of the



Fig. 5. The correspondence of voxels with nodes in the graph. Each
voxel is connected to its neighbors as well as the Source and Sink
nodes.

reconstructed surface, i.e., x can be seen as a surface
constraint point which stands for a protrusive part
of the object surface and has been cut off by graph-
cut. Given a set of surface constraint points X, our
goal is to construct the actual surface S∗ that passes
through every point x ∈ X.

Because it is difficult to apply such constraints
directly on the 3D graph-cut algorithm due to the
local influence of a single graph node with respect
to the whole graph, we adopt an indirect approach,
inspired by [32], that tries to block the surface
from cutting a continuous region connecting x and
the base surface Sbase, obtained from the graph-cut
algorithm which considers photometric consistency
along, that captures fine details on the object surface
while parts of protrusions being cut off.

Denote the apparent contour of silhouette Si by
γi. For each candidate pixel on γi, we first compute
the corresponding optic ray oi(d) that goes through
the camera’s optic center ci and the 3D location xs

of the candidate pixel on the image plane by the
following equation:

oi(d) = xs + (ci − xs)d. (8)

Based on the concept of silhouette coherence,
each optic ray oi(d) must touch the object surface
at some point x, and all rays from the associated
camera center ci graze the object along a surface
curve called the rim Γi [30]. As a result, we search
along the optic ray for the point x that is closest
to the object surface and assume it is a true surface
point on the rim Γi. More precisely, we search on
the object surface to find a point p that is closest to
the optic ray and back project it onto the ray to get
the projection point x as shown in Fig. 6(a). Since

(a) (b)

Fig. 6. Surface constraints derived from silhouette. (a) Back project
the point p on the object surface that closest to optical ray oi(d)
to get the surface constrained point x. (b) All points on the path
connecting the constraint point x and the closest surface point p are
collected to the set BL(x) as the blocking regions shown in blue.
The base surface is shown as the black curve whereas the red one
represents the true surface.

x is supposed to lie on the object surface and p is
the closet point on the surface, all points on the path
connecting x and p are collected into a set BL(x)
(called a blocking region as in [32]) as shown in
Fig. 6(b).

Then we incorporate the geometric constraints
into the graph-cut optimization by setting the weight
of the edge joining the corresponding graph node of
each point in BL(x) and the Sink node to ws =
4π
3

h2, where h is the voxel size. By the definition
of wij in Equation (7), this is the maximum weight
for edges between any two neighboring voxels and
it constrains the solution cut to not pass through
all blocking regions derived from silhouettes. Even-
tually, the protrusion parts that have been cut out
originally may retain on the improved reconstructed
surface.

IV. Experiments and Results

In this section, we present some experimental
results of camera calibration and 3D reconstruction.
We evaluated our approach with 2 real data sets: the
toy owl and the toy house. The owl sequence con-
tains 96 images, and the house sequence contains
120 images.

We use the silhouette coherence defined in Equa-
tion (3) to evaluate the accuracy of our automatic
calibration results. To be more intuitive, the ratio
of area between the original silhouette and the
silhouette obtained from projection of reconstructed



(a) Manual calibration (b) Our method

(c) Manual Calibration (d) Our Method

Fig. 7. Reconstructed visual hulls of the owl for a selected view and
the corresponding silhouette coherence . Left: model reconstructed
from manual calibrated images. Right: model reconstructed from self-
calibrated images using our method.

TABLE I
SILHOUETTE COHERENCE FOR A SELECTED VIEW – OWL

Intersection % Coherence
Manual Calibration 99.0306% 0.986279
Our Method 98.5969% 0.983877

visual hull, defined as:

C(Si, S
V
i ) =

∫
(Si

∩
SV

i )∫
Si

∈ [0, 1], (9)

is also used to compare the similarity between
the two silhouettes, where higher percentage of
intersection implies that the reprojected silhouette
is closer to the original one in the case that visual
hull is contained in the real object, and thus the
calibration result is considered to be more accurate.

We compare the results of manual calibration and
our method with the two measurements mentioned
above. The manual calibration is performed by the
technique proposed by Zhang [37], which is proved
to provide very good results and is widely used for
camera calibration. We reconstruct visual hulls for
the toy owl using camera parameters obtained from
both our calibrated method and manual calibration.
Fig. 7 shows back views of the reconstructed model

TABLE II
AVERAGE SILHOUETTE COHERENCE – OWL

Avg. Intersection % Avg. Coherence
Manual Calibration 99.3808% 0.988559
Our Method 98.0271% 0.978078

and the correlation between the original silhouettes
and the projected silhouettes. The original silhouette
is drawn in red, the projected silhouette of the
reconstructed visual hull is drawn in green, and so
the intersected area is shown in yellow.

The evaluation of accuracy is listed in TABLE I,
where the values of Intersection % and Coherence
are computed from Equation (3) and Equation (9)
respectively. The average scores computed from all
images are listed in TABLE II.

For the toy house, a view is selected to render the
reconstructed visual hull as shown in Fig. 8, and the
correlation between the original silhouettes and the
projected silhouettes are also depicted. It is clear
that the calibration result obtained from our method
is close to that by manual calibration. The tower
of the reconstructed house is sharpened due to the
inaccurate camera calibration, but this phenomenon
is less obvious in the visual hull reconstructed with
camera parameters calibrated automatically by our
method as shown in TABLE III. TABLE IV gives
average scores computed from all images.

We compute NCC between projected patches
from a 7 × 7 window, and the spatial resolution of
voxel grids was set to 3503 voxels in our experi-
ments. Higher spatial resolution results in models
with higher quality but also takes more time to
reconstruct the model. Fig. 9 and Fig. 10 shown the
results of model reconstruction from the owl and
the house image sequences respectively. Some of
the input images are shown in the leftmost column,
and the middle column are similar viewpoints of
models reconstructed via volumetric graph-cut with
photo-consistency constraints alone. Images in the
rightmost column shown the models reconstructed
by our method, where both photometric and geo-
metric constraints are taken into consideration.

Since the geometry of the toy owl is quite sim-
ple without many protrusions on the surface, the
contribution of exploiting silhouette constraints is
not evident. However, if we take a close look at



(a) Manual calibration (b) Our method

(c) Manual calibration (d) Our method

Fig. 8. Reconstructed visual hulls of the house for a selected
view and the corresponding silhouette coherence . Left: model recon-
structed from manual calibrated images. Right: model reconstructed
from self-calibrated images using our method.

TABLE III
SILHOUETTE COHERENCE FOR A SELECTED VIEW – HOUSE

Intersection % Coherence
Manual Calibration 98.8449% 0.984335
Our Method 99.0694% 0.984592

the model, we can see that some dents due to the
over-carving of graph-cut when considering along
the photometric constraints have been filled up. In
case of the toy house, it is obvious to observe that
the cross on the top of the tower is as thick as how
it is in the original images as shown in Fig. 10, and
the thinned parts of the tower and the cross have
been fatten by our method because of the geometric
constraints.

TABLE IV
AVERAGE SILHOUETTE COHERENCE – HOUSE

Avg. Intersection % Avg. Coherence
Manual Calibration 98.9923% 0.986454
Our Method 98.8193% 0.984933

V. Conclusions

In this work, we present an approach to recon-
struct 3D models from uncalibrated images. We
adopt the assumption that silhouettes are available
and exploit advantages of both point-based and
silhouette-based methods in our automatic cam-
era calibration procedure. An incremental structure
from motion method is first applied to recover cam-
era parameters using corresponding features among
images. Then we utilize the concept of silhouette
coherence, which defines the similarity between the
input silhouettes and the projected silhouettes of
the reconstructed visual hull, to refine the camera
parameters.

After we have obtained a set of self-calibrated im-
ages, a shape-independent photo-consistency met-
ric is used to extract the minimal surface via a
volumetric graph-cut algorithm. Our measure of
photo-consistency works by projecting each poten-
tial scene point into the input images, and evaluating
the amount of mutual agreement between those pro-
jections by normalized cross-correlation. A voting
scheme is used to avoid computing visibility for
every point on the object surface. The silhouette cue
is again incorporated into the optimization process
as a shape prior along with the photo-consistency
measure to recover precise geometry. We propose
a simple method to identify a set of points that lie
on the object surface from silhouettes and constrain
the reconstructed surface to pass through or close
to these points.

We validate the proposed method on 2 real data
sets that both contain over 90 images. The results
of camera calibration are quite accurate and are
comparable to those obtained by manual calibration.
The models reconstructed by enforcing both photo-
metric and geometric consistency constraints exhibit
surface details as well as the protrusive parts in the
meantime.

One of the limitations of the proposed approach
is that it cannot recover concavities that are too
deep to be carved away by the graph-cut. To exploit
the silhouette constraints for both camera calibra-
tion and model reconstruction, the requirement of
foreground/background segmentation for each input
image also limits the feasibility of the current ap-
proach since silhouettes are not always available. As



Fig. 9. Toy owl. Left column: image sequence. Middle column:
similar viewpoints of the model reconstructed via volumetric graph
cut with photo-consistency constraints alone. Right column: similar
viewpoints of the model reconstructed via volumetric graph cut with
both photo-consistency and silhouette constraints.

a consequence, a 2D segmentation algorithm can be
incorporated into our camera calibration and model
reconstruction framework to extract silhouettes from
input images automatically, which makes the system
of multi-view stereo reconstruction fully automatic
and more practical.
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