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Abstract

In this paper, a new model based on the DPR
(distributed program reliability) and DSR (distributed
system reliability ) is presented to evaluate the
reliability in a typical distributed computing system
(DCS). Two reliability measures are introduced which
are  Markov-chain distibuted program reliability
(MDPR) and Markov-chain  distributed  system
reliability (MDSR) to capture a more realistic view of
the behavior of DCS in actual operating conditions. In
addition, a simulation result is also presented to prove
its correction.

Keywords: Distributed Computing System, Distributed
Systems, Reliability, Markov-chain

1. Introduction

A typical DCS reliability problem is often
modeling the network as a graph G(V,E), where the V is
the set of nodes which denote processing elements and
the E is the set of edges which denote communication
links [1]. In this paper, we use distributed program
reliability (DPR) and distributed system reliability (DSR)

" interconnecting links must all be
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which is defined in [2] as a basis to evaluate the
reliability of a DCS. In a DCS, programs and data files
are distributed at several processing elements/nodes. For
a successful execution of a program, these processing
elements must cooperate in the execution of a program
via communication links. In the meantime, the local
processing element holding the executing program, the
processing elements holding the required files, and the
operational.
Distributed program reliability is the probability that a
program can run successfully on a DCS. Distributed
system reliability, which is the reliability measure of the
entire system, is defined to be the probability that a set
of given programs can run successfully on a DCS.

In the evaluation of DPR and DSR, the File
Spanning Tree (FST) of the DCS must firstly be found.
An FST which is a spanning tree that connects the root
node ( the processing element that runs the program
under consideration ) to some other nodes such that its
vertices hold all the needed files for the program. A
Minimal File Spanning Tree (MFST) is also a FST such
that there is no other FST which is subset of it.
Consequently, the DPR is the probability that at least
one disjoint MFST or a given program is working, and
DSR is the probability that at least one disjoint MFST of
all the distributed programs are working,

In the previous research, we have known that the
computation of DPR and DSR depends not ‘only on the
system topology, but also on the distribution of
programs and data-files[3,4].

Moreover, we model the system as a discrete time
Markov model. The state space of Markov-chain is
organized by the combinations of link up and down
conditions. To improve the reliability, a repairable
system which the links with finite repair rate is

" proposed to evaluate the impact for reliability, and
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different link failure rates will be taken to show how
reliability change.

The rest of this paper is organized as follows. The
system models are described in section 2. Section 3 is
the model analysis which describes the analytical
derivation and the procedures to evaluate the measures
of MDPR, MDSR and MTTF. Section 4 illustrates the
reliability analysis results and simulation results.
Section 5 gives the conclusions.

2. System Models

Considering the network graph shown in figure 1,
the distribution of programs, data-files and files
required for program execution are listed. Each node is
assumed to be perfectly reliable such that it never fails.
Each link in the network may have two states, up

(working) or down (failed) such that there are 2]E|
combinations of link $tates. The total state space size is

therefore 2!El. In the case of figure 1 there are total 32
states. If the failure of links are independent of each
other, and the up/down combinations of the links
construct a state. Thus, we can model the system with
finite state space $={0,1,2,....,m}, whose stochastic
behavior in time is described by a time-homogeneous
Markov chain X ={Y, , where t is the set of time
points. ’

FA1={F1,F2} PRG1=(P1} FN1={F1,F2,F3)
FA2={F3) PRG2={P2,P3}  FN2=(F1F2F4}
FA3={F4) PRG3={P3} FN3={F1,F2,F3F4}
FA4=(F2,F3} PRG4={P1)
Figure 1. A simple DCS with four nodes and
five links
Assumptions

1. A DCS is modeled by a undirected graph G, where
nodes denote processing elements, and edges denote
communication links.

2. A link has 2 states : up and down.

3. Link failure rates are statistically independent and
exponentially distributed.

4. Link repair rates are statistically independent and
exponentially distributed.

5. Transitions from one state into another state involve
link failures and link repairs.

6. At any unit of time, there is at most one link can fail
or repair.

7. Each processing element is perfectly reliable.

.Definition 1 : A File Spanning Graph (FSG) is a
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subgraph of the network, such that it contains at least a
FST.

Definition 2 : Markov chain distributed program
reliability (MDPR)

MDPR{()= - p_ {t}

where F is the failed state of program i

Definition 3 : Markov chain distributed system
reliability (MDSR)
MDSRsystem(t)=1_Prp{t}

where F is the failed state of all the executing
programs in the system

Reliability analysis

Reliability assessment of a DCS can be classified
by the following cases.
(1) Systems without repair capability :
A link functions for an exponentially distributed time
with rate A and then fails. ‘
(2) Systems with repair capability :
Links have a constant failure rate A with exponentially
distributed. Once a link fail, it takes an exponentially
distributed time with rate 0 to be repaired.

3. Models Analysis

Assume that & is the state space of the system
with a finite number of states. Let the system be
observed at the discrete moments of time t = 0,1,2....,
and let )X, denote the state of the system at time t.
Thus

Pr( X = xt+1|X0 =X0sees Xe = 2) = Pr( X,y = Xr+1|~Xt =)

for every choice of the nonnegative integer t and the
numbers  xgs....,xs4, €ach in &, Therefore it
satisfies the Markov property. X, denotes a m-state
finite Markov chain, where t is in (0,1,2,.....m-1). Let
its transition probability matrix P and initial state-
probabilities be given by

P= Poo Pm oo Po,m-l
P:IO P:ll . Pl.:n-l
Pm—l.o Pm-l.l . Pm-l,m-—l
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where Pf.js) =Pr( X, = j[Xk =1i),ij=0,1,..m-1;
sz1 and P,(jl) = Py

Theorem 1 : Let P be the transition probability matrix
of a finite Markov chain with elements Py

(1,j=0,1,2,....m-1). The n-step transition probabilities

PSJT’) are then obtained as the element of the matrix P”.

And we canregard P" as an n-step transition matrix.

In general, the Markov chain constructed for any
network contains one absorbing and m-1 transition
states. In our model, all of the operational states are
transient states. And all of the failed states are
aggregated into a single absorbing state W. Rearranging
the states of the system, the transition probability matrix
P can be put in the following canonical form : )

States W 1 2....(m-1)
w [1]0 0 - 0]
1
2

P

(m-1)

where

0: A (m-1) X (m-1) substochastic maitrix with
probabilities of transition only among the transient
states for its elements;

R: A (m-1) X 1 matrix whose elements are the
probabilities of the one-step transition form the (m-1)
transient states to the r recurrent states.

Let M=(] —-Q)—l be the fundamental matrix that is
available in the derivation of N;.

Theorem 2:Let £, = E[Ny). forijeT

-3

Theorem 3: Let My= , then

Ly
jel
VE(V)| = A,

In the next section, theorem 1 through theorem 3 will be
helpful in evaluating MDPR, MDSR and MTTF.

We first take network graph shown in figure 1 as
an example. For the convenience, link x17, x13, x23,

X24, X34 are labeled by &1, €2, €3, €4, 5. Bach

state of the Markov chain represented by {ij..k}, for
€is€jye-rsey, denoting link eisejs---sey has failed.
Their states are shown in figure 2.

12348} (s}

o o

12434 {134y 1245}

o ele oo o
ol ol Lo
Lo oo o o e
oo o o o
o e

Figure 2. All the FSGs of program 1

A working

A fuiled

According to the assumptions in section 2, the
state transition diagram can be shown in figure 3, which
presents the nonrepairable condition.
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Figure 3. The Markov chain process of MDPR1

Transition from state S1 to S2 implies that there is a link
fails at that time interval,

4. Analysis AND Simulation Results
Based on previous example, we try to evaluate
MDPR1! and MTTF derived in theorem 1 through

theorem 3.

System without repair capability
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Table 1 list the detailed state transition condition of
MDPR . Each link with a constant failure rate A. For
example, the failure of ¢4 in state {23} — {234} with
a failure rate A is described by a state transition 9 —
(17,1). Notice that there exists 6 — (22,24), it is
because a transition rate of 2x A since it is triggered
by the failure of link ¢, or link es.

Table 1
MDPR1 MARkov Chain
[Without Repair Capability
State Label Transition

{0} 0 (1LA).2.0)03 242050
o 1 (6. AN(7A),(8.2)22,1)
{2} 2 (92A0(10,1),(11,2),(22,1)
{33 3 (6,2)(9.2)(12.2),(13.1)
{4} 4 (7.2)410,2),(12,1),(14,2)
{51 ] (8. A1 (11 AN(13.0),(14.0)
{13) 6 (15.2),(22.23)
{14} 7 (16,0),(22.22)
(15} 8 (16.1),(22,22)
{234 9 (17.2),(18,1),(22,1)
{24) 10 (17,2),(19,1),(22,2)
{23) 11 (18,A)(19.2).(22,2)
{34) 12 (15.2),(17,1),020,1)
{35} 13 (18,2),(20.),(22.2)
(45) 14 (16.2),(19,1),(20,2)
{134y 15 (22.22)
{145} 16 22,22)
(234) 17 (21,2),(22,2)
(235) 18 (21.1),22.1)
(245} 19 (21.AM(22.1)
{345y 20 (2Q1.A)(22,%)
{2345} 21 22.1)
{F} 22 none

System with finite repair rate

Table 2 lists the detailed state transition condition
under a constant repair rate 6. The failure rate condition
is similar to table 1, except that a repair rate is
considered.

Table 2
MDPR1 Markov
[Finite Repair-rate]
State Label Transition

(0} 0 (1, 20.2,2).G.A)(4,1).(5.0)
m 1 (6.2),(7.1).(8,2).(22,2),(0,8)

{2 2 (9.A),(10,2),(11,2),(22,1),(0,9)
{3} 3 (6,A).(9.2),(12,1),(13,2),(0,0)

{4 4 (7.2),(10,2),(12,2),(14,1),(0,8)
{3} s (8,2).(11,4),(13,1),(14,2),(0,8)
{13} 6 (15,2),(22.24),(1,8),(3,8)

{14} 7 (16.2.),(22,22).(1,8).(4,0)

{15} 8 (16,1),(22,22),(1,8).(5,8)

{23} 9 (17,1),(18,1),(22,2),(2,6),(3,8)
{24} 10 (17,2),(19,1),(22,1),(2,8),(4,8)
{25} 11 (18,2),(19,2),(22,1),(2,0),(5,8)
{34} 12 (15.2),(17,1),(20,2),(3,6),(4,8)
{35) 13 (18,1),(20,1).(22,2).(3.8),(5,0)
{45} 14 (16,1),(19,1),(20,2),(4,8),(5,9)
{134} 15 (22,22),(6,0),(12,8)

(145} 16 (22,21).(7,0),(8,8),(14,8)

{234) 17 (21,1).(22,2),(9,0),(10,8),(12,8)
{235} 18 (21,1),(22,1),(9.8),(11,8),(13,0)
{245} 19 (21,2),(22,1),(10,6).(11,8),(14,8)
{345y 20 (21,2),(22,1).(12,0).(13,0),(14,8)
{2345) 21 (22,1).(17,6),(18,8),(19,0),(20,8)
{F} 22 none

We are not only interested in evaluating the
MDPRI1 under a constani A, but also to realize the
impact for different failure rate A and repair rate 0. By
using the contents of table 1, we can gain the transition
probability matrix P and then Transform P to a
canonical form. Hence, after t unit of time from initial
state, A/DPR)(t) isthen obtainedby — pt[i][j],
where i is the initial state and j is absorbing state (In our
model, it is a failed state). P[i][j]l indicates the
probability transition form state i to state j.

Figure 4 shows the MDPR1 under different link
failure rate. Figure 5 shows that under a constant link
failure rate 0.03, the impact of MDPR1 for different
link repair rates. Compare to Figure 4 and Figure 5, we
can conclude that the reliability of distributed program 1
can benefit more from an decrease of the link failure
rate then the increase of link repair rate. In fact, the
reliability of distributed program 1 becomes better than
that of a higher link repair rate when A below a
threshold value. Figure 6 and Figure 7 is the. simulation
result at the same condition, it also supports this view of
point.

Mean time to failure (MTTF)

. Mean time to failure is defined as the total number
of times spend in transient (operational) state before
entering a absorbing (failed) state. Hence, it is the

measure ”E (N ,)” described in theorem 3. Figure 8 and

Figure 9 shows the value of MTTF for different link
failure rate from initial state.

Choice of link

Referring to figure 10, it provides us another view
of figure 4. Its availability is that, for example, what is
the answer of link reliability under system lifetime = T
and subject to a program/system reliability constraint.
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Figure 4. Mathematical analysis on different failure
rates
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Figure 5. Mathematical analysis on different repair rates
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Figure 6. Simulation analysis on different failure rate
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Figure 7. Simulation analysis on different repair rate
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0.01 002 0.03 004
- . Link failure rate

0.05

The compé;i;éqg of MTTF under different link
" failure rate

Figure 8.

0.02 0.03 004 005 006 007 008 009 0.1
Link repair rate

Figure 9. The comparison of MTTF under constant
A =0.03 and different link repair rate
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0.99

0.96 0.97 0.98

Figure 10. MDPRI1 versus link reliability on different
time points
5. Conclusions

Many researches have addressed on the study of
reliability analysis on distributed systems or networks.
In this paper, a new model has presented to meet
Markov chain property. The failure/repair rates of each
link is independent and exponentially distributed. Thus,
the "time" behavior of the system is described by
Markov chain X ={X,; t=0,1,2,.....} witha given
transition matrix and initial state-probabilities. By
means of a stochastic model based on a Markov chain
with a absorbing state, the system reliability can then be
described as a function of time, such that it can capture
a more realistic behavior. This paper consider link
up/down combinations as the system states to simplify
the model and the evaluation. From the simnulation, the
result of the analysis model is quite similar to that of the
simulation. The system with the capacity of repairment
can have higher reliability for all situations

.....
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