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Abstract―The new concept, cloud computing uses 
low-power hosts to achieve high reliability and will ensure 
the ability to be better. Cloud computing increases the 
number of user’s applications on the Internet. In this 
research, the cloud computing environment can provide 
better reliability and fluency is focused. The consensus 
problem is fundamental to fault-tolerant distributed 
systems, but previous studies of the consensus problem are 
not suitable for a cloud computing environment. To 
enhance fault tolerance, the consensus problem in a cloud 
computing environment is revisited in this study. The 
Generalized Consensus Protocol of Cloud Computing 
(GCPCC) that we proposed can solve the consensus 
problem with a minimal number of rounds of message 
exchange and tolerates a maximal number of faulty 
components. The GCPCC attempts to solve the consensus 
problem and makes all correct components in a cloud 
computing environment achieve stable results without any 
influence from faulty components. 
Keywords ― Consensus, Cloud Computing, Distributed 
System, Fault Tolerant. 
 

I. INTRODUCTION 

Today, network bandwidth and hardware 
technology must continuously advance to keep pace 
with the vigorous development of the Internet. The 
new concept of cloud computing allows for more 
applications for internet users [1,3,7,10,15]. In the 
real world of technology, the distributed system has 
to provide better reliability and fluency with service 
applications. Cloud computing is currently used 
many commodity computers that can cooperate to 
perform a specific service together. In addition, the 
Internet applications are continuously enhanced 
with multimedia, and vigorous development of the 
device quickly occurs in the network system [1,15]. 
As network bandwidth and quality outstrip computer 
performance, various communication and 
computing technologies previously regarded as 
being of different domains that can integrated, such 

as telecommunication, multimedia, information 
technology, and construction simulation. Thus, 
applications associated with network integration 
have gradually attracted considerable attention. 
Similarly, cloud computing facilitated through 
distributed applications over networks has also 
gained increased recognition. In a cloud computing 
environment, users have access to faster operational 
capability with internet application [19], and the 
computer systems must have high stability to handle 
where many users to execute in the environment. In 
a distributed computing system, components 
allocated to different places or in separate units are 
connected, so that they may collectively be used to 
greater advantage [4]. Cloud computing can ensure 
increased ability to use low-power hosts to achieve 
high reliability. In addition, cloud computing has 
greatly encouraged distributed system design and 
application to support user-oriented service 
applications [8]. Furthermore, many applications of 
cloud computing are increase user convenience, 
such as YouTube [13]. Component reliability is one 
of the most important aspects of cloud computing as 
it ensures overall reliability and fluency. Thus, the 
tasks in a distributed system must be synchronously 
completed and components must achieve common 
agreement. To ensure the cloud computing 
environment is reliable, a mechanism to ensure that 
a set of transmission media and nodes reaches an 
agreed value is thus necessary. 

The concept of cloud computing uses many 
commodity computers in conjunction to complete a 
specific service for users. The requisite large 
number of computers will necessarily introduce 
faulty components into the system. However, the 
system has to allow for the toleration of faults while 
maintaining functionality. In the computer system, 



 
 

 

each node has to pass messages through 
transmission media to other nodes to cooperate 
completed user requests. Many users in the cloud 
computing environment where have to execute 
application services simultaneously. Therefore, the 
high fault-tolerant capability of a cloud computing 
environment needs to be respected. However, the 
symptoms of faulty components can influence the 
normal operation of a system. Cloud computing of 
distributed systems tolerates the faulty components 
in the service environment because the system 
should respond to user requests quickly and 
completely the user requests as service. The 
requisite large number of computers maybe meet 
some computers will be fault to introduce faulty 
components into the system. However, components 
in the cloud computing environment cannot occur 
too much failure, otherwise should influence system 
provided application services for users, so that, the 
high fault-tolerant capability of a cloud computing 
environment needs to be respected.  Simultaneously, 
in the cloud computing environment, nodes that 
receive user requests maybe influence by the failure 
transmission media and nodes. Hence, to remove the 
affect of faulty nodes is need to be mitigated. In a 
cloud computing environment, achieving perfect 
reliability must be accomplished by allowing a given 
set of transmission media and nodes to reach a 
common agreement even in the presence of faulty 
components. 

The Byzantine Agreement (BA) problem has been 
studied in the literature [2,5,6,9,11] and the 
consensus problem is a closely related sub-problem 
of BA problem. The BA problem was first 
introduced in 1982 by Lamport who proposed a 
protocol to solve the fault tolerance problem in 
computer systems [5]. The consensus problem is one 
of the most important issues for designing a 
fault-tolerant distributed system [9]. Solving the 
consensus problem, many applications can be 
achieved [11]. Therefore, the consensus problem in a 
cloud computing environment is revisited to discuss 
its solution with malicious faulty components in this 
paper. The proposed protocol is named Generalized 
Consensus Protocol of Cloud Computing (GCPCC) 
can lead to a consensus between each correct node in 
a cloud computing environment. 

The remainder of this paper is organized as 
follows. Section 2 discusses the related works. The 
basic assumption of consensus problem is illustrated 
in Section 3. The proposed protocol is shown in 
Section 4. Examples are given in Section 5. Section 
6 gives the correctness and complexity of the 
GCPCC. Section 8 concludes this paper. 

II. RELATED WORK 

Cloud computing is a new distributed system 
concept that has been implemented by businesses 
such as Google and Amazon [13]. Google provides 
various applications on their internet platform such 
as Gmail and YouTube [14]. In addition, Google 
provides free storage capacity with gigabytes for 
each user. The big and powerful Google search 
engine allows users to find multiple results from 
different file types on the Internet. In previous 
literature, the consensus problem has been solved in 
various network topologies. However, previous 
studies of the consensus problem [11] are not 
specifically address cloud computing to order the 
application of Internet. Hence, in this paper, the 
topology of a cloud computing environment is 
applied. Subsequently, the consensus problem with 
failure components in the topology of a cloud 
computing is discussed. Cloud computing is a new 
distributed system computing concept in which 
nodes are interconnected with the Internet; the 
network is assumed reliable and synchronous. 
Previous studies with network topology in the 
consensus problem that have not cloud computing 
environment suitable. Fig. 1 is the topology of cloud 
computing used in our study. 
(1) The nodes in an A-Level group must receive the 

request from users of different types of 
applications. Therefore, the nodes of an A-Level 
group have higher computational capability than 
the nodes in a B-Level group. In addition, nodes 
in an A-Level group must compute enormous 
amounts data and can communicate with other 
nodes in the same group directly through 
transmission media (TM). 

(2) Some nodes form groups in the B-Level group, 
where each group provides a specific application 
service. According to the properties of nodes, the 
nodes are clustered to group Bi where 1≤i≤cn and 



 
 

 

cn is the total number of groups in a B-Level 
group. 

(3) For the reliable communication, multiple inter 
transmission media (ITM) are used to connect the 
nodes between an A-Level group and a B-Level 
group. In A-Level group, each node must forward 
the message to all nodes in the corresponding 
group of B-Level group. 

 

 
Fig. 1. Example of topology of cloud computing 
Cloud Computing is a style of computing where 

massively scalable IT-related capabilities are 
provided to multiple external customers “as a 
service” using internet technologies [19]. The cloud 
providers have to achieve a large, general-purpose 
computing infrastructure; and virtualization of 
infrastructure for different customers and services to 
provide the multiple application services. The ZEUS 
Company has developed several types of software 
that can create, manage, and deliver exceptional 
online services from physical and virtual datacenters 
or from any cloud environment, such as ZXTM and 
ZEUS Web Server (ZWS) [17]. A cloud 
infrastructure virtualizes large-scale computing 
resources and packages them up into smaller 
quantities [18]. Furthermore, the ZEUS Company 
develops software that can let the cloud provider 
easily and cost-effectively offer every customer a 
dedicated application delivery solution [20]. The 
ZXTM software is much more than a shared load 
balancing service and it offers a low-cost starting 
point in hardware development, with a smooth and 
cost-effective upgrade path [20]. 

The ZEUS provided network framework can be 
utilized to develop new cloud computing methods, 

and is utilized in the current work. In this network 
composition that can support the network topology 
of cloud computing used in our research. According 
to the ZEUS network framework can testify the 
construction of network topology that we proposed 
in this paper, which let the company has to be 
considered. Hence, the proposed network topology 
of cloud computing that has the trustworthy example 
with the company provided to support our research. 

III. THE BASIC ASSUMPTION OF CONSENSUS PROBLEM 

In this paper, the consensus problem with faulty 
nodes and transmission media in cloud computing 
topology is revised. It requires a number of 
independent correct nodes to reach consensus when 
some of those components might be faulty. A 
distributed system can attain stable results without 
any influence from faulty components. However, in 
many cases, the faulty components will influence the 
system to reach agreement. Thus, the BA has been 
achieved if the following conditions are met [5]: 

Agreement: All correct nodes agree on a common 
decision value. 

Validity: If the source node is correct, then all 
correct nodes agree on the initial 
value sent by the source node. 

The BA problem was defined as follows [5]: 
(1) Of the n nodes (n>3) at most one-third of the 

total number of nodes can fail without breaking 
down a network system; 

(2) Nodes communicate with each other through 
message exchange in a fully connected network; 

(3) The message sender is identifiable by receiving 
nodes; 

(4) A node is chosen as a source, and its initial 
value vs is broadcasted to other nodes and itself 
to execute the protocol;  

(5) In the system, faulty nodes only are considered. 
A closely related sub-problem of the BA problem, 

the consensus problem, has been studied extensively 
in the literature [11]. In this paper, we will revisit the 
consensus problem in a cloud computing 
environment. The consensus problem requires a 
protocol to allow the components to exchange 
messages then the correct components are to achieve 
consensus agreement. Hence, the proposed protocol 



 
 

 

we refer to as the Generalized Consensus Protocol of 
Cloud Computing (GCPCC). It can lead to an 
agreement of each correct component in a cloud 
computing topology. Lamport argues the consensus 
problem under the assumption of synchronous 
behavior in the BA problem [5] so that assumptions 
of the BA problem can be used to explain the 
consensus problem. The consensus problem has k 
initial values and subsequently achieves a common 
value even if certain transmission media and nodes 
fail. Therefore, the consensus problem is similar to 
the BA problem; such as in executing k copies of BA 
nodes. In this paper, the consensus problem for 
malicious faulty components in a cloud computing 
environment is solved. The proposed protocol of 
consensus defined with solutions, the goal of solving 
a consensus problem is to develop an optimal 
algorithm can use the minimal number of rounds and 
tolerate the maximal number of allowable faulty 
components to achieve consensus[11]. 

Achieving consensus on a same value in a 
distributed system, the protocols are required to 
provide that systems be executed correctly while 
achieving consensus on an identical value in a 
distributed system. In the consensus problem, many 
cases are based on the assumption of node failure in 
the general network [5]. Therefore, it is important to 
propose a protocol to solve the consensus problem 
[9] in a topology of cloud computing existence 
faulty components. In a cloud computing system all 
components have to execute a protocol that ensures 
that correct components reach consensus with the 
result that the system provides stable and reliable 
service for users. All nodes reach consensus, 
fault-tolerance capacity is enhanced even if there are 
faults with components in the topology. In this 
research, we solve the consensus problem for 
malicious fault transmission media and nodes in a 
cloud computing topology. However, the proposed 
protocol DFCCP is used to solve the problem of 
malicious fault components and allow all correct 
components to achieve consensus agreement. 
Fault-tolerance capacity is thus enhanced even if 
faulty transmission media and node in chorus exist 
in the topology. 

 

IV. GCPCC FOR CLOUD COMPUTING 

Cloud computing environment must be able to 
provide multiple services [10]. In this research, the 
consensus problem is revisit in cloud computing 
where faulty transmission media and nodes may 
influence normal operation in the system. In this 
paper, a new protocol called Generalized Consensus 
Protocol of Cloud Computing (GCPCC) is proposed 
to solve the consensus problem when caused by 
faulty components that may send incorrect messages 
that may in turn influence how the system reaches 
consensus in a cloud computing environment. If the 
number of faulty components can be known then the 
number of rounds required can be estimated to solve 
the consensus problem. For instance, if the faulty 
component is a node, then GCPCC can save some 
rounds required to remove the influence of faulty 
transmission media [11]. Conceptually, GCPCC 
removes the influence of faulty transmission media 
during exchange message by using a majority voting 
scheme because the major transmission media of the 
topology are assumed correct [11]. In the cloud 
computing topology, the main work of an A-Level 
group’s nodes is collecting user requests. Each node 
in an A-Level group has to receive the various 
requests from users, while the nodes in a B-Level 
group’s cluster provide many services for users. 
Hence, all nodes may receive different initial values 
different two level groups. The protocol GCPCC is 
executed by nodes in the A-Level and B-Level 
groups. 

In a cloud computing environment, each node in 
A-Level group receives the various requests from 
users, and the nodes in B-Level group provide 
services to users. Each node of an A-Level group 
may receive a different service request from users. 
Each node in an A-Level group that uses the service 
request as the initial value executes the GCPCC to 
obtain the common vector DECA. Then, each node 
of the A-Level group forwards the element of vector 
DECA to the nodes in the B-Level group. However, 
the specific service request is to be conformed by the 
nodes of same group. Each node in the same cluster 
of a B-Level group receives the element from the 
nodes of the A-Level group. In the B-Level group, 
nodes may receive the fake value by the faulty 
transmission media and failure node in the A-Level 



 
 

 

group. There the nodes in the B-Level group is 
receives the fake value from failure nodes of 
A-Level group through correct transmission media. 
Therefore, a failure node of the A-level group for 
nodes of a B-Level group is a fault transmission 
media. Therefore, the number of A-Level group’s 
failure nodes and transmission media must be less 
than half with those components. Sequentially, each 
node in the same cluster of B-Level group has to 
take majority value of the received element values 
(DECA). Hence, the initial value for each node can 
be obtained in the same cluster in the B-Level group. 
Nodes in the same cluster of a B-Level group must 
exchange and receive the initial value with other 
nodes by executing the Consensus Process. Finally, 
each node takes a majority value of the vector value 
(DECB). Then the consensus value can be obtained 
by the GCPCC. GCPCC is invoked to solve the 
consensus problem with faulty transmission media 
and nodes in cloud computing. Based on the network 
topology of cloud computing, GCPCC can allow 
each node to transmit messages to other nodes 
without influence from faulty transmission media 
and nodes, the proposed protocol is shown in Fig. 2. 

 
GCPCC 
(1) The nodes of the A-Level group execute the 
Consensus Process (for the node i in the A-Level 
group with initial value vi; 1 ≤ i ≤ nA) where nA is the 
total number of nodes in the A-Level group. 
(2) Each node of the cluster in the A-Level group 
sends the specific element of DECA to the nodes of a 
specific application having the cluster of the 
B-Level group. 
(3) Each node k in the same cluster of a B-Level 
group takes a majority value MAJk (1≤k≤nBj) of the 
received element, then the initial value vk of each 
node k can be obtained. 
(4) The nodes of the B-Level group’s cluster execute 
the Consensus Process (for the node i in the cluster j 
of the B-Level group with common value vi; 
1≤i≤nBj). 
(5) Each node of the same cluster in a B-Level group 
takes a majority value of DECB, and then the 
consensus value v is obtained. 
Consensus Process(i, n, X-Level group) 

Pre-Execute.  
Compute the number of rounds required σ = 
⎣(n–1)/3⎦+2 
Message Gather Stage: 
r = 1, do: 
A) Each node i parallel broadcasts its initial value vi 

to other nodes in the cluster of an X-Level group.
B) Each node receives and stores the n values sent 

from n nodes of the cluster in an X-Level group in 
the corresponding root of each mg-tree. 

for r = 2; r ≤ σ ;σ +2; 
C) Each node parallel transmits the values at level r - 

1 in the corresponding mg-tree to other nodes in 
the cluster of an X-Level group. 

D) Each node receives values from other nodes and 
stores them in level r of n corresponding 
mg-trees. 

E) Call MAJ function. 
Decision Making Stage: 
Step 1: Reorganize each mg-tree into a 

corresponding ic-tree by deleting the vertices 
with repeated node names. 

Step 2: VOTE(i, n) function is paralleled to apply to 
the root of each corresponding ic-tree, then a 
vector DECX as a common value with n 
elements has been obtained. 

Function VOTE(i, n) 
1. val(i), if i is a leaf. 
2. The majority value in the set of {VOTE (αi, 

n)|1≤i≤n, and vertex αi is a child of vertex α}, if 
such a majority value exists. 

3. A default value φ is chosen otherwise. 
Function MAJ 
Step 1: Count the received values and take the 

majority, then set a majority value x. 
Step 2: If the majority value is not existed, then 

output a majority value φ. 
Step 3: Otherwise, output a majority value x, where 

x ∈ {0,1}. 
Fig. 2. The proposed protocol GCPCC 

The node in B-Level group’s cluster receives the 
initial value through the GCPCC. The Consensus 
Process of GCPCC requires σ=⎣(n–1)/3⎦+2 rounds 
to receive sufficient messages for A- and B-Level 
groups’ nodes. In the first round of Message Gather 
Stage, each node parallel transmits its initial value to 



 
 

 

other nodes in the same cluster and then receives the 
value and stores it at the r - 1 level of its mg-tree. 
The mg-tree is a tree data structure that is used to 
store the received messages [11]. Subsequently, each 
node in the same cluster transmits the received 
messages to other nodes and stores it at level r in its 
mg-tree. The function MAJ is applied on every two 
rounds in the leaf of mg-tree to take majority values 
to banish influence of the fault transmission media. 
In the Decision Making Stage of Consensus Process, 
each node reorganizes its mg-tree into a 
corresponding ic-tree. The ic-tree is a tree structure 
that is used to store a received message without 
repeated node names [11]. The function VOTE is 
applied to the root of each corresponding ic-tree to 
take the majority value, and then a vector DECA is 
obtained. Each element of DECA is mapped to a 
specific application that will be executed in the 
corresponding cluster of a B-Level group. Each node 
of the same cluster in the B-Level group takes a 
majority value as the initial value from the vector. 
Sequentially, each node in the same cluster which 
after execute the Message Gather Stage of 
Consensus Process and applied function MAJ to 
banish the fault transmission media, then each node 
reorganizes its mg-tree into a corresponding ic-tree 
and apply function VOTE to obtain the consensus 
value. Finally, all correct nodes in the same cluster 
are achieved the consensus value to reach 
agreement. 

V. EXAMPLE OF EXECUTING GCPCC 

An example of executing the GCPCC based on a 
cloud computing environment is shown in Fig. 3. In 
addition, an example of an A-Level group is shown 
in Fig. 4-1. The nodes in the A-Level group receive 
service requests. The protocol, for this example, 
requires four rounds (σ=⎣(nA–1)/3⎦+2= 
⎣(7–1)/3⎦+2=4, where nA is the number of nodes in 
the A-Level) to exchange the messages. Each node 
can obtain the initial value in the A cluster as shown 
in Fig. 4-2. The different requests are received from 
different users by each node, such as A1 receives the 
video service request and A5 receives the blog 
service request, etc. In every round of Message 
Gather Stage, there each node parallel transmits the 
initial value to all nodes in the same cluster and 

stores the received values in the corresponding root 
of the level 2 to 4 each mg-tree as shown in Figs. 4-3 
to 6-6. Furthermore, the function MAJ is executed in 
level 2 and 4 as shown in Figs. 4-4 and 4.6. 
Subsequently, in the Decision Making Stage, the 
mg-tree is reorganized into the ic-tree by deleting 
the vertices with repeated node names as shown in 
Fig. 4-7. The function VOTE is applied on each 
corresponding ic-tree of all nodes and then taking 
the majority value of level 3 to 1. Eventually, the 
common vector value DECA is obtained for all nodes 
in the A-Level group as shown in Fig. 4-8. 

All nodes in the cluster of the B-Level group 
receive the element DECA from the nodes of the 
A-Level group by multiple transmission media that 
the example as shown in Fig 5. All nodes in cluster B
Ⅱ-1 of the B-Level group receive the element value 
DECA that transmits from the nodes in the A-Level 
group for the specific applications needing to be 
serviced. If the nodes in the A-Level group send the 
E-mail service request with elements of DECA to all 
nodes in cluster BⅡ-1. Subsequently, the elements 
of DECA can receives with each node in cluster BⅡ
-1 receives the elements of DECA, and then takes a 
majority value as shown in Fig. 6. 

The example of cluster BⅡ-1 in a B-Level group 
is presented in Fig. 7. In this example, there are eight 
nodes in cluster B Ⅱ -1 requiring four rounds 
(σ=⎣(nBj–1)/3⎦+2= ⎣(8–1)/3⎦+2=4, where nBj is the 
number of nodes in cluster BⅡ-1 of the B-Level 
group). Fig. 8-1 presents each node’s initial value. In 
the first round of Message Gather Stage, the node 
sends the initial value (=1) to other nodes and 
receives it from other nodes in same cluster as 
shown in Fig. 8-2. The node B3 to execute the 
second to four rounds of Message Gather Stage and 
the function MAJ is executed in level two to four as 
shown in Figs. 8-3 and 8-5. In the Decision Making 
Stage, the node B3’s mg-tree is reorganized into the 
corresponding ic-tree as shown in Fig 8-6; and the 
function VOTE is applied on the ic-tree’s root to 
take the majority value, and DECB (=1) is obtained 
as shown in Fig. 8-7. Hence, the consensus value has 
been obtained and all correct nodes reach consensus. 

 



 
 

 

 
Fig. 3. An example of cloud computing environment
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Fig.4-1.Example cluster A in A-Level group 

 
A1 A2 A3 A4 A5 A6 
0 1 0 1 0 1 

Fig. 4-2. The initial value of each node in A cluster 
 

level 0 
Root level 1  

level 0 
Root level 1  

level 0
Root level 1

level 0
Root level 1

level 0
Root level 1  

level 0 
Root level 1

A1 1 0  A2 1 0  A3 1 0 A4 1 0 A5 1 1  A6 1 0
 2 1   2 1   2 1  2 1  2 1   2 1
 3 1   3 1   3 0  3 1  3 1   3 0
 4 1   4 1   4 1  4 1  4 1   4 1
 5 1   5 0   5 0  5 0  5 0   5 0
 6 1   6 1   6 1  6 1  6 1   6 1

Fig. 4-3. The mg-tree of each node in the A cluster at the 1st round 
 

level 0 
Root level 1 level 2 
A1 Val(1)=0 11 0 

 MAJ↑ 12 0 
 (0,0,1,0,1,0) 13 1 
  14 0 
  15 1 
  16 0 
    
 Val(2)=1 21 1 
 MAJ↑ 22 1 
 (1,1,0,1,1,1) 23 0 
  24 1 
  25 1 
  26 1 
    
 Val(3)=1 31 1 
 MAJ↑ 32 1 
 (1,1,0,1,1,0) 33 0 
  34 1 
  35 1 
  36 0 
    
 Val(4)=1 41 1 
 MAJ↑ 42 1 
 (1,1,0,1,1,1) 43 0 
  44 1 
  45 1 
  46 1 
    
 Val(5)= 0 51 1 
 MAJ↑ 52 0 
 (1,0,1,0,0,0) 53 1 
  54 0 
  55 0 
  56 0 
    
 Val(6)=1 61 1 
 MAJ↑ 62 1 
 (1,1,0,1,1,1) 63 0 
  64 1 
  65 1 
  66 1 
 

… … … 

Fig. 4-4. The mg-tree of node A1 at the 2nd round

level 0
Root level 1 level 2 level 3 
A1 Val(1)=0 Val(11)=0 111 0 

 MAJ↑  112 0 
 (0,0,1,0,1,0)  113 1 
   114 0 
   115 1 
   116 0 
     
  Val(12)=0 121 1 
   122 1 
   123 0 
   124 1 
   125 1 
   126 1 
     
  Val(13)=1 131 1 
   132 1 
   133 0 
   134 1 
   135 1 
   136 0 
     
  Val(14)=0 141 1 
   142 1 
   143 0 
   144 1 
   145 1 
   146 1 
     
  Val(15)=0 151 1 
   152 0 
   153 1 
   154 0 
   155 0 
   156 0 
     
  Val(16)=0 161 1 
   162 1 
   163 0 
   164 1 
   165 1 
   166 1 
 

… … … … 

Fig. 4-5 The mg-tree of node A1 at the 3rd round
 
 



 
 

 

level 0 
Root level 1 level 2 level 3 level 4 
A1 Val(1)=0 Val(11)=0 Val(111)=0 1111 0 

 MAJ↑  MAJ↑ 1112 0 
 (0,0,1,0,1,0)  (0,0,1,0,1,0) 1113 1 
    1114 0 
    1115 1 
    1116 0 
      
   Val(112)=0 1121 0 
   MAJ↑ 1122 0 
   (0,0,1,0,0,0) 1123 1 
    1124 0 
    1125 0 
    1126 0 
      
   Val(113)=0 1131 0 
   MAJ↑ 1132 0 
   (0,0,1,0,0,0) 1133 1 
    1134 0 
    1135 0 
    1136 0 
      
   Val(114)=0 1141 0 
   MAJ↑ 1142 0 
   (0,0,1,0,0,0) 1143 1 
    1144 0 
    1145 0 
    1146 0 
      
   Val(115)=0 1151 1 
   MAJ↑ 1152 0 
   (1,0,1,0,0,0) 1153 1 
    1154 0 
    1155 0 
    1156 0 
      
   Val(116)=0 1161 0 
   MAJ↑ 1162 0 
   (0,0,1,0,0,0) 1163 1 
    1164 0 
    1165 0 
    1166 0 
 … … … … …

Fig. 4-6 The mg-tree of node A1 at the 4th 
round 

level 0
Root level 1 level 2 level 3 level 4 
A1 Val(1)=0 Val(11)=0 Val(111)=0   

    1112 0 
    1113 1 
    1114 0 
    1115 1 
    1116 0 
      
   Val(112)=0 1121 0 
      
    1123 1 
    1124 0 
    1125 0 
    1126 0 
      
   Val(113)=0 1131 0 
    1132 0 
      
    1134 0 
    1135 0 
    1136 0 
      
   Val(114)=0 1141 0 
    1142 0 
    1143 1 
      
    1145 0 
    1146 0 
      
   Val(115)=0 1151 1 
    1152 0 
    1153 1 
    1154 0 
      
    1156 0 
      
   Val(116)=0 1161 0 
    1162 0 
    1163 1 
    1164 0 
    1165 0 
      
 

… … … … …

Fig. 4-7 The ic-tree of node A1 by the Decision 
Making Stage 

 
 

level 3 level 2 
VOTE (111)= 
(0,1,0,1,0)= 0 

VOTE (11)= 
(0,0,0,0,0,0)=0 

VOTE (112)= 
(0,1,0,0,0)= 0 

 

VOTE (113)= 
(0,0,0,0,0)= 0 

 

VOTE (114)= 
(0,0,1,0,0)= 0 

 

VOTE (115)= 
(1,0,1,0,0)= 0 

 

VOTE (116)= 
(0,0,1,0,0)= 0 

 

… …

 
level 2 level 1 

VOTE (11)= 
(0,0,0,0,0,0)= 0 

VOTE (1)= 
(0,0,0,0,0,0)=0 

VOTE (12)= 
(0,0,0,0,0,0)= 0 

 

VOTE (13)= 
(0,0,0,0,0,0)= 0 

 

VOTE (14)= 
(0,0,0,0,0,0)= 0 

 

VOTE (15)= 
(0,0,0,0,0,0)= 0 

 

VOTE (16)= 
(0,0,0,0,0,0)= 0 

 

… …

 
level 1 level 0 Root 

VOTE (1)= 
(0,0,0,0,0,0)= 0 

A1= (0,1,1,1,0,1)

VOTE (2)= 
(1,1,1,1,1,1)= 1 

 

VOTE (3)= 
(1,1,1,1,1,1)= 1 

 

VOTE (4)= 
(1,1,1,1,1,1)= 1 

 

VOTE (5)= 
(0,0,0,0,0,0)= 0 

 

VOTE (6)= 
(1,1,1,1,1,1)= 1 

 

… …

Fig. 4-8. The consensus value VOTE(γ) by node A1 
 

 
Fig. 5. The example for A-Level group nodes 

forward value to B-Level group’s cluster 

BⅡ-1-B1 BⅡ-1-B2 BⅡ-1-B3 … BⅡ-1-B8 
A1 0 A1 0 A1 0 … A1 0 
A2 1 A2 1 A2 1 … A2 1 
A3 0 A3 0 A3 1 … A3 0 
A4 0 A4 0 A4 0 … A4 0 
A5 1 A5 1 A5 1 … A5 1 
A6 1 A6 1 A6 1 … A6 1 
A7 1 A7 1 A7 1 … A7 1 

MAJ1=1 MAJ2=1 MAJ3=1 … MAJ8=1 

Fig. 6. Each node of BⅡ-1 cluster receive element 
of DECA from A-Level group node 

 

The 
ic-tree 

erased the 
vertices 

with 
repeated 
names 

from the 
mg-tree. 



 
 

 

Fig. 7. Example of BⅡ-1 
cluster in B-Level group 

B1 B2 B3 B4 
1 1 1 1 

 
B5 B6 B7 B8 
1 1 1 1 

 
Fig. 8-1. The initial 

value of each node in 
BⅡ-1 cluster 

level 0 
Root level 1

level 0 
Root level 1  

level 0 
Root level 1 …

Val(B1) 1 0 Val(B2) 1 0  Val(B3) 1 0 …

=1 2 1 =1 2 1  =1 2 1 …

 3 1  3 1   3 1 …

 4 1  4 1   4 1 …

 5 1  5 1   5 1 …

 6 1  6 1   6 1 …

 7 1  7 1   7 0 …

 8 1  8 1   8 1 …

Fig. 8-2. The mg-tree of each node in BⅡ-1 
cluster at the 1st round 

 
level 0 
Root level 1 Level 2 
B3 Val(1)=1 11 0 

 MAJ↑ 12 1 
 (0 … 1) 13 1 
  14 1 
  15 1 

  16 1 
  17 1 
  18 1 
    
 Val(2)=1 21 0 
 MAJ↑ 22 1 
 (0 … 1) 23 1 
  24 1 
  25 1 

  26 1 
  27 1 
  28 1 
 … … …

Fig. 8-3. The mg-tree of 
node B3 at the 2nd round 

level 0 
Root level 1 Level 2 level 3 
B3 Val(1)=1 Val(11) 111 0 

 MAJ↑ =0 112 1 
 (0 … 1)  113 1 
   114 1 
   115 1 

   116 1 
   117 1 
   118 1 
     
  Val(12) 121 0 
  =1 122 1 
   123 1 
   124 1 
   125 1 

   126 1 
   127 1 
   128 1 
 … … … …

Fig. 8-4.The mg-tree of node 
B3 at the 3rd round 

level 0
Root level 1 level 2 Level 3 level 4 
B3 Val(1)=1 Val(11)=0 Val(111)=1 1111 0 

 MAJ↑  MAJ↑ 1112 1 
 (0 … 1)  (0 … 1) 1113 1 
    1114 1 
    1115 1 

    1116 1 
    1117 1 
    1118 1 
      
   Val(112)=1 1121 0 
   MAJ↑ 1122 1 
   (0 … 1) 1123 1 
    1124 1 
    1125 1 

    1126 1 
    1127 1 
    1128 1 
 … … … … …

Fig. 8-5.The mg-tree of node B3 at the 4th 
round 

 
level 0 
Root level 1 level 2 Level 3 level 4 
B3 Val(1)=1 Val(11)=0 Val(111)=1   

    1112 1 
    1113 1 
    1114 1 
    1115 1 

    1116 1 
    1117 1 
    1118 1 
      
   Val(112)=1 1121 0 
      
    1123 1 
    1124 1 
    1125 1 

    1126 1 
    1127 1 
    1128 1 
 … … … … …

Fig. 8-6. The ic-tree of node B3 

level 3 level 2 
VOTE (111)= (1,1,1,1,1,1,1)= 1 VOTE(11) = (1,1,1,1,1,1,1,1)=1
VOTE (112)= (0,1,1,1,1,1,1)= 1  
VOTE (113)= (0,1,1,1,1,1,1)= 1  

… …

 
level 2 level 1 

VOTE(11)= (1,1,1,1,1,1,1,1)=1 VOTE (1) =(1,1,1,1,1,1,1,1)=1 
VOTE(12)= (1,1,1,1,1,1,1,1)=1  
VOTE(13)= (1,1,1,1,1,1,1,1)=1  

… …

 
level 1 level 0 Root 

VOTE (1)= (1,1,1,1,1,1,1,1)= 1 VOTE (B3)= (1,1,1,1,1,1,1,1)=1
VOTE (2)= (1,1,1,1,1,1,1,1)= 1  
VOTE (3)= (1,1,1,1,1,1,1,1)= 1  

… …

Fig. 8-7. The consensus value by node B3 
 

VI. THE CORRECTNESS AND COMPLEXITY 

According to the literature, a protocol is 
obtained and the following proofs for the 
agreement and validity property are given in this 
section. The following lemmas and theorems are 
used to prove the correctness and complexity of the 

GCPCC. The notations and parameters of GCPCC 
are shown as follows: 

 n: The number of nodes in the cloud 
computing environment. 

 TMij: The transmission medium between node 
i and node j. 

The 
ic-tree 

erased the 
vertices 

with 
repeated 
names 

from the 
mg-tree. 



 
 

 

 ITM: The transmission media between 
A-level group and B-level group. 

 c: The connectivity of network topology. 
 nA: The number of nodes in an A-Level 

group. 
 nBj: The number of nodes in cluster j of a 

B-Level group. 
 Cn: The total number of clusters in a 

B-Level group. 
 TMmA: The number of allowable malicious 

faulty transmission media in an A-Level 
group. 

 TMmBj: The number of allowable malicious 
faulty transmission media in the cluster j 
of a B-Level group. 

 NmA: The number of allowable malicious 
faulty nodes in an A-Level group. 

 NmBj: The number of allowable malicious 
faulty nodes in the cluster j of a B-Level 
group. 

 TMm: The number of allowable malicious 
faulty transmission media in the cloud 
computing environment. 

 Nm: The number of allowable malicious 
faulty nodes in the cloud computing 
environment. 

 Tf: The total number of allowable faulty 
nodes. 

 ITMc: The connectivity with each node of a 
B-Level group between an A-Level 
group. 

 σ: The number of rounds required in the 
Consensus Process. 

 

A. Correctness of GCPCC 
To prove that vertex α is common, the term 

common frontier [2] is defined as follows: When 
every root-to-leaf path of the mg-tree contains a 
common vertex, the collection of the common 
vertices forms a common frontier. In addition, the 
constraints, Agreement and Validity, can be 
rewritten as: 

 Agreement: Root i is common 
 Validity: VOTE(i) = vi for each correct node, if 
the node i is correct 
Every correct node has the same values 

collected in the common frontier if a common 
frontier does exist in a correct node’s mg-tree. 
Subsequently, using the same function VOTE to 
compute the root value of the tree structure, every 
correct node can compute the same root value 

because the same input (the same collected values 
in the common frontier) and the same computing 
function will produce the same output (the root 
value). Since GCPCC can solve the BA problem, 
the correctness of GCPCC should be examined in 
the following two ways [2]. 
(1) Correct vertex: Vertex αi of a tree is a correct 

vertex if node i (the last node name in vertex 
αi’s node name list) is correct. In other words, a 
correct vertex is a place to store the value 
received from a correct node.  

(2) True value: For a correct vertex αi in the tree 
of a correct node, val(αi) is the true value of 
vertex αi if TMij is fault-free. In other words, a 
correct vertex is a place to store the value 
received from a correct node. In other words, 
the stored value is called the true value of a 
vertex if the value stored in such a vertex is 
correct from the influence of a faulty TM. 

Theorem 1. Each node can receive values 
without influences of malicious faulty nodes 
between the sender node via GCPCC in each 
round, then nA≥3NmA+1 in A-Level group and 
nBj≥3NmBj+1 in cluster j of B-Level group. 
Proof: We can ignore the influences of the 
malicious faulty nodes between any pairs of nodes 
in each round of value exchange and nA≥3NmA+1 in 
A-Level group; and nBj≥3NmBj+1 in cluster j of 
B-Level group. The reason is that the correct 
sender node nA (nBj) copies of a value to correct 
destination nodes. In the worst case, a correct 
destination node can receive nA-NmA values 
transmitted via the correct sender node in A-Level 
group; receive nBj-NmBj values transmitted via the 
correct sender node in the cluster j of B-Level 
group. 

Lemma 1. In an ic-tree, all correct vertices are 
common. 
Proof: The tree structure has conversed from 
mg-tree to ic-tree. At the level σ or upon of ic-tree, 
the correct vertex i has at least 2σ-1 children, in 
which at least σ children are correct. The real value 
of these σ correct vertices is common, and the 
majority value of vertex α is common. For this 
reason, all correct vertices of the ic-tree are 
common. 

Lemma 2. The common frontier exists in the 
ic-tree. 
Proof: There are σ vertices along each root-to-leaf 
path of an ic-tree, so that though most σ-1 nodes 
have failed, at least one vertex is correct along each 



 
 

 

root-to-leaf path of the ic-tree. The correct vertex is 
common, and the common frontier exists in each 
correct node ic-tree by Lemma 1. 

Lemma 3. Let α be a vertex, and α is common if 
there is a common frontier in the sub-tree 
rooted at i. 
Proof: When the height of α is 0, and the common 
frontier exists, α is common. If the height of α is σ, 
the children of α are all in common by induction 
hypothesis with the height of the children at σ-1. 
Then the vertex α is common. 

Corollary. If the common frontier exists in the 
ic-tree, then the root is common. 

Theorem 2. The root of a correct node’s ic-tree 
is common. 
Proof: By Lemmas 1, 2, 3 and the Corollary, the 
theorem is proved. 

Theorem 3. Protocol GCPCC solves the 
consensus problem in a cloud computing 
environment. 
Proof: Inasmuch as the theorem must describe that 
GCPCC meets the constraints Agreement’ and 
Validity’. 
Agreement: Root i is common, and by Theorem 3, 
Agreement’ is satisfied. 
Validity: VOTE(i) = vi for each correct node, if the 
initial value of the node i is vi. 
Whereas most of nodes are correct, the nodes use 
GCPCC to communicate with all others. The 
message of correct vertices for all correct nodes’ 
mg-trees is vi. When the tree structure has 
converted from mg-tree to ic-tree, the correct 
vertices still exist. Therefore, every correct vertex 
of the ic-tree is common (refer to Lemma 1), and its 
true value is vi. This root is common by Theorem 2. 
The computed value VOTE(i)=vi is stored in the 
root of the ic-tree for all correct nodes. (Validity’) 
is satisfied. 
B. Complexity of GCPCC 

The complexity of GCPCC is evaluated in terms 
of: 1) the maximum number of allowable faulty 
components; and 2) the minimum number of 
rounds to exchange messages. Theorems 4 and 5 
show that the optimal solution is reached. 
Theorem 4. The number of allowable faulty 
nodes Nm is maximal and c≥2TMij+1. 
Proof: Over the past literature of the agreement 
problem for node faults only as n≥3Nm+1 and 
c≥2TMij+1. However, we also assume that 

components are faulty. Hence, the constraint of the 
maximum number of allowable faulty nodes can be 
applied to our study. 
In a cloud computing environment, GCPCC can 
tolerate NmA+TMmA≤(nA-1)/3 faulty components in 
the A-Level group and the fault tolerant capability 
of the B-Level group is nC

j 1max = (3NmBj+TMmBj≤ 
(nBj-1)/3). The connectivity with the A-Level 
group and each cluster of B-Level group is 
c≥2TMij+1; the node in the same cluster of 
B-Level group with the connectivity is c≥2TMij+1 
and the malicious fault ITM at most ⎡c/2⎤-1. The 
total number of allowable faulty nodes by GCPCC 
is Tf≤[(NmA+TMmA)+ nC

j 1max = (3NmBj+TMmBj)+ 
(⎡ITMc/2⎤-1), and the number of faulty components 
is maximal in topology of cloud computing. 

Theorem 5. GCPCC requires [(⎣(nA–1)/3⎦+2)+ 

(
nC

j 1
max

=
⎣(nBj–1)/3⎦+2)]+1 rounds of message 

exchange to solve the consensus in a cloud 
computing environment. 
Proof: The value passing is required only in the 
Message Gather Stage, it is time consuming. Yan 
et al. [11] pointed out that ⎣(n–1)/3⎦+2 rounds are 
the minimum number of rounds to send sufficient 
values to achieve consensus in an n-nodes 
distributed system [11]. In a cloud computing 
environment, each node needs to exchange 
messages with other nodes. Therefore, the 
constraint of the minimum number of rounds can 
be applied in the study. However, in a cloud 
computing environment, ⎣(nA–1)/3⎦+1 rounds of 
exchange messages in A-level group is required 

and 
nC

j 1
max

=
⎣(nBj–1)/3⎦+1 rounds of exchange 

messages in B-level group is required. In addition, 
each node in the same cluster of the B-Level group 
needs to receive messages from A-Level group’s 
nodes; therefore, one extra round is required. In 
conclusion, the minimum number of rounds is 
[(⎣(nA–1)/3⎦+1)+ ( nc

j 1
max
=
⎣(nBj–1)/3⎦+1)]+1. Moreover, 

the number of rounds required is optimal. 

VII. CONCLUSION 

Cloud computing is a new concept of distributed 
systems [1,10]. It has greatly encouraged 
distributed system design and practice to support 
user-oriented services with application [1,16,18]. 
Fault-tolerance is an important research topic in 
the study of distributed systems and it is a 



 
 

 

fundamental problem in distributed systems; there 
are many relative literatures in the past [2,5,9,11]. 
According to previous studies, network topology 
plays an important role in the consensus problem, 
but the results cannot cope with a cloud computing 
environment and the consensus problem thus needs 
to be reinvestigated. Moreover, in this paper, the 
consensus problem with faulty nodes and 
transmission media in a cloud computing topology 
has been solved by the proposed protocol. The 
proposed GCPCC ensures that all correct nodes in 
the topology of a cloud computing can reach a 
common value. Moreover, the new protocol 
GCPCC is adapted to the cloud computing 
environment and can derives the bound of 
allowable faulty components. GCPCC uses the 
minimum number of rounds of message exchange 
and tolerates the maximum number of allowable 
malicious fault transmission media and nodes in a 
cloud computing environment. Furthermore, the 
fault-tolerance capacity is enhanced by GCPCC. 
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