

The Generalized Consensus Problem
in a Cloud Computing Environment

S.C. Wang S.S. Wang K.Q. Yan*

(corresponding author)
C.P. Huang

scwang@cyut.edu.tw sswang@cyut.edu.tw kqyan@cyut.edu.tw s9714625@cyut.edu.tw
Chaoyang University of Technology

Abstract―The new concept, cloud computing uses
low-power hosts to achieve high reliability and will ensure
the ability to be better. Cloud computing increases the
number of user’s applications on the Internet. In this
research, the cloud computing environment can provide
better reliability and fluency is focused. The consensus
problem is fundamental to fault-tolerant distributed
systems, but previous studies of the consensus problem are
not suitable for a cloud computing environment. To
enhance fault tolerance, the consensus problem in a cloud
computing environment is revisited in this study. The
Generalized Consensus Protocol of Cloud Computing
(GCPCC) that we proposed can solve the consensus
problem with a minimal number of rounds of message
exchange and tolerates a maximal number of faulty
components. The GCPCC attempts to solve the consensus
problem and makes all correct components in a cloud
computing environment achieve stable results without any
influence from faulty components.
Keywords ― Consensus, Cloud Computing, Distributed
System, Fault Tolerant.

I. INTRODUCTION

Today, network bandwidth and hardware
technology must continuously advance to keep pace
with the vigorous development of the Internet. The
new concept of cloud computing allows for more
applications for internet users [1,3,7,10,15]. In the
real world of technology, the distributed system has
to provide better reliability and fluency with service
applications. Cloud computing is currently used
many commodity computers that can cooperate to
perform a specific service together. In addition, the
Internet applications are continuously enhanced
with multimedia, and vigorous development of the
device quickly occurs in the network system [1,15].
As network bandwidth and quality outstrip computer
performance, various communication and
computing technologies previously regarded as
being of different domains that can integrated, such

as telecommunication, multimedia, information
technology, and construction simulation. Thus,
applications associated with network integration
have gradually attracted considerable attention.
Similarly, cloud computing facilitated through
distributed applications over networks has also
gained increased recognition. In a cloud computing
environment, users have access to faster operational
capability with internet application [19], and the
computer systems must have high stability to handle
where many users to execute in the environment. In
a distributed computing system, components
allocated to different places or in separate units are
connected, so that they may collectively be used to
greater advantage [4]. Cloud computing can ensure
increased ability to use low-power hosts to achieve
high reliability. In addition, cloud computing has
greatly encouraged distributed system design and
application to support user-oriented service
applications [8]. Furthermore, many applications of
cloud computing are increase user convenience,
such as YouTube [13]. Component reliability is one
of the most important aspects of cloud computing as
it ensures overall reliability and fluency. Thus, the
tasks in a distributed system must be synchronously
completed and components must achieve common
agreement. To ensure the cloud computing
environment is reliable, a mechanism to ensure that
a set of transmission media and nodes reaches an
agreed value is thus necessary.

The concept of cloud computing uses many
commodity computers in conjunction to complete a
specific service for users. The requisite large
number of computers will necessarily introduce
faulty components into the system. However, the
system has to allow for the toleration of faults while
maintaining functionality. In the computer system,

each node has to pass messages through
transmission media to other nodes to cooperate
completed user requests. Many users in the cloud
computing environment where have to execute
application services simultaneously. Therefore, the
high fault-tolerant capability of a cloud computing
environment needs to be respected. However, the
symptoms of faulty components can influence the
normal operation of a system. Cloud computing of
distributed systems tolerates the faulty components
in the service environment because the system
should respond to user requests quickly and
completely the user requests as service. The
requisite large number of computers maybe meet
some computers will be fault to introduce faulty
components into the system. However, components
in the cloud computing environment cannot occur
too much failure, otherwise should influence system
provided application services for users, so that, the
high fault-tolerant capability of a cloud computing
environment needs to be respected. Simultaneously,
in the cloud computing environment, nodes that
receive user requests maybe influence by the failure
transmission media and nodes. Hence, to remove the
affect of faulty nodes is need to be mitigated. In a
cloud computing environment, achieving perfect
reliability must be accomplished by allowing a given
set of transmission media and nodes to reach a
common agreement even in the presence of faulty
components.

The Byzantine Agreement (BA) problem has been
studied in the literature [2,5,6,9,11] and the
consensus problem is a closely related sub-problem
of BA problem. The BA problem was first
introduced in 1982 by Lamport who proposed a
protocol to solve the fault tolerance problem in
computer systems [5]. The consensus problem is one
of the most important issues for designing a
fault-tolerant distributed system [9]. Solving the
consensus problem, many applications can be
achieved [11]. Therefore, the consensus problem in a
cloud computing environment is revisited to discuss
its solution with malicious faulty components in this
paper. The proposed protocol is named Generalized
Consensus Protocol of Cloud Computing (GCPCC)
can lead to a consensus between each correct node in
a cloud computing environment.

The remainder of this paper is organized as
follows. Section 2 discusses the related works. The
basic assumption of consensus problem is illustrated
in Section 3. The proposed protocol is shown in
Section 4. Examples are given in Section 5. Section
6 gives the correctness and complexity of the
GCPCC. Section 8 concludes this paper.

II. RELATED WORK

Cloud computing is a new distributed system
concept that has been implemented by businesses
such as Google and Amazon [13]. Google provides
various applications on their internet platform such
as Gmail and YouTube [14]. In addition, Google
provides free storage capacity with gigabytes for
each user. The big and powerful Google search
engine allows users to find multiple results from
different file types on the Internet. In previous
literature, the consensus problem has been solved in
various network topologies. However, previous
studies of the consensus problem [11] are not
specifically address cloud computing to order the
application of Internet. Hence, in this paper, the
topology of a cloud computing environment is
applied. Subsequently, the consensus problem with
failure components in the topology of a cloud
computing is discussed. Cloud computing is a new
distributed system computing concept in which
nodes are interconnected with the Internet; the
network is assumed reliable and synchronous.
Previous studies with network topology in the
consensus problem that have not cloud computing
environment suitable. Fig. 1 is the topology of cloud
computing used in our study.
(1) The nodes in an A-Level group must receive the

request from users of different types of
applications. Therefore, the nodes of an A-Level
group have higher computational capability than
the nodes in a B-Level group. In addition, nodes
in an A-Level group must compute enormous
amounts data and can communicate with other
nodes in the same group directly through
transmission media (TM).

(2) Some nodes form groups in the B-Level group,
where each group provides a specific application
service. According to the properties of nodes, the
nodes are clustered to group Bi where 1≤i≤cn and

cn is the total number of groups in a B-Level
group.

(3) For the reliable communication, multiple inter
transmission media (ITM) are used to connect the
nodes between an A-Level group and a B-Level
group. In A-Level group, each node must forward
the message to all nodes in the corresponding
group of B-Level group.

Fig. 1. Example of topology of cloud computing
Cloud Computing is a style of computing where

massively scalable IT-related capabilities are
provided to multiple external customers “as a
service” using internet technologies [19]. The cloud
providers have to achieve a large, general-purpose
computing infrastructure; and virtualization of
infrastructure for different customers and services to
provide the multiple application services. The ZEUS
Company has developed several types of software
that can create, manage, and deliver exceptional
online services from physical and virtual datacenters
or from any cloud environment, such as ZXTM and
ZEUS Web Server (ZWS) [17]. A cloud
infrastructure virtualizes large-scale computing
resources and packages them up into smaller
quantities [18]. Furthermore, the ZEUS Company
develops software that can let the cloud provider
easily and cost-effectively offer every customer a
dedicated application delivery solution [20]. The
ZXTM software is much more than a shared load
balancing service and it offers a low-cost starting
point in hardware development, with a smooth and
cost-effective upgrade path [20].

The ZEUS provided network framework can be
utilized to develop new cloud computing methods,

and is utilized in the current work. In this network
composition that can support the network topology
of cloud computing used in our research. According
to the ZEUS network framework can testify the
construction of network topology that we proposed
in this paper, which let the company has to be
considered. Hence, the proposed network topology
of cloud computing that has the trustworthy example
with the company provided to support our research.

III. THE BASIC ASSUMPTION OF CONSENSUS PROBLEM

In this paper, the consensus problem with faulty
nodes and transmission media in cloud computing
topology is revised. It requires a number of
independent correct nodes to reach consensus when
some of those components might be faulty. A
distributed system can attain stable results without
any influence from faulty components. However, in
many cases, the faulty components will influence the
system to reach agreement. Thus, the BA has been
achieved if the following conditions are met [5]:

Agreement: All correct nodes agree on a common
decision value.

Validity: If the source node is correct, then all
correct nodes agree on the initial
value sent by the source node.

The BA problem was defined as follows [5]:
(1) Of the n nodes (n>3) at most one-third of the

total number of nodes can fail without breaking
down a network system;

(2) Nodes communicate with each other through
message exchange in a fully connected network;

(3) The message sender is identifiable by receiving
nodes;

(4) A node is chosen as a source, and its initial
value vs is broadcasted to other nodes and itself
to execute the protocol;

(5) In the system, faulty nodes only are considered.
A closely related sub-problem of the BA problem,

the consensus problem, has been studied extensively
in the literature [11]. In this paper, we will revisit the
consensus problem in a cloud computing
environment. The consensus problem requires a
protocol to allow the components to exchange
messages then the correct components are to achieve
consensus agreement. Hence, the proposed protocol

we refer to as the Generalized Consensus Protocol of
Cloud Computing (GCPCC). It can lead to an
agreement of each correct component in a cloud
computing topology. Lamport argues the consensus
problem under the assumption of synchronous
behavior in the BA problem [5] so that assumptions
of the BA problem can be used to explain the
consensus problem. The consensus problem has k
initial values and subsequently achieves a common
value even if certain transmission media and nodes
fail. Therefore, the consensus problem is similar to
the BA problem; such as in executing k copies of BA
nodes. In this paper, the consensus problem for
malicious faulty components in a cloud computing
environment is solved. The proposed protocol of
consensus defined with solutions, the goal of solving
a consensus problem is to develop an optimal
algorithm can use the minimal number of rounds and
tolerate the maximal number of allowable faulty
components to achieve consensus[11].

Achieving consensus on a same value in a
distributed system, the protocols are required to
provide that systems be executed correctly while
achieving consensus on an identical value in a
distributed system. In the consensus problem, many
cases are based on the assumption of node failure in
the general network [5]. Therefore, it is important to
propose a protocol to solve the consensus problem
[9] in a topology of cloud computing existence
faulty components. In a cloud computing system all
components have to execute a protocol that ensures
that correct components reach consensus with the
result that the system provides stable and reliable
service for users. All nodes reach consensus,
fault-tolerance capacity is enhanced even if there are
faults with components in the topology. In this
research, we solve the consensus problem for
malicious fault transmission media and nodes in a
cloud computing topology. However, the proposed
protocol DFCCP is used to solve the problem of
malicious fault components and allow all correct
components to achieve consensus agreement.
Fault-tolerance capacity is thus enhanced even if
faulty transmission media and node in chorus exist
in the topology.

IV. GCPCC FOR CLOUD COMPUTING

Cloud computing environment must be able to
provide multiple services [10]. In this research, the
consensus problem is revisit in cloud computing
where faulty transmission media and nodes may
influence normal operation in the system. In this
paper, a new protocol called Generalized Consensus
Protocol of Cloud Computing (GCPCC) is proposed
to solve the consensus problem when caused by
faulty components that may send incorrect messages
that may in turn influence how the system reaches
consensus in a cloud computing environment. If the
number of faulty components can be known then the
number of rounds required can be estimated to solve
the consensus problem. For instance, if the faulty
component is a node, then GCPCC can save some
rounds required to remove the influence of faulty
transmission media [11]. Conceptually, GCPCC
removes the influence of faulty transmission media
during exchange message by using a majority voting
scheme because the major transmission media of the
topology are assumed correct [11]. In the cloud
computing topology, the main work of an A-Level
group’s nodes is collecting user requests. Each node
in an A-Level group has to receive the various
requests from users, while the nodes in a B-Level
group’s cluster provide many services for users.
Hence, all nodes may receive different initial values
different two level groups. The protocol GCPCC is
executed by nodes in the A-Level and B-Level
groups.

In a cloud computing environment, each node in
A-Level group receives the various requests from
users, and the nodes in B-Level group provide
services to users. Each node of an A-Level group
may receive a different service request from users.
Each node in an A-Level group that uses the service
request as the initial value executes the GCPCC to
obtain the common vector DECA. Then, each node
of the A-Level group forwards the element of vector
DECA to the nodes in the B-Level group. However,
the specific service request is to be conformed by the
nodes of same group. Each node in the same cluster
of a B-Level group receives the element from the
nodes of the A-Level group. In the B-Level group,
nodes may receive the fake value by the faulty
transmission media and failure node in the A-Level

group. There the nodes in the B-Level group is
receives the fake value from failure nodes of
A-Level group through correct transmission media.
Therefore, a failure node of the A-level group for
nodes of a B-Level group is a fault transmission
media. Therefore, the number of A-Level group’s
failure nodes and transmission media must be less
than half with those components. Sequentially, each
node in the same cluster of B-Level group has to
take majority value of the received element values
(DECA). Hence, the initial value for each node can
be obtained in the same cluster in the B-Level group.
Nodes in the same cluster of a B-Level group must
exchange and receive the initial value with other
nodes by executing the Consensus Process. Finally,
each node takes a majority value of the vector value
(DECB). Then the consensus value can be obtained
by the GCPCC. GCPCC is invoked to solve the
consensus problem with faulty transmission media
and nodes in cloud computing. Based on the network
topology of cloud computing, GCPCC can allow
each node to transmit messages to other nodes
without influence from faulty transmission media
and nodes, the proposed protocol is shown in Fig. 2.

GCPCC
(1) The nodes of the A-Level group execute the
Consensus Process (for the node i in the A-Level
group with initial value vi; 1 ≤ i ≤ nA) where nA is the
total number of nodes in the A-Level group.
(2) Each node of the cluster in the A-Level group
sends the specific element of DECA to the nodes of a
specific application having the cluster of the
B-Level group.
(3) Each node k in the same cluster of a B-Level
group takes a majority value MAJk (1≤k≤nBj) of the
received element, then the initial value vk of each
node k can be obtained.
(4) The nodes of the B-Level group’s cluster execute
the Consensus Process (for the node i in the cluster j
of the B-Level group with common value vi;
1≤i≤nBj).
(5) Each node of the same cluster in a B-Level group
takes a majority value of DECB, and then the
consensus value v is obtained.
Consensus Process(i, n, X-Level group)

Pre-Execute.
Compute the number of rounds required σ =
⎣(n–1)/3⎦+2
Message Gather Stage:
r = 1, do:
A) Each node i parallel broadcasts its initial value vi

to other nodes in the cluster of an X-Level group.
B) Each node receives and stores the n values sent

from n nodes of the cluster in an X-Level group in
the corresponding root of each mg-tree.

for r = 2; r ≤ σ ;σ +2;
C) Each node parallel transmits the values at level r -

1 in the corresponding mg-tree to other nodes in
the cluster of an X-Level group.

D) Each node receives values from other nodes and
stores them in level r of n corresponding
mg-trees.

E) Call MAJ function.
Decision Making Stage:
Step 1: Reorganize each mg-tree into a

corresponding ic-tree by deleting the vertices
with repeated node names.

Step 2: VOTE(i, n) function is paralleled to apply to
the root of each corresponding ic-tree, then a
vector DECX as a common value with n
elements has been obtained.

Function VOTE(i, n)
1. val(i), if i is a leaf.
2. The majority value in the set of {VOTE (αi,

n)|1≤i≤n, and vertex αi is a child of vertex α}, if
such a majority value exists.

3. A default value φ is chosen otherwise.
Function MAJ
Step 1: Count the received values and take the

majority, then set a majority value x.
Step 2: If the majority value is not existed, then

output a majority value φ.
Step 3: Otherwise, output a majority value x, where

x ∈ {0,1}.
Fig. 2. The proposed protocol GCPCC

The node in B-Level group’s cluster receives the
initial value through the GCPCC. The Consensus
Process of GCPCC requires σ=⎣(n–1)/3⎦+2 rounds
to receive sufficient messages for A- and B-Level
groups’ nodes. In the first round of Message Gather
Stage, each node parallel transmits its initial value to

other nodes in the same cluster and then receives the
value and stores it at the r - 1 level of its mg-tree.
The mg-tree is a tree data structure that is used to
store the received messages [11]. Subsequently, each
node in the same cluster transmits the received
messages to other nodes and stores it at level r in its
mg-tree. The function MAJ is applied on every two
rounds in the leaf of mg-tree to take majority values
to banish influence of the fault transmission media.
In the Decision Making Stage of Consensus Process,
each node reorganizes its mg-tree into a
corresponding ic-tree. The ic-tree is a tree structure
that is used to store a received message without
repeated node names [11]. The function VOTE is
applied to the root of each corresponding ic-tree to
take the majority value, and then a vector DECA is
obtained. Each element of DECA is mapped to a
specific application that will be executed in the
corresponding cluster of a B-Level group. Each node
of the same cluster in the B-Level group takes a
majority value as the initial value from the vector.
Sequentially, each node in the same cluster which
after execute the Message Gather Stage of
Consensus Process and applied function MAJ to
banish the fault transmission media, then each node
reorganizes its mg-tree into a corresponding ic-tree
and apply function VOTE to obtain the consensus
value. Finally, all correct nodes in the same cluster
are achieved the consensus value to reach
agreement.

V. EXAMPLE OF EXECUTING GCPCC

An example of executing the GCPCC based on a
cloud computing environment is shown in Fig. 3. In
addition, an example of an A-Level group is shown
in Fig. 4-1. The nodes in the A-Level group receive
service requests. The protocol, for this example,
requires four rounds (σ=⎣(nA–1)/3⎦+2=
⎣(7–1)/3⎦+2=4, where nA is the number of nodes in
the A-Level) to exchange the messages. Each node
can obtain the initial value in the A cluster as shown
in Fig. 4-2. The different requests are received from
different users by each node, such as A1 receives the
video service request and A5 receives the blog
service request, etc. In every round of Message
Gather Stage, there each node parallel transmits the
initial value to all nodes in the same cluster and

stores the received values in the corresponding root
of the level 2 to 4 each mg-tree as shown in Figs. 4-3
to 6-6. Furthermore, the function MAJ is executed in
level 2 and 4 as shown in Figs. 4-4 and 4.6.
Subsequently, in the Decision Making Stage, the
mg-tree is reorganized into the ic-tree by deleting
the vertices with repeated node names as shown in
Fig. 4-7. The function VOTE is applied on each
corresponding ic-tree of all nodes and then taking
the majority value of level 3 to 1. Eventually, the
common vector value DECA is obtained for all nodes
in the A-Level group as shown in Fig. 4-8.

All nodes in the cluster of the B-Level group
receive the element DECA from the nodes of the
A-Level group by multiple transmission media that
the example as shown in Fig 5. All nodes in cluster B
Ⅱ-1 of the B-Level group receive the element value
DECA that transmits from the nodes in the A-Level
group for the specific applications needing to be
serviced. If the nodes in the A-Level group send the
E-mail service request with elements of DECA to all
nodes in cluster BⅡ-1. Subsequently, the elements
of DECA can receives with each node in cluster BⅡ
-1 receives the elements of DECA, and then takes a
majority value as shown in Fig. 6.

The example of cluster BⅡ-1 in a B-Level group
is presented in Fig. 7. In this example, there are eight
nodes in cluster B Ⅱ -1 requiring four rounds
(σ=⎣(nBj–1)/3⎦+2= ⎣(8–1)/3⎦+2=4, where nBj is the
number of nodes in cluster BⅡ-1 of the B-Level
group). Fig. 8-1 presents each node’s initial value. In
the first round of Message Gather Stage, the node
sends the initial value (=1) to other nodes and
receives it from other nodes in same cluster as
shown in Fig. 8-2. The node B3 to execute the
second to four rounds of Message Gather Stage and
the function MAJ is executed in level two to four as
shown in Figs. 8-3 and 8-5. In the Decision Making
Stage, the node B3’s mg-tree is reorganized into the
corresponding ic-tree as shown in Fig 8-6; and the
function VOTE is applied on the ic-tree’s root to
take the majority value, and DECB (=1) is obtained
as shown in Fig. 8-7. Hence, the consensus value has
been obtained and all correct nodes reach consensus.

Fig. 3. An example of cloud computing environment

A1

A2
A3

A4

A-Level
group

A5

：Transmission Media

：Malicious Fault Node

：Node

A6

：Malicious Fault TM

A7

Fig.4-1.Example cluster A in A-Level group

A1 A2 A3 A4 A5 A6
0 1 0 1 0 1

Fig. 4-2. The initial value of each node in A cluster

level 0
Root level 1

level 0
Root level 1

level 0
Root level 1

level 0
Root level 1

level 0
Root level 1

level 0
Root level 1

A1 1 0 A2 1 0 A3 1 0 A4 1 0 A5 1 1 A6 1 0
 2 1 2 1 2 1 2 1 2 1 2 1
 3 1 3 1 3 0 3 1 3 1 3 0
 4 1 4 1 4 1 4 1 4 1 4 1
 5 1 5 0 5 0 5 0 5 0 5 0
 6 1 6 1 6 1 6 1 6 1 6 1

Fig. 4-3. The mg-tree of each node in the A cluster at the 1st round

level 0
Root level 1 level 2
A1 Val(1)=0 11 0

 MAJ↑ 12 0
 (0,0,1,0,1,0) 13 1
 14 0
 15 1
 16 0

 Val(2)=1 21 1
 MAJ↑ 22 1
 (1,1,0,1,1,1) 23 0
 24 1
 25 1
 26 1

 Val(3)=1 31 1
 MAJ↑ 32 1
 (1,1,0,1,1,0) 33 0
 34 1
 35 1
 36 0

 Val(4)=1 41 1
 MAJ↑ 42 1
 (1,1,0,1,1,1) 43 0
 44 1
 45 1
 46 1

 Val(5)= 0 51 1
 MAJ↑ 52 0
 (1,0,1,0,0,0) 53 1
 54 0
 55 0
 56 0

 Val(6)=1 61 1
 MAJ↑ 62 1
 (1,1,0,1,1,1) 63 0
 64 1
 65 1
 66 1

… … …

Fig. 4-4. The mg-tree of node A1 at the 2nd round

level 0
Root level 1 level 2 level 3
A1 Val(1)=0 Val(11)=0 111 0

 MAJ↑ 112 0
 (0,0,1,0,1,0) 113 1
 114 0
 115 1
 116 0

 Val(12)=0 121 1
 122 1
 123 0
 124 1
 125 1
 126 1

 Val(13)=1 131 1
 132 1
 133 0
 134 1
 135 1
 136 0

 Val(14)=0 141 1
 142 1
 143 0
 144 1
 145 1
 146 1

 Val(15)=0 151 1
 152 0
 153 1
 154 0
 155 0
 156 0

 Val(16)=0 161 1
 162 1
 163 0
 164 1
 165 1
 166 1

… … … …

Fig. 4-5 The mg-tree of node A1 at the 3rd round

level 0
Root level 1 level 2 level 3 level 4
A1 Val(1)=0 Val(11)=0 Val(111)=0 1111 0

 MAJ↑ MAJ↑ 1112 0
 (0,0,1,0,1,0) (0,0,1,0,1,0) 1113 1
 1114 0
 1115 1
 1116 0

 Val(112)=0 1121 0
 MAJ↑ 1122 0
 (0,0,1,0,0,0) 1123 1
 1124 0
 1125 0
 1126 0

 Val(113)=0 1131 0
 MAJ↑ 1132 0
 (0,0,1,0,0,0) 1133 1
 1134 0
 1135 0
 1136 0

 Val(114)=0 1141 0
 MAJ↑ 1142 0
 (0,0,1,0,0,0) 1143 1
 1144 0
 1145 0
 1146 0

 Val(115)=0 1151 1
 MAJ↑ 1152 0
 (1,0,1,0,0,0) 1153 1
 1154 0
 1155 0
 1156 0

 Val(116)=0 1161 0
 MAJ↑ 1162 0
 (0,0,1,0,0,0) 1163 1
 1164 0
 1165 0
 1166 0
 … … … … …

Fig. 4-6 The mg-tree of node A1 at the 4th
round

level 0
Root level 1 level 2 level 3 level 4
A1 Val(1)=0 Val(11)=0 Val(111)=0

 1112 0
 1113 1
 1114 0
 1115 1
 1116 0

 Val(112)=0 1121 0

 1123 1
 1124 0
 1125 0
 1126 0

 Val(113)=0 1131 0
 1132 0

 1134 0
 1135 0
 1136 0

 Val(114)=0 1141 0
 1142 0
 1143 1

 1145 0
 1146 0

 Val(115)=0 1151 1
 1152 0
 1153 1
 1154 0

 1156 0

 Val(116)=0 1161 0
 1162 0
 1163 1
 1164 0
 1165 0

… … … … …

Fig. 4-7 The ic-tree of node A1 by the Decision
Making Stage

level 3 level 2
VOTE (111)=
(0,1,0,1,0)= 0

VOTE (11)=
(0,0,0,0,0,0)=0

VOTE (112)=
(0,1,0,0,0)= 0

VOTE (113)=
(0,0,0,0,0)= 0

VOTE (114)=
(0,0,1,0,0)= 0

VOTE (115)=
(1,0,1,0,0)= 0

VOTE (116)=
(0,0,1,0,0)= 0

… …

level 2 level 1

VOTE (11)=
(0,0,0,0,0,0)= 0

VOTE (1)=
(0,0,0,0,0,0)=0

VOTE (12)=
(0,0,0,0,0,0)= 0

VOTE (13)=
(0,0,0,0,0,0)= 0

VOTE (14)=
(0,0,0,0,0,0)= 0

VOTE (15)=
(0,0,0,0,0,0)= 0

VOTE (16)=
(0,0,0,0,0,0)= 0

… …

level 1 level 0 Root

VOTE (1)=
(0,0,0,0,0,0)= 0

A1= (0,1,1,1,0,1)

VOTE (2)=
(1,1,1,1,1,1)= 1

VOTE (3)=
(1,1,1,1,1,1)= 1

VOTE (4)=
(1,1,1,1,1,1)= 1

VOTE (5)=
(0,0,0,0,0,0)= 0

VOTE (6)=
(1,1,1,1,1,1)= 1

… …

Fig. 4-8. The consensus value VOTE(γ) by node A1

Fig. 5. The example for A-Level group nodes

forward value to B-Level group’s cluster

BⅡ-1-B1 BⅡ-1-B2 BⅡ-1-B3 … BⅡ-1-B8
A1 0 A1 0 A1 0 … A1 0
A2 1 A2 1 A2 1 … A2 1
A3 0 A3 0 A3 1 … A3 0
A4 0 A4 0 A4 0 … A4 0
A5 1 A5 1 A5 1 … A5 1
A6 1 A6 1 A6 1 … A6 1
A7 1 A7 1 A7 1 … A7 1

MAJ1=1 MAJ2=1 MAJ3=1 … MAJ8=1

Fig. 6. Each node of BⅡ-1 cluster receive element
of DECA from A-Level group node

The
ic-tree

erased the
vertices

with
repeated
names

from the
mg-tree.

Fig. 7. Example of BⅡ-1
cluster in B-Level group

B1 B2 B3 B4
1 1 1 1

B5 B6 B7 B8
1 1 1 1

Fig. 8-1. The initial

value of each node in
BⅡ-1 cluster

level 0
Root level 1

level 0
Root level 1

level 0
Root level 1 …

Val(B1) 1 0 Val(B2) 1 0 Val(B3) 1 0 …

=1 2 1 =1 2 1 =1 2 1 …

 3 1 3 1 3 1 …

 4 1 4 1 4 1 …

 5 1 5 1 5 1 …

 6 1 6 1 6 1 …

 7 1 7 1 7 0 …

 8 1 8 1 8 1 …

Fig. 8-2. The mg-tree of each node in BⅡ-1
cluster at the 1st round

level 0
Root level 1 Level 2
B3 Val(1)=1 11 0

 MAJ↑ 12 1
 (0 … 1) 13 1
 14 1
 15 1

 16 1
 17 1
 18 1

 Val(2)=1 21 0
 MAJ↑ 22 1
 (0 … 1) 23 1
 24 1
 25 1

 26 1
 27 1
 28 1
 … … …

Fig. 8-3. The mg-tree of
node B3 at the 2nd round

level 0
Root level 1 Level 2 level 3
B3 Val(1)=1 Val(11) 111 0

 MAJ↑ =0 112 1
 (0 … 1) 113 1
 114 1
 115 1

 116 1
 117 1
 118 1

 Val(12) 121 0
 =1 122 1
 123 1
 124 1
 125 1

 126 1
 127 1
 128 1
 … … … …

Fig. 8-4.The mg-tree of node
B3 at the 3rd round

level 0
Root level 1 level 2 Level 3 level 4
B3 Val(1)=1 Val(11)=0 Val(111)=1 1111 0

 MAJ↑ MAJ↑ 1112 1
 (0 … 1) (0 … 1) 1113 1
 1114 1
 1115 1

 1116 1
 1117 1
 1118 1

 Val(112)=1 1121 0
 MAJ↑ 1122 1
 (0 … 1) 1123 1
 1124 1
 1125 1

 1126 1
 1127 1
 1128 1
 … … … … …

Fig. 8-5.The mg-tree of node B3 at the 4th
round

level 0
Root level 1 level 2 Level 3 level 4
B3 Val(1)=1 Val(11)=0 Val(111)=1

 1112 1
 1113 1
 1114 1
 1115 1

 1116 1
 1117 1
 1118 1

 Val(112)=1 1121 0

 1123 1
 1124 1
 1125 1

 1126 1
 1127 1
 1128 1
 … … … … …

Fig. 8-6. The ic-tree of node B3

level 3 level 2
VOTE (111)= (1,1,1,1,1,1,1)= 1 VOTE(11) = (1,1,1,1,1,1,1,1)=1
VOTE (112)= (0,1,1,1,1,1,1)= 1
VOTE (113)= (0,1,1,1,1,1,1)= 1

… …

level 2 level 1

VOTE(11)= (1,1,1,1,1,1,1,1)=1 VOTE (1) =(1,1,1,1,1,1,1,1)=1
VOTE(12)= (1,1,1,1,1,1,1,1)=1
VOTE(13)= (1,1,1,1,1,1,1,1)=1

… …

level 1 level 0 Root

VOTE (1)= (1,1,1,1,1,1,1,1)= 1 VOTE (B3)= (1,1,1,1,1,1,1,1)=1
VOTE (2)= (1,1,1,1,1,1,1,1)= 1
VOTE (3)= (1,1,1,1,1,1,1,1)= 1

… …

Fig. 8-7. The consensus value by node B3

VI. THE CORRECTNESS AND COMPLEXITY

According to the literature, a protocol is
obtained and the following proofs for the
agreement and validity property are given in this
section. The following lemmas and theorems are
used to prove the correctness and complexity of the

GCPCC. The notations and parameters of GCPCC
are shown as follows:

 n: The number of nodes in the cloud
computing environment.

 TMij: The transmission medium between node
i and node j.

The
ic-tree

erased the
vertices

with
repeated
names

from the
mg-tree.

 ITM: The transmission media between
A-level group and B-level group.

 c: The connectivity of network topology.
 nA: The number of nodes in an A-Level

group.
 nBj: The number of nodes in cluster j of a

B-Level group.
 Cn: The total number of clusters in a

B-Level group.
 TMmA: The number of allowable malicious

faulty transmission media in an A-Level
group.

 TMmBj: The number of allowable malicious
faulty transmission media in the cluster j
of a B-Level group.

 NmA: The number of allowable malicious
faulty nodes in an A-Level group.

 NmBj: The number of allowable malicious
faulty nodes in the cluster j of a B-Level
group.

 TMm: The number of allowable malicious
faulty transmission media in the cloud
computing environment.

 Nm: The number of allowable malicious
faulty nodes in the cloud computing
environment.

 Tf: The total number of allowable faulty
nodes.

 ITMc: The connectivity with each node of a
B-Level group between an A-Level
group.

 σ: The number of rounds required in the
Consensus Process.

A. Correctness of GCPCC
To prove that vertex α is common, the term

common frontier [2] is defined as follows: When
every root-to-leaf path of the mg-tree contains a
common vertex, the collection of the common
vertices forms a common frontier. In addition, the
constraints, Agreement and Validity, can be
rewritten as:

 Agreement: Root i is common
 Validity: VOTE(i) = vi for each correct node, if
the node i is correct
Every correct node has the same values

collected in the common frontier if a common
frontier does exist in a correct node’s mg-tree.
Subsequently, using the same function VOTE to
compute the root value of the tree structure, every
correct node can compute the same root value

because the same input (the same collected values
in the common frontier) and the same computing
function will produce the same output (the root
value). Since GCPCC can solve the BA problem,
the correctness of GCPCC should be examined in
the following two ways [2].
(1) Correct vertex: Vertex αi of a tree is a correct

vertex if node i (the last node name in vertex
αi’s node name list) is correct. In other words, a
correct vertex is a place to store the value
received from a correct node.

(2) True value: For a correct vertex αi in the tree
of a correct node, val(αi) is the true value of
vertex αi if TMij is fault-free. In other words, a
correct vertex is a place to store the value
received from a correct node. In other words,
the stored value is called the true value of a
vertex if the value stored in such a vertex is
correct from the influence of a faulty TM.

Theorem 1. Each node can receive values
without influences of malicious faulty nodes
between the sender node via GCPCC in each
round, then nA≥3NmA+1 in A-Level group and
nBj≥3NmBj+1 in cluster j of B-Level group.
Proof: We can ignore the influences of the
malicious faulty nodes between any pairs of nodes
in each round of value exchange and nA≥3NmA+1 in
A-Level group; and nBj≥3NmBj+1 in cluster j of
B-Level group. The reason is that the correct
sender node nA (nBj) copies of a value to correct
destination nodes. In the worst case, a correct
destination node can receive nA-NmA values
transmitted via the correct sender node in A-Level
group; receive nBj-NmBj values transmitted via the
correct sender node in the cluster j of B-Level
group.

Lemma 1. In an ic-tree, all correct vertices are
common.
Proof: The tree structure has conversed from
mg-tree to ic-tree. At the level σ or upon of ic-tree,
the correct vertex i has at least 2σ-1 children, in
which at least σ children are correct. The real value
of these σ correct vertices is common, and the
majority value of vertex α is common. For this
reason, all correct vertices of the ic-tree are
common.

Lemma 2. The common frontier exists in the
ic-tree.
Proof: There are σ vertices along each root-to-leaf
path of an ic-tree, so that though most σ-1 nodes
have failed, at least one vertex is correct along each

root-to-leaf path of the ic-tree. The correct vertex is
common, and the common frontier exists in each
correct node ic-tree by Lemma 1.

Lemma 3. Let α be a vertex, and α is common if
there is a common frontier in the sub-tree
rooted at i.
Proof: When the height of α is 0, and the common
frontier exists, α is common. If the height of α is σ,
the children of α are all in common by induction
hypothesis with the height of the children at σ-1.
Then the vertex α is common.

Corollary. If the common frontier exists in the
ic-tree, then the root is common.

Theorem 2. The root of a correct node’s ic-tree
is common.
Proof: By Lemmas 1, 2, 3 and the Corollary, the
theorem is proved.

Theorem 3. Protocol GCPCC solves the
consensus problem in a cloud computing
environment.
Proof: Inasmuch as the theorem must describe that
GCPCC meets the constraints Agreement’ and
Validity’.
Agreement: Root i is common, and by Theorem 3,
Agreement’ is satisfied.
Validity: VOTE(i) = vi for each correct node, if the
initial value of the node i is vi.
Whereas most of nodes are correct, the nodes use
GCPCC to communicate with all others. The
message of correct vertices for all correct nodes’
mg-trees is vi. When the tree structure has
converted from mg-tree to ic-tree, the correct
vertices still exist. Therefore, every correct vertex
of the ic-tree is common (refer to Lemma 1), and its
true value is vi. This root is common by Theorem 2.
The computed value VOTE(i)=vi is stored in the
root of the ic-tree for all correct nodes. (Validity’)
is satisfied.
B. Complexity of GCPCC

The complexity of GCPCC is evaluated in terms
of: 1) the maximum number of allowable faulty
components; and 2) the minimum number of
rounds to exchange messages. Theorems 4 and 5
show that the optimal solution is reached.
Theorem 4. The number of allowable faulty
nodes Nm is maximal and c≥2TMij+1.
Proof: Over the past literature of the agreement
problem for node faults only as n≥3Nm+1 and
c≥2TMij+1. However, we also assume that

components are faulty. Hence, the constraint of the
maximum number of allowable faulty nodes can be
applied to our study.
In a cloud computing environment, GCPCC can
tolerate NmA+TMmA≤(nA-1)/3 faulty components in
the A-Level group and the fault tolerant capability
of the B-Level group is nC

j 1max = (3NmBj+TMmBj≤
(nBj-1)/3). The connectivity with the A-Level
group and each cluster of B-Level group is
c≥2TMij+1; the node in the same cluster of
B-Level group with the connectivity is c≥2TMij+1
and the malicious fault ITM at most ⎡c/2⎤-1. The
total number of allowable faulty nodes by GCPCC
is Tf≤[(NmA+TMmA)+ nC

j 1max = (3NmBj+TMmBj)+
(⎡ITMc/2⎤-1), and the number of faulty components
is maximal in topology of cloud computing.

Theorem 5. GCPCC requires [(⎣(nA–1)/3⎦+2)+

(
nC

j 1
max

=
⎣(nBj–1)/3⎦+2)]+1 rounds of message

exchange to solve the consensus in a cloud
computing environment.
Proof: The value passing is required only in the
Message Gather Stage, it is time consuming. Yan
et al. [11] pointed out that ⎣(n–1)/3⎦+2 rounds are
the minimum number of rounds to send sufficient
values to achieve consensus in an n-nodes
distributed system [11]. In a cloud computing
environment, each node needs to exchange
messages with other nodes. Therefore, the
constraint of the minimum number of rounds can
be applied in the study. However, in a cloud
computing environment, ⎣(nA–1)/3⎦+1 rounds of
exchange messages in A-level group is required

and
nC

j 1
max

=
⎣(nBj–1)/3⎦+1 rounds of exchange

messages in B-level group is required. In addition,
each node in the same cluster of the B-Level group
needs to receive messages from A-Level group’s
nodes; therefore, one extra round is required. In
conclusion, the minimum number of rounds is
[(⎣(nA–1)/3⎦+1)+ (nc

j 1
max
=
⎣(nBj–1)/3⎦+1)]+1. Moreover,

the number of rounds required is optimal.

VII. CONCLUSION

Cloud computing is a new concept of distributed
systems [1,10]. It has greatly encouraged
distributed system design and practice to support
user-oriented services with application [1,16,18].
Fault-tolerance is an important research topic in
the study of distributed systems and it is a

fundamental problem in distributed systems; there
are many relative literatures in the past [2,5,9,11].
According to previous studies, network topology
plays an important role in the consensus problem,
but the results cannot cope with a cloud computing
environment and the consensus problem thus needs
to be reinvestigated. Moreover, in this paper, the
consensus problem with faulty nodes and
transmission media in a cloud computing topology
has been solved by the proposed protocol. The
proposed GCPCC ensures that all correct nodes in
the topology of a cloud computing can reach a
common value. Moreover, the new protocol
GCPCC is adapted to the cloud computing
environment and can derives the bound of
allowable faulty components. GCPCC uses the
minimum number of rounds of message exchange
and tolerates the maximum number of allowable
malicious fault transmission media and nodes in a
cloud computing environment. Furthermore, the
fault-tolerance capacity is enhanced by GCPCC.

ACKNOWLEDGMENT
This work was supported in part by the Taiwan

National Science Council under Grants NSC96-
2221-E-324-021 and NSC97-2221-E-324–007
-MY3.

REFERENCE
[1] F.M. Aymerich, G. Fenu and S. Surcis, “An

Approach to a Cloud Computing Network,”
the First International Conference on the
Applications of Digital Information and Web
Technologies, pp. 113-118, Aug. 2008.

[2] M. Fischer and N. Lynch, “A Lower Bound for
the Assure Interactive Consistency,”
Information Processing Letters, Vol. 14, No.4,
pp. 183-186, 1982.

[3] R.L. Grossman, Y. Gu, M. Sabala and W.
Zhang, “Compute and Storage Clouds Using
Wide Area High Performance Networks,”
Future Generation Computer Systems, Vol. 25,
No. 2, pp. 179-183, Feb. 2009.

[4] F. Halsall, Data Links, Computer Networks
and Open Systems. 4th ed., Addison-Wesley
Publishers, pp. 112-125, 1995.

[5] L. Lamport, et al., “The Byzantine General
Problem,” ACM Transactions on
Programming Language and Systems, Vol. 4,
No. 3, pp. 382-401, Jul. 1982.

[6] H.S. Siu, Y.H. Chin and W.P. Yang, “A Note on
Consensus on Dual Failure Modes,” IEEE
Transactions on Parallel and Distributed
Systems, Vol. 7, No. 3, pp. 225-230, 1996.

[7] M.A. Vouk, “Cloud Computing- Issues,
Research and Implementations,” Information
Technology Interfaces, pp. 31-40, Jun. 2008.

[8] L.H. Wang, J. Tao and M. Kunze, “Scientific
Cloud Computing: Early Definition and
Experience,” the 10th IEEE International
Conference on High Performance Computing
and Communications, pp. 825-830, 2008.

[9] S.C. Wang, K.Q. Yan, S.S. Wang and G.Y.
Zheng, “Reaching Agreement Among Virtual
Subnets in Hybrid Failure Mode,” IEEE
Transactions on Parallel and Distributed
Systems, Vol. 19, No. 9, pp. 1252-1262, Sep.
2008.

[10] A. Weiss, “Computing in The Clouds,”
netWorker, Vol. 11, No. 4, pp. 16-25, 2007.

[11] K.Q. Yan, Y.H. Chin and S.C. Wang, “Optimal
agreement protocol in malicious faulty
processors and faulty links,” IEEE
Transactions on Knowledge and Data
Engineering, Vol. 4, No. 3, pp. 266-280, Jun.
1992.

[12] “Amazon.com: Online Shopping for
Electronics, Apparel, Computers, Books,
DVDs & more,” http://www.amazon.com/, Jul.
2009.

[13] “Application Delivery Networking,
Application Acceleration, Internet Traffic
Management System : Zeus.com,”
http://www.zeus.com/, Jul. 2009.

[14] “Application Traffic Management,
Application Security,” http://www.zeus.com/
products/zxtm/index.html, Jul. 2009.

[15] “Cloud Computing,” http://www.zeus.com/
cloud_ computing/, Jul. 2009.

[16] “Gartner Says Cloud Computing Will Be As
Influential As E-business,” http://www.gartner.
com/it/page.jsp? id=707508, Jul. 2009.

[17] “Load Balancing, Load Balancer,”
http://www.zeus.com/products/zxtmlb/ index.
html, Jul. 2009.

[18] “More Google Product,” http://www.google.
com/options/, Jul. 2009.

[19] “What is Cloud Computing?,” http://www.
zeus.com/cloud_computing/cloud.html, Jul.
2009.

[20] “ZXTM for Cloud Hosting Providers,”
http://www.zeus.com/cloud_computing/for_cl
oud_providers.html, Jul. 2009.

