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Abstract―Parallel processing techniques are increas-
ingly found in reconfigurable computing, especially in 
digital signal processing (DSP) applications. In this paper, 
we design a parallel reconfigurable computing (PRC) ar-
chitecture which consists of multiple dynamically recon-
figurable computing (DRC) units. The hidden Markov 
model (HMM) algorithm is mapped onto the PRC archi-
tecture. First, we construct a directed acyclic graph (DAG) 
to represent the HMM algorithms. A novel parallel parti-
tion approach is then proposed to map the HMM DAG 
onto the multiple DRC units in a PRC system. This parti-
tioning algorithm is capable of design optimization of 
parallel processing reconfigurable systems for a given 
number of processing elements in different HHM states. 

Index Terms―FPGA, parallel processors, reconfigur-

able processing, HMM, partitioning algorithm. 

I. INTRODUCTION  

Reconfigurable computing (RC) is a promising 
alternative to application-specific integrated cir-
cuits (ASIC) and general-purpose processor sys-
tems, providing software processor flexibility, 
hardware coprocessor efficiency, high throughput 
and enhanced speed. Field programmable gate ar-
rays (FPGAs) are the most common devices used 
for RC, but “on-the-fly” dynamic reconfiguration 
has emerged as an attractive technique for mini-
mizing reconfiguration time. In particular, dynami-
cally reconfigurable computing (DRC) [1] [2] is 
receiving growing interest because its utilization of 
computational logic units can be dramatically im-
proved by logical time-sharing. On-chip resources 
can be reused, cutting hardware costs and improv-
ing performance. Therefore, this paper utilizes dy-
namically reconfigurable computing architecture to 
implement the HMM algorithm. Massive parallel-
ism, a special focus of this present paper, is consid-

ered a strong contender improved DSP chip designs. 
Moreover, the inherent parallelism in the HMM 
algorithm motivates us to propose a parallel proc-
essing architecture for its implementation. 

The parallel processing technique is generally 
used in a multiple instruction, multiple data 
(MIMD) architecture [5] to help optimize system 
performance. MIMD organization with multiple 
processors and I/O processors access one or more 
memory modules via a bus. Traditional 
non-dynamic RC architecture may be considered as 
multiple processor elements (PEs) sharing a single 
physical memory. A control processor executes the 
RC units, accessing memory through a shared 
memory bus. However, the MIMD architecture has 
the following drawback. Because all memory ref-
erences pass through the common bus, there is a 
data bottleneck at this bus.  

To reduce bus access numbers, equipping each 
processor with its own local memory as a dynami-
cally reconfigurable computing machine with sev-
eral configurations is desirable. The following dis-
cussion will assume the availability of such hard-
ware. Prior studies have shown that architecture 
consisting of several parallel non-dynamic RC units 
implemented as parallel FPGA can improve system 
performance [7]-[8]. In consequence, this present 
paper extends the above ideas by presenting a par-
allel reconfigurable computing (PRC) machine 
which combines several parallel FPGA arranged as 
parallel dynamically reconfigurable computing 
machines. In the PRC architecture, the proposed 
DRC-based processors are directly and easily us-
able in a symmetric multi-processor organization 
[5]. Figure 1(a) shows the proposed PRC architec-
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ture. A set of individual dynamically reconfigurable 
parallel processing units (DRPPU), each imple-
mented on its own FPGA, are connected in parallel 
by a common bus. Each DRPPU has its own local 
memory. Each DRPPU is composed of an array of 
configurable logic blocks (CLB), as seen in Figure 
1(b). Such architecture maximizes potential system 
performance for high computation and data inten-
sive applications [9]-[11] such as MPEG-4, H.264 
video encoding [7], and HMM recognition [12]. 

 
 (a) 

 

(b) 

Figure 1. (a) Parallel reconfigurable computing architecture: each 

DRPPU has a local memory. (b) DRPPU architecture. 

In a PRC system, the DRPPU is a dynamically 
reconfigurable computing processor similar to the 
fine grained architecture of DRFPGA [6]. DRC 
units have been used to realize large systems using 
multiple configurations [3]-[4]. Importantly for 
PRC implementation, the HMM algorithm can be 
partitioned into multiple stages and stored in con-
figuration memory planes. In general, DRC units 
hold only one active configuration in any time 
frame. Each configuration is called a cycle. All 
combinational logic is evaluated and flip-flop val-
ues are updated in one cycle. [6]. Each CLB has 
microregisters that store intermediate values gener-

ated from combinational logic for later cycle use 
and also hold flip-flop values for next cycle use. A 
cycle begins by saving all previous cycle CLB re-
sults in microregisters and then a new configuration 
is loaded into the active configuration of the local 
memory. 

The remainder of this paper is organized as fol-
lows. Section II introduces the HMM algorithm and 
uses data flow graphs (DFG) to represent it. Sec-
tion III presents the problem formulation. Section 
IV proposes parallel partitioning for mapping 
HMM DAG onto a PRC system. Experimental re-
sults are presented in Section V. Finally, conclu-
sions are given in Section VI. 
II. HIDDEN MARKOV MODEL AND CORRESPONDING 

DATA FLOW GRAPH  
A. Hidden Markov Model 

The Hidden Markov model is a class of statisti-
cal models useful for analyzing a discrete time se-
ries of observations such as a stream of acoustic 
elements extracted from a speech signal. An HMM 
is characterized by the state transition probability 
distribution, observation probability distribution 
and initial state probability distribution. For an 
HMM consisting of N states S1, S2, …., SN, we de-
note the state transition probability distribution as A 
= { aij }, where aij is the state transition probability 
from state Si to state Sj. The observation probability 
distribution is represented by B = {bj(ot)}, where 
bj(ot) is the probability of having an observation 
vector o(t) at time-step t being in the state j. The 
initial state probability distribution is represented 
by  = {j}, where j is the initial probability in the 
j-th state. The above three distributions can be in-
dicated compactly by λ= (A, B, ). For an observa-
tion sequence O = [o1, o2,…, oT], the recognition 
result relies on HMM probability evaluation, i.e. 
calculating the observation sequence probability 
P(O|λ). In our VLSI design, we focus on the recog-
nition capability of the HMM. The HMM parame-
ter λ is assumed to be computed in advance and 
stored in the memory unit. The HMM algorithm in 
this paper performs the HMM probability evalua-
tion process. 

While the conventional HMM evaluation process 
computes P(O|λ) using the forward-backward algo-
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rithm, but this paper does so by the alternative 
Viterbi algorithm method. The Viterbi algorithm 
has been widely researched and efficient imple-
mentations in speech recognition have been pro-
posed in [13]. For left-to-right HMMs, probability 
evaluation using the Viterbi algorithm can be de-
scribed as in equation 3. The state decoding prob-
lem is solved by equation 2. We define the 
time-step probability = )( jt , which computes the 
probability of being in state j in time-step t. 

)()( 11 obj jj      for t = 1, 1  j  N.       (1) 

                               
)(])([max)( 10 tjijtNit obaij  

    

for 2  t  T, 1  j  N.                    (2) 
                                     
P(o|λ) = )]([max

1
iTNi




   for t = T            (3) 

By the above equations, the Viterbi algorithm 
requires a large number of multiplications to extract 
the state sequence. From the standpoint of hard-
ware design, minimizing the number of multipliers 
optimizes the architecture. Because a multiplier 
occupies a large logical block (a large number of 
CLB), the area cost of the hardware is increased by 
using many multipliers. For example, it can be seen 
in Table I that the CLB number of a multiplier is 
greater than that of an adder. Therefore, we perform 
the Viterbi algorithm in the logarithm domain so 
that multiplication operations can be replaced by 
addition operations. 

The Log-Viterbi algorithm is described as fol-
lows: 

)()( 11 obj jj     for t = 1, 1  j  N.        (4) 

)(])([max)( 10 tjijtNit obaij  
    

for 2  t  T, 1  j  N.                    (5) 
     

Denote D as the feature order and represent ot = 
[ot1, ot2,…, otD] as the observation vector received 
in time-step t. In continuous mixture density HMM, 
an observation probability bj(ot) for the observation 
vector ot in the state j can be represented as: 
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where jk and jk are the mean vectors and diagonal 
covariance matrices, respectively, for the state in-
dex j and the dimension index k. Equation 6 is 
transformed into the logarithm domain as follows: 

log bj(ot) = 






















D

k
jk

D

1

)2(

1log


+ 
 

D

k jk

jktko

1
2

2

2
)(


   

= Cj +  
2

1
)(~




D

k
jktkjk o             (7) 

where Cj = 






















D

k
jk

D

1

)2(

1log


 and 
22

1~
jk

jk 
   

B. Operation Weight in HMM DFG 
In this subsection, the operations involved in 

HMM probability evaluation will be organized by a 
data flow graph (DFG). The DFG, G = (V, E, W), 
consists of |V| nodes and |E| edges, where each 
node represents an operation and each edge eE 
represents a dependence between nodes. For each 
node vV, there exists a weight wW. The DFG 
formulation will be discussed in greater detail in 
Section III.The HMM algorithm operation set 
which includes addition, subtraction, comparison, 
and multiplication. In a DRC system, these opera-
tions are implemented by configurable logic blocks 
(CLBs) [6]. An operation may need several CLBs. 
Take the observation probability generation for 
example. It has a set of operations that can be rep-
resented by DFG, where a node corresponds to an 
operation and an edge corresponds to the opera-
tion’s relation. DRC performance of 4-bit multipli-
cation, subtraction and addition are implemented 
respectively by 14 CLBs, 7 CLBs and 3 CLBs [4]. 
Since the weight w is the number of CLBs in a 
node, the respective weights are w(mult) = 14, 
w(sub) = 7 and w(add) = 3. Detailed discussion is 
given in Table I of Section V. 
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III. PROBLEM FORMULATION  
A. Motivation  

Minimizing the hardware execution time to per-
form the HMM algorithm in a PRC system is a 
primary goal in this paper. To quantify the execu-
tion time, every mapped DRPPU process in the 
HMM DAG is assumed to require a constant and 
equal unit cycle time, which includes both the re-
configuration and execution times for that DRPPU 
process. Each DRPPU is implemented in a single 
FPGA. All the FPGA’s have equal size and equal 
performance capabilities. If we treat the CLB utili-
zation of each DRPPU as equal, then the total 
number of CLBs in a DRPPU is equal. The task of 
a DRPPU is designed to be completed in a single 
cycle, after which a new configuration is invoked. 
For DRPPU run in parallel (Section IV below), we 
define the total execution time as Texe = k  
(DRPPU reconfiguration time) + k  (DRPPU exe-
cution time), where k is the number of configura-
tions, i.e. non-parallel DRPPU used in the graph. 
Recall that a configuration executes the DRPPU 
process in one cycle, which we will use in the fol-
lowing as a standard cycle. Hence, an application’s 
total execution time is equal to k cycles. 

The PRC hardware architecture will be consid-
ered in this study. Partitioning methods for the ar-
chitecture will be considered. For PRC architecture, 
consideration of parallel processing in temporal 
partitioning improves execution time. In this con-
text, the challenge is to exploit the parallelism in-
herent in HMM. Importantly, operation duplication 
in a given application is usually allowed in a paral-
lel partitioning solution. Hence, a partitioning tech-
nique is developed with this parallel processing 
consideration in mind. Where a layer is defined as a 
counter for a parallel array of DRPPU at one cycle 
time, the depth of a solution is defined as the total 
number layers in the solution. Optimizing a PRC 
solution finding a minimum depth duplica-
tion-permitted solution. Thus, a HMM DAG is par-
titioned into sub-graphs (each representing a 
DRPPU under one configuration) with a minimum 
depth solution. Each sub-graph consists of a set of 
clustered sub-graphs. Each sub-graph is selected by 
the greedy method, one at a time. This method will 
be shown to find the minimum depth partitioning of 

the HMM algorithm.  
B. Terminologies and Problem Formulation 

The different states of an HHM can be repre-
sented by a directed acyclic graph (DAG), G = (V, 
E, W), where V is a set of n nodes and E is a set of 
edges. A primary input (PI) node, which has no 
in-coming edge, represents an input signal. A pri-
mary output (PO) node, which has no out-going 
edge, represents an output signal. Except for PI and 
PO nodes, each node in V represents the imple-
mentation of a functional operation such as addi-
tion or subtraction. Figure 2(a) gives an example of 
a DAG representing a HMM application, in which 
nodes a, b, c, d, e, f, g and h are PI nodes and nodes 
o, w and t are PO nodes. A directed edge eij = <vi, 
vj>, eijE exists if the function input represented by 
vj depends on the function output represented by vi. 
For each node vi in a node set V, viV, there exists 
a weight wiW that represents DRPPU area of 
functional operation implementation, vi. Notice that 
the weight for every PI and PO node is zero. 

Although DAGs have been used in many prior 
studies of RC systems, most of them dealt with se-
rial processing. This presented study uses DAGs to 
deal with parallel processing issues. To do so, this 
study introduces the concept of a block, which we 
use to designate subsets (subgraphs) of the DAG 
that can be performed independently and in parallel 
with each other. A block B is a set of nodes VB 
which comprise that block. Nodes within VB can be 
any of the nodes within a DAG except the PI and 
PO nodes. In the following diagrams, nodes are 
designated by single circles and blocks are desig-
nated by circles enclosed in dotted lines, as seen in 
Fig. 2(a). We define the area of any block B as the 
sum of the weights of the nodes of that block. Since 
the weight of a node equals the number of CLB in a 
node, then the area of a block also equals the num-
ber of CLB in the block, also called the DRPPU 
logic capacity, ADRPPU, of any B. Any B is consid-
ered feasible if the area of B ( AB = 

Bv
bw ) is less 

than or equal to the DRPPU logic capacity, ADRPPU, 
i.e. AB  ADRPPU. In Figure 2(a), for example, the 
block F including nodes z, l, n, and s is feasible if 
ADRPPU = 23. 

To ensure proper execution sequence, each node 
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must be scheduled in a block no later than all its 
output nodes. This is a temporal constraint. Con-
straints which determine the temporal ordering of 
the nodes in the DAG are called precedence con-
straints [4]. Even when a graph is acyclic, blocks 
may exist in a cyclic-relation and cannot satisfy 
precedence constraints after partitioning. A set of 
feasible blocks in which precedence constraints are 
satisfied is called a feasible partitioning solution. 

In PRC parallel processing reconfigurable archi-
tecture, a given DAG is partitioned into feasible 
blocks such that each block can be implemented in 
a single DRPPU. The processing of blocks at the 
same time is allowed up to a maximum for the 
hardware; in our current example, each DRPPU is 
implemented by a single FPGA, so the maximum 
number of blocks that can be processing at the 
same time equals the number of FPGA. The FPGA 
(and therefore the blocks) that can be executed in 
one cycle we designate as a “layer.” 

Therefore, the PRC partitioning problem for 
depth optimization can be formulated as a 
graph-based problem as: 

Given an HMM DAG and the allowing parallel 
concurrent number of DRPPUs and with re-
spect for the maximum number of parallel 
concurrent number of DRPPUs, find a feasible 
partitioning solution with a minimum depth 
number. 
 

 
(a) 

 
(b) 

Fig. 2. DAG of a program or application. 

IV. PROPOSED PARALLEL PARTITIONING FOR MAP-

PING HMM DAG ONTO PRC 

This section discusses using a single root floor 
cone to partition a graph so as to have minimum 
depth. After this, the node duplication effect (an 
important factor in depth determination) is dis-
cussed. The greedy method will be used to find the 
partitioning solution for a DAG, G = (V, E). Par-
ticularly, we consider iteration using the greedy 
method to select feasible floor cones leads to find 
the minimum-depth partitioning solution. 
A. Floor Cone Properties and Node Duplication 

A feasible block B = (V, E) is called a feasible 
cone if there exists a node v V such that for every 
node uB there is a directed path from u to v in B. 
The node v is called the root of the floor cone. If all 
the cone’s fan-in nodes are PI nodes, the feasible 
cone is called a floor cone. Let Cu = (Vu, Eu) and Cv 

=(Vv, Ev) be two cones. Cu and Cv are said to over-
lap if Vu  Vv  . 

Let Cv be a feasible floor cone tipped at v. If a 
feasible floor cone tipped at every successor of v is 
not feasible, Cv is called a maximum floor cone 
(MFC). For example, in Figure 4(a) if ADRPPU = 23, 
the floor cone including the nodes {x, k, i, r, q} is a 
MFC. On the other hand, the floor cone including 
the nodes {k, r} is a floor cone but not a MFC be-
cause x is a successor of k and the floor cone tipped 
at x is a feasible floor cone. Clearly, the MFCv of 
node v is a maximal floor cone. Moreover, an MFC 
has the following important properties. 
Lemma 1: If w  MFCv, then floor cone Cw  
MFCv. 

Proof: For any node u  Cw, if a path does not exist 
from u to root w, it contradicts the assumption that 
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u  Cw. Therefore, for every node u  Cv, there is a 
directed path from u to v in Cv. This implies that for 
every node w  MFCv there is a directed path from 
w to v in MFCv. Therefore, Cw  MFCv.        
Lemma 2: If Vo = MFCv  MFCw and u  Vo , then 
floor cone Cu  Vo. 
Proof: If MFCv and MFCw exist and overlap Vo , 
then u  Vo. Therefore, two paths must exist from u 
to v and w. This implies that u  MFCv , u  
MFCw , and because of Lemma 1, then Cu  MFCv 
and Cu  MFCw.                           

Node duplication performance uses a DRPPU to 
cover a MFC that contains an overlapped region. 
Node duplication is generally very important to 
depth optimization because duplication usually in-
creases DAG parallelism. Without node duplication, 
many multiple fan-out nodes may have to be ex-
plicitly implemented with DRPPUs, possibly caus-
ing large depth in the partitioning solution. Hence, 
these feasible cones are allowed to overlap, which 
means that nodes in the overlapped region must be 
duplicated when mapping DRPPUs. In fact, in or-
der to achieve depth optimization, our algorithm is 
capable of duplicating nodes automatically when 
necessary. 

Traditionally in DRPPU temporal partitioning, a 
graph is partitioned into several sub-graphs. The 
previously proposed algorithms [3] and [4] do not 
consider whether sub-graphs have parallelism or 
not. We consider that if the sub-graphs have inher-
ent parallelism, after which we organize the prop-
erly-partitioned sub-graphs so that they can be 
executed during the same cycle, thereby improving 
performance. 
B. MFC-Processing for DRPPU Capacity 

In the preceding discussion we presented tech-
niques for minimizing the depth in parallel parti-
tioning. Assuming that the maximum parallelism of 
a given array is k (in this case, the number of FPGA 
in our simulated prototype’s parallel array; in a 
more general case, this is the number of DRPPU in 
the array), then after finding all feasible floor cones 
to the mapped k DRPPUs, we still cannot be sure 
each MFC represents the maximal capacity of the 
DRPPU. Thus we define the maximal mapping 
graph MMG to be a set of MFCs such that MFC  

MMG. The objective of MFC-processing in our 
parallel partitioning algorithm is to find k MMG 
(k-MMGs) by selecting all MFCs that can be col-
located under the DRPPU k capacity constraint (i.e. 
≤ k) and to confirm that the MFCs can collocate in 
a single layer. 

On the other hand, it should be noted that 
MFC-processing affects the depth, i.e. the number 
of layers in the design. Since increasing the number 
of layers increases the execution time of the design, 
it is desired to minimize the depth. This is accom-
plished by use of a bin-packing technique which 
treats the problem as a matter of minimizing the 
number of MMGs per MFC set. Since there are m 
MFCs in a MFCs set, the size of each MFC is ci 
which is a positive integer. We further give positive 
integers B and C as the number of bins and the bin 
capacity, respectively. The bin packing problem 
determines the minimum number of bins which can 
accommodate all m items. In general, the goal of 
bin packing is to find the minimum number of bins 
into which a set of boxes can be packed. In this 
case the bin packing problem is NP-complete, with 
the bins corresponding to the number of the 
DRPPUs and the boxes corresponding to the set of 
MFCs. The capacity of each bin is C, and the size 
of each box is the area size of the MFC. Herein, the 
bin packing algorithm used is First Fit Decreasing 
(FFD). 

Figure 3(a) shows an example of the set of the 
MFCs. There are seven MFCs in G, with each floor 
cone having size weight c1 = 3, c2 = 6, c3 = 2, c4 = 1, 
c5 = 5, c6 = 7 and c7 = 2 respectively. If the bin ca-
pacity of C is 9 then each floor cone corresponds to 
box capacity ci, where 1 i  7. First, we sort ob-
jects so that ci  ci+1, 1 i  7 as shown in Figure 
3(b) and then pack object i in bin j where j is the 
least index such that bin j can contain object i. In 
Figure 3(c) the final contents of the packed bins are 
9, 9 and 8, such that B = 3. 

Hence, the number of MFCs is decreased by ap-
plying bin packing as an MFC-processing step. 
When the number of bins is more than the k-MMG, 
we choose the k number of the largest capacity in 
bin B. There are other methods that can further de-
crease area cost after the MFCs have been pro-
duced. 
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(a) 

 

(b) 

 

(c) 

Figure 3. (a) A set of MFCs; (b) Sorting these MFCs; (c) Reducing the 

number of MFCs according to the bin packing FDD. 

Alternative partitioning methods and their dif-
ferent results have been presented above. It has 
been shown that the objective is a minimum num-
ber of layers when a graph G is partitioned by ap-
plying ≤k number of MMG’s. 
Theorem 1: If a DAG is partitioned by MFC with 
consideration of the ≤k-MMGs, then the result of 
partitioning is an optimal depth solution. 
Proof: Given a graph G and in a PRC system with k 
DRPPU, G is partitioned into subgraphs to find the 
depth. Based on Lemmas 1 and 2, we can obtain 
every MFC with an optimal solution. Hence in 
graph G, k-MMG was found by the all MFCs. Ac-
cording to the MMG definition, each MMG 
mapped to a DRPPU has maximal area. Let Sg be a 
set of MMGs. Now we use divide and conquer to 
obtain the solution. For graph G, after we find 
k-MMG’s Sg, the new graph G is produced by the 
procedure, G = G – Sg. Recursively, the step of 
finding k-MMG’s Sg until all node have been proc-
essed in graph G. It means that the minimum-depth 
solution of G is the union of {Sg} and the mini-
mum-depth solution of G – Sg. Hence, account of 
the depth is an optimal solution since each step of 
finding k-MMG’s is an optimal solution.        
C. The Minimizing Depth Algorithm 

A PRC parallel partitioning algorithm is pre-
sented in this subsection. Determining every MFC 
in a graph is first introduced. Then the minimum 
depth obtained recursively by obtaining k-MMGs is 

explained. Assume that the area constraint is 23, i.e. 
ADRPPU = 23. For example, 3-MFCs including Cx, 
Cy and Cz in Figure 2 can be selected for the opti-
mal solution, where 3-MFCs is equal to 3-MMGs. 

The minimizing depth algorithm is given in Fig. 
4. The algorithm needs to find all feasible floor 
cones to determine k-MMGs. The major work of 
parallel partitioning is to find every MFC in G. In 
every floor cone graph, there are three steps, 
namely calculating the area, sorting the area, and 
the labeling nodes. Application of the traversal 
technique applies a depth first search (DFS) for 
calculating the floor cone area. A floor cone is con-
structed with the node as a root if the floor cone is 
feasible. In the second step the sorting technique 
uses MergeSort. Moreover, we label the chosen 
root v and its predecessors, Pre (v) to get the Sc set, 
where Sc is a set of MFCs. Let TP (v) = 

)(Pr veu
uC



. 

Based on the Sc set, our parallel algorithm can find 
k-MMGs such that the k-MMGs, Sg is obtained by 
using FFD method in the MFC-processing. When a 
new DAG G = G – Sg is obtained, we return to the 
generate-MMG’s step in the partitioning procedure 
to find the new depth of the feasible cone. New 
MMGs are generated to increase the number of 
depths so that the partitioning depth in graph G in-
creases until all nodes is covered to the MFC. 
Algorithm Determining Depth: 

FindMinimumDepth(G) 
Comment: G(V, E) is a directed acyclic graph 
depth = 0; 
L = ; 
SortList = ; 
Sc = ; 
Sg = ; 
for every node u in G  
    L: = List L of all of nodes in topological order; 
end of the for loop 
while (L  ) do 
    for every node v in G do; 
       CalculateArea(Cv) by DFS;  
       if Area(Cv)  ADRPPU then do 
         SortList  Cv  
    end of the for loop 

while (SortList  ) do  
       Sort area of SortList by MergeSort  

for every floor cones Cv in SortList do 
          if Cv is the MFC then  
             Sc = Sc  Cv; 
             L = L – {v  Pre(v)}; 
             SortList = SortList – {Cv  TP(v)};  
          end of the if loop 

c7 = 1 

c3 = 5 

c4 = 3 

c2 = 6 c1 = 7 

c5 = 2 c6 = 2 

c4 = 1 c5 = 5 c3 = 2 c2 = 6 c6 = 7 c1 = 3 c7 = 2 

c4 = 3 c5 = 2 c3 = 5 c2 = 6 c6 = 2 c1 = 7 c7 = 1 
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     end of the while loop 
     for every MFC in Sc  
          Finding Sg by FFD; 
     end of the for loop 
     G = G – Sg; 
     Sg = ; 
     Sc = ; 
     depth = depth + 1; 
end of the while loop 

Figure 4. The minimum-depth algorithm for parallel partitioning 

D. The Complexity of the Algorithm 
The whole partitioning procedure has a low time 

complexity. Before finding the MFC, all the nodes 
are processed by topological sorting. Hence during 
portioning, the nodes are visited in topological or-
der. The time complexity of visiting the nodes is 
O(VlogV) where V is the number of nodes in 
the given graph. The task of finding each MFC in-
cludes calculating the area, sorting the area and la-
beling nodes. Each floor cone area is calculated by 
the depth first search (DFS) methodology. Hence, 
the time complexity of calculating the area is 
O(VlogV). In sorting the area, the number of 
floor cones is no more than the number of nodes V. 
The time complexity is O(V). When labeling 
nodes, a node is visited once. The complexity of 
labeling nodes is O(V). In the MFC-processing, 
to apply FFD the number of MFC is no more than 
the number of nodes V. The time complexity is 
O(VlogV). The minimum-depth partitioning 
solution selects k-MMG’s in each greedy method 
iteration. Therefore, depth determining takes 
O(V2logV) time. In conclusion, the total time 
complexity is bounded by O(V2logV). 

V. EXPERIMENTAL RESULTS  

The proposed PRC partitioning algorithm was 
implemented in C language on a Blade 1000 work-
station. For performance evaluation the algorithm 
was assigned to partition a published DAG for an 
HMM algorithm. We derive 4 DAGs for this algo-
rithm for four different levels of HMM complexity, 
i.e. for four different state numbers. Since higher 
state numbers imply much larger DAGs, this chal-
lenges the ability of our algorithm to minimize 
depth. Also, since algorithm depth is directly re-
lated to application execution speed, this is a good 

demonstration of the speed improvement that can 
be obtained by PRC. 

Our proposed algorithm can compute a theoreti-
cally unlimited number of parallel FPGA modules 
(DRPPU) but, for reasons of simple comparison, 
we perform simulations for parallel arrays from one 
to 5 DRPPU and for DRPPU areas (ADRPPU) from 
1536, 2304, 2688, 4992, 6144, 6656 to 9280 CLB. 
Thus we are demonstrating the ability of our algo-
rithm to help design massively parallel architecture. 
In fact, FPGA is intrinsically capable of such func-
tion but application up to the present time has been 
largely linear, due to lack of design tools and the 
habitual persistence of traditional thinking. It will 
be seen that speed optimization is obtained by use 
of larger DRPPU numbers. Functional operations 
such as addition, subtraction, multiplication are 
implemented by CLBs of a DRPPU. Table I shows 
the number of CLBs in each of these basic opera-
tions, while columns 2 to 4 show the different bit 
widths. The following data present the results of 
using our algorithm to mapping HMM DAGs of 
varying state numbers onto PRC architecture. The 
HMM state numbers mapped are 4, 8, 12 and 24. 
Here we use PRU abbreviation to present the 
DRPPU in the below Table and Figure. 

TABLE I. AREA OF THE OPERATIONS EXPRESSED IN XC4000 

CLBS 

#CLBs  
Operator    4 bits 8 bits 16 bits 

Addition 3 5 9 

Subtraction 7 13 25 

Comparison 11 16 29 

Multiplication 14 27 50 

 

The results of partitioning the HMM (2 DAGs, 8 
and 24 states) is presented in Fig. 5, with results 
given as minimum depth for each state conditions 
for a given number of parallel processing units (# 
of DRPPU), where each DRPPU group is subdi-
vided into ADRPPU (DRPPU area, i.e. number of 
CLB per DRPPU). Note that when the number of 
DRPPU equals one, this indicates a single FPGA 
which is equivalent to non-parallel processing. This 
value is given for comparison and to demonstrate 
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the capability of the presented algorithm. In Fig. 5, 
it is obvious that the depth decreases (i.e. the speed 
increases) as the number of DRPPU increases and 
also as the number of CLB per DRPPU increases. 

Performance Evaluation
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Fig. 5. Evaluation results of architecture performance based on depth 

number: (a) 8-state HMM; (b) 24-state HMM. 

Finally, we compare the speed performance of 
the same HMM implementation in different archi-
tectures. This is presented in Tables II and III. 
Columns 2 to 4 respectively show the Texe for the 
same HMM as implemented by general purpose 
processing (GPP), parallel processing elements 
without the local memory of DRPPU (Fig. 1(a)) 
and the PRC method with fully equipped DRPPU. 
Performance comparison is based on time-step 
execution time Texe analysis of the results of a 4-, 8-, 
12- and 24-state speech recognition Viterbi HMM 
algorithm decoder in C running on a Core 2 
1.86GHz CPU 2GB RAM machine with the each 
time-step of the execution time assigned to 10 ms. 

Table II shows the results for PE and DRPPU con-
sisting of 1536 CLB each. For the 4-, 8-, 12- and 
24-state HMM implementations, the proposed PRC 
design demonstrated average 12.26 and 3.53 exe-
cution time improvement relative to the GPP and 
the PE designs. Table III compares these systems 
when the computing block capacity is 2688 CLBs. 
Here PRC showed relative execution time im-
provements of approximately 17.12 and 3.36 with 
respect to the GPP and PE designs. The major im-
provement observed for the proposed PRC archi-
tecture (Fig. 1(a)) adopted in our DRPPU is attrib-
utable to the faster reconfiguration time resulting 
from the virtue improved bus cycle time. 

TABLE II.COMPARISON OF DIFFERENT DESIGNS FOR EXE-

CUTION TIME (NS) 

Improvement           
Time 

States 
GPP Parallel 

(1536clbs) 
PRC  

(1536clbs) GPP Parallel  
4-states 10000 2910 660 14.15  3.41 
8-states 10000 2970 660 14.15  3.50 
12-states 10000 4000 880 10.36  3.55 
24-states 10000 4120 880 10.36  3.68 
Average    12.26  3.53 

 

TABLE III.COMPARISON OF DIFFERENT DESIGNS FOR EXE-

CUTION TIME (NS) 

Improvement           
Time 

States 
GPP Parallel 

(2688clbs) 
PRC  

(2688clbs) 
GPP Parallel  

4-states 10000 1950 460 20.74  3.24  
8-states 10000 1990 460 20.74  3.33  
12-states 10000 3015 690 13.49  3.37  
24-states 10000 3120 690 13.49  3.52  
Average    17.12  3.36  

VI. CONCLUSIONS 

The addition of parallel processing techniques to 
reconfigurable computing has the potential to im-
prove DSP applications. Therefore, multiple proc-
essing units arranged according to traditional par-
allel processing techniques are being applied for 
high computation and data intensive applications 
such as HMM. This paper has presented a mini-
mum-depth partitioning algorithm for parallel re-
configurable computing. It is shown that applica-
tion speed can be improved by increasing parallel-
ism of the parallel DRC units. The resulting 
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high-parallelism design has somewhat higher total 
chip area because of redundancy between parallel 
units. The proposed algorithm can accept arbitrary 
chip area constraints or maximum parallelism con-
straint and then optimize for speed. 

REFERENCE 
[1]  J. Noguera and R. M. Badia, “HW/SW 

Codesign Techniques for Dynamically Recon-
figurable Architectures,” IEEE Transactions on 
VLSI, vol. 10, pp. 399-415, Aug. 2002. 

[2]  T. Fujii et al, “A dynamically reconfigurable 
logic engine with a multiconfiguration/ 
multi-mode unified-cell architecture,” in Proc. 
IEEE Int. Solid-State Circuits Conf., 1999, pp. 
364-365. 

[3]  G. M. Wu, J. M. Lin, and Y. W. Chang, “Generic 
ILP-based approaches for time-multiplexed 
FPGA partitioning,” IEEE Trans. Com-
puter-Aided Design, vol. 20, no. 10, pp. 
1266-1274, Oct. 2001. 

[4]  Y. C. Jiang and J. F. Wang, “Temporal Parti-
tioning Data Flow Graphs for Dynamically Re-
configurable Computing,” IEEE Transactions 
on VLSI, vol. 15, no. 12, pp. 1351-1361, Dec. 
2007. 

[5]  W. Stallings, “Computer organization and ar-
chitecture: designing for performance,” Pearson 
Education, 2003. 

[6]  [Online]. Available: http://www.xilinx.com/ 
[7]  L. F. Chen, Y. K. Lai, “VLSI architecture of the 

reconfigurable computing engine for digital 
signal processing applications,” IEEE Circuits 
and Systems Conference., ISCAS '04. pp. 

937-40, May 2004. 
[8]  Vissers, K. A, “Parallel processing architectures 

for reconfigurable systems,”  Design, Automa-
tion and Test in Europe Conference and Exhibi-
tion, 2003 pp. 396 - 397 

[9]  H. Schmit et al, “PipeRench: A virtualized pro-
grammable datapath in 0.18 micron technol-
ogy,” IEEE Custom Integrated Circuits Con-
ference., pp. 63-66, May 2002. 

[10] H. Singh, G. Lu, M. Lee, F. J. Kurdahi, N. 
Bagherzadeh, E. Filho, R. Maestre, “Morpho-
Sys: Case Study of a Reconfigurable Comput-
ing System Targeting Multimedia Applica-
tions,” Proceedings Design Automation Con-
ference (DAC’00), pp. 573-578, Los Angeles, 
California, May 2000. 

[11] R. Maestre, F. J. Kurdahi, M. Fernández, R. 
Hermida, N. Bagherzadeh, H. Singh, “Kernel 
Scheduling Techniques for Efficient Solution 
Space Exploration in Reconfigurable Comput-
ing,” Special Issue on Modern Methods and 
Tools in Digital System Design, in the Journal 
on System Architecture, 47, pp. 277-292, 2001. 

[12] S. A. Fahmy, Peter Y. K. Cheung and W. Luk, 
“Hardware acceleration of Hidden Markov 
Model decoding for person detecction,” Design, 
Automation and Test in Europe Conference and 
Exhibition, 2005, pp. 8-13. 

[13] Y. Zhu and M. Benaissa, “A novel acs scheme 
for area-efficient viterbi decoders,” In Proc. 
IEEE International Symposium on Circuits and 
Systems. ISCAS ’03., vol. 2, pp. 264–267, May 
2003. 

 

 


