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Abstract―This paper addresses the problem of occluded 

human segmentation and then uses its results for human 
behavior recognition.  To make this ill-posed problem 
become solvable, a novel clustering scheme is proposed for 
constructing a model space for posture classification.  To 
construct the model space, we use a triangulation-based 
method to divide a posture into different triangular 
meshes from which a posture descriptor “centroid 
context” is then extracted for posture recognition and 
model selection.  Then, a model-driven approach can be 
proposed for separating an occluded region to individual 
objects from the model space.  Due to partial occlusions, 
the task of model selection is very challenging.  For 
reducing the model space, a particle filtering technique is 
then used for locating possible positions of each occluded 
object.  Then, from these positions, the best model of 
each occluded object can be then selected using its 
distance maps. Then, a novel template re-projection 
technique is proposed for repairing an occluded object to 
a complete one.  Then, each action sequence can be 
converted to a series of symbols through posture analysis.  
Since occluded objects are handled, there will be many 
posture symbol converting errors in this representation.  
Instead of using a specific symbol, we code a posture using 
not only its best matched key posture but also its 
similarities among other key postures.  Then, recognition 
of an action taken from occluded objects can be modeled 
as a matrix matching problem. With the matrix 
representation, different actions (even caused by occluded 
persons) can be more robustly and effectively matched by 
comparing their Kullback–Leibler distance.  
Experimental results show the effectiveness and 
superiority of the proposed method in classifying human 
behaviors from occlude objects. 

 
Index Terms―Occluded Object Segmentation, Behavior 

analysis, K-L distance . 

I. INTRODUCTION 

Human behavior analysis can be applied in a 

variety of application domains such as video 
surveillance, video retrieval, human-computer 
interaction systems, and medical diagnoses.  In 
the past, many approaches [5] , [7] , [8]  have 
been proposed for video-based human movement 
analysis.  A visual surveillance system to model 
and recognize human behavior using HMMs 
(Hidden Markov Models) in [7]  and a trajectory 
feature. Rosales and Sclaroff [8]  proposed a 
trajectory-based recognition system to detect 
pedestrians in outdoor environments and recognize 
their activities from multiple views based on a 
mixture of Gaussian classifiers.  In [9] , Pynadath 
et al. have considered human actions as a complex 
hierarchy of events ranked where lower levels 
contain shorter actions that combine temporally to 
form higher level events/actions which are more 
abstract.  In [10] , Wren et al. proposed a Pfinder 
system for tracking and recognizing human 
behavior based on a 2-D blob model.  The 
challenge of incorporating 2-D posture models into 
the analysis of human behavior is the possibility of 
ambiguity between the adopted models and real 
human behavior, which may have mutual 
occlusions between body parts or lose clothes.  In 
these circumstances, although it is well-known that 
the cardboard model [11]  is good for modeling 
articulated human motions, the prerequisite that 
body parts must be well segmented makes this 
model inappropriate for real-time analysis of 
human behaviors. 

In addition to the above approach, some papers 
discuss human behavior analysis in the condition of 
occlusion.  The common approach to track objects 
is to use background subtraction and establish 
correspondence from frame to frame to find the 
track of the object[14] .  An alternative approach 



                                                                             

to background subtraction is to find the 
transformation of the object which is modeled 
using simple geometric models, e.g., ellipse or 
rectangle.  Using the mean-shift approach to 
compute the translation of a circular region was 
addressed in[15] . Peursum et al. [13]  present a 
method for finding and classifying objects within 
real-world scenes by using the activity of humans 
interacting with these objects to infer the object’s 
identity. 

In this paper, we address the problem of 
occluded human segmentation and then use its 
results for human behavior recognition.  Since this 
segmentation problem is still ill-posed, this paper 
assumes that the objects have been observed some 
periods before they are occluded. The detailed 
components of the system are shown in Fig. 1.  
First of all, before objects are occluded, the training 
stage (shown in Fig. 1 (a)) is applied for 
constructing the model space. Then, the model 
spaces of these objects can be constructed for well 
separating the occluded object to different ones.  
To construct the model space, we use a 
triangulation-based method to divide a posture into 
different triangular meshes. THen, a posture 
descriptor “centroid context” is then extracted for 
posture recognition.  With this descriptor, a novel 
key posture selection scheme is then proposed for 
constructing a model space.  To select the best 
model from this model space for guiding the 
segmentation process, a tracking technique is then 
adopted for roughly detecting possible locations of 
each occluded object.  Then, the distance 
transform is used for finely matching occlude 
objects according to their partial edges.  After 
model selection, a recovering scheme is then 
proposed for repairing an occluded object to a 
complete one.  Then, each action sequence can be 
converted to a series of symbols through posture 
analysis.  Since occluded objects are handled, 
there will be many posture symbol converting 
errors in this representation.  Instead of using a 
specific symbol, we code a posture using not only 
its best matched key posture but also its similarities 
among other key postures.  Then, recognition of 
an action taken from occlude objects can be 
modeled as a matrix matching problem.  With the 
matrix representation, different actions (even 

occluded) can be more robustly and effectively 
matched by comparing their Kullback–Leibler 
distance. Experimental results show the 
effectiveness and superiority of the proposed 
method in classifying human behaviors from 
occlude objects. 
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(b) Segmentation Stage 

Fig. 1: Flowchart of the proposed system to 
recognize human behaviors from occluded 
objects. (a) Training stage. (b) Recognition 
stage. 
The remainder of the paper is organized as 

follows. Details of posture descriptor are described 
in Section II.  The scheme of model construction 
is discussed in Section III.  Section IV discusses 
the techniques of object tracking and model 
selection.  Section V describes details of occlude 
object segmentation. Then, a novel behavior 
recognition scheme from occluded objects is 
proposed in Section VI.  The experiment results 
are given in Section VII. We then present our 
conclusions in Section VIII. 
II. POSTURE REPRESENTATION USING CENTROID 

CONTEXTS 

This paper assumes that all the analyzed video 
sequences are captured by a still camera. Then, 
different human postures can be detected through 
background subtraction. Then, the descriptor 
“centroid contexts” will be extracted from each 
foreground object for posture representation and 
classification.  In what follows, details of this 
technique will be described.  

A. Skeleton Extraction Using Triangulation 

Assume that P is a binary posture and extracted 
through background subtraction.  This paper uses 
the technique of constrained Delaunay triangulation 
[1]  to divide P to different triangle meshes.  
Then, according to the result of triangulation, a 



                                                                             

graph can be formed by connecting all the centroids 
of any two connected meshes in P.  This section 
will use the depth-first search technique to find the 
skeleton that will be used for posture recognition.  

Assume PΩ  is the set of triangular meshes 
extracted from P, i.e., 0,1,..., -1{ }

TPP i i NT =Ω = . Each 

triangle mesh iT  in PΩ  has a centroid 
iTC . Two 

triangular meshes, iT  and jT , are connected if 
they share one common edge. Then, based on this 
connectivity, P can be converted into an undirected 
graph PG , where all centroids 

iTC  in PΩ  are 
nodes on PG ; and an edge exists between 

iTC  and 

jTC  if iT  and jT  are connected. The degree of a 
node on the graph is defined by the number of 
edges connected to it. Thus, based on the above 
definitions, we perform a graph search on PG  to 
extract the skeleton of P. 

To derive a skeleton based on a graph search, we 
seek a node H whose degree is one and whose 
position is the highest among all the nodes on PG . 
H is defined as the head of P.  Then, we perform a 
depth-first search from H to construct a spanning 
tree in which all the leaf nodes iL  correspond to 
different limbs of P.  The branching nodes iB  
(whose degree is three in PG ) are the key points 
used to decompose P into different body parts such, 
as the hands, feet, or torso. Let PC  be the centroid 
of P, and let U be the union of H, PC , iL , and iB . 
The skeleton PS  of P can be extracted by linking 
any two nodes in U if they are connected.  Using 
the above linking strategy, a path can be easily 
found from the spanning tree of P.  Note that, the 
spanning tree of P obtained by depth-first search is 
also a skeleton.   
B. Centroid Context 

In this section, we introduce a centroid 
context-based shape descriptor that can 
characterize the interior of a shape.  This 
descriptor is used in the fine search process. Since 
the triangulation results of human postures vary, we 
calculate the distribution of every posture based on 
the relative positions of the meshes’ centroids. A 

descriptor of this form guarantees robustness and 
compactness.  Assume all postures are normalized 
to a unit size.  Then, similar to the technique used 
in shape context [2] , we project a sample onto a 
log-polar coordinate and label each mesh. We use 
m to represent the number of shells used to 
quantize the radial axis and use n to represent the 
number of sectors that we would like to quantize 
each shell.  Therefore, the total number of bins 
used to construct the centroid context is m×n.  For 
the centroid r of a triangle mesh of a posture, we 
construct a vector histogram ( (1),r rh h= …, 

( )rh k ,…, ( )rh mn ), in which ( )rh k  is the number 
of triangle mesh centroids in the kth bin by 
considering r as the origin, i.e., 

   ( ) #  { |  ,  ( - )  }k
rh k q q r q r bin= ≠ ∈ , (1) 

where kbin  is the kth bin of the log-polar 
coordinate.  Then, given two histograms ( )

ir
h k  

and ( )
jrh k , the distance between them can be 

measured by a normalized intersection:  

  
1

1( , ) 1- min{ ( ), ( )}
bin

i j

K

i j r r
kmesh

C r r h k h k
N =

= ∑ , (2) 

where binK  is the number of bins and meshN  
denotes the number of meshes calculated from a 
posture.  Using Eqs.(1) and(2), we can define a 
centroid context to describe the characteristics of 
an arbitrary posture P. 

 
Fig. 2: Polar Transform of a human posture. 

In the previous section, we presented a tree 
search algorithm that can be used to find a 
spanning tree P

dfsT  from a posture P based on the 
triangulation result.  As shown in Fig. 3, (b) is the 
spanning tree derived from (a). The tree P

dfsT  
captures the skeleton feature of P.  Here, we call a 
node a branch node if it has more than one child. 
By this definition, there are three branch nodes in 
Fig. 3(b), i.e., 0

Pb , 1
Pb , and 2

Pb .  If we remove all 



                                                                             

the branch nodes from P
dfsT , it will be decomposed 

into different branch paths P
ipath . Then, by 

carefully collecting the set of triangle meshes along 
each path, it is clear that each path P

ipath  will 
correspond to one body component in P.  For 
example, in Fig. 3(b) if we remove 0

Pb  from P
dfsT , 

two branch paths will be formed, i.e., one from 
node 0n  to 0

Pb  and one from 0
Pb  to node 1n .  

The first path corresponds to the head and neck of 
P, and the second corresponds to the hand of P. In 
some cases, the path may not correspond to a 
high-level semantic body component exactly, as 
shown by the path from 0

Pb  to 1
Pb .  However, if 

the length of a path is further constrained, 
over-segmentation can be easily avoided. 
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Fig. 3: Body component extraction.  (a) 
Triangulation result of a posture.  (b) The 
spanning tree of (a).  (c) Centroids derived 
from different parts (are determined by 
removing all the branch nodes). 
 

Given a path P
ipath , we can collect a set of 

triangle meshes P
iV  along it.  Let P

ic  be the 
centroid of the triangle mesh closest to the center of 
this set of triangle meshes.  As shown in Fig. 3(c), 

P
ic  is the centroid extracted from the path that 

begins at 0n  and ends at 0
Pb . Given a centroid P

ic , 
we can obtain its corresponding histogram ( )P

ic
h k  

using Eq.(1).  Assume that the set of these path 
centroids is PV . Based on PV , the centroid 
context of P is defined as follows: 
 

0,...,| |-1
{  }P P

ic i V
P h

=
= , (3) 

where | |PV  is the number of elements in PV . 
Given two postures P and Q, the distance between 
their centroid contexts is measured by 
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≤ <=
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=

+

∑

∑
, (4) 

where P
iw  and Q

jw  are the area ratios of the ith 
and jth body parts residing in P and Q, respectively. 

III. MODEL CONSTRUCTION 

The occlusion problem is still ill-posed for 
computer vision method.  To tackle this problem, 
this paper assumes that all the objects have been 
observed some frames before they are occluded or 
their model space has been constructed. Like Fig. 4, 
before occlusion, a series of postures can be 
collected and form a model space.  Some postures 
may be redundant, so they should be removed from 
the modeling process.  To do this, we use a 
clustering technique to select a set of key postures 
from a collection of real-world video clips.  Then, 
a model-driven scheme can be proposed for well 
separating occluded objects to different individuals.  
In what follows, the scheme for model space 
construction is described.   

   
    (a)               (b) 

Fig. 4: Posture template construction. (a) Initial 
posture template. (b) Sets of posture templates 
selected from different frames. 
Assume tP  is the posture extracted from the tth 

frame.  Given two adjacent postures, -1tP  and tP , 
the distance between them, td , is calculated using 
Eq.(4), where w is set 0.5. Assume dT  is the 
average value of td  for all pairs of adjacent 
postures.  For a posture tP , if td  is greater than 
2 dT , we define it a posture-change instance. By 
collecting all the postures that correspond to 
posture-change instances, we derive a set of key 
posture candidates KPCS . However, KPCS  may still 



                                                                             

contain many redundant postures, which would 
degrade the accuracy of the sequence modeling. To 
address this problem, we use a clustering technique 
to find a better set of key postures. 

Initially, we assume each element ie  in KPCS  
individually forms a cluster zi . Then, given two 
cluster elements, iz  and jz , in KPCS , the distance 
between them is defined by: 

1( , ) ( , )
| || |

m i n j

cluster i j m n
e z e zi j

d z z Dist e e
z z ∈ ∈

= ∑ ∑ , (5) 

where (.,.)Dist  is defined in Eq.(4) and |z |k  
represents the number of elements in kz .  
According to Eq.(5), we can execute an iterative 
merging scheme to find a compact set of key 
postures from KPCS . Let t

iz  and tZ  be the ith 
cluster and the collection of all clusters t

iz  
respectively at the tth iteration. At each iteration, 
we choose a pair of clusters t

iz  and t
jz  whose 

distance ( , )cluster i jd z z  is the minimum among all 

pairs in tZ , i.e.,    

( , )
( , ) arg min ( , ), 

           for all  ,  ,   .
m n

i j cluster m nz z

t t
m n m n

z z d z z

z Z z Z and z z

=

∈ ∈ ≠
 

If ( , )cluster i jd z z  is less than dT , then t
iz  and t

jz  
are merged to form a new cluster and thus 
constructing a new collection of clusters +1tZ . The 
merging process is executed iteratively until no 
further merging is possible. Assume Z  is the final 
set of clusters after merging. Then, from the ith 
cluster iz  in Z , we can extract a key posture 

key
ie  so that 
 arg min ( , )

m i
n i

key
i m ne z

e z

e Dist e e
∈

∈

= ∑ . (6) 

Based on Eq.(6) and checking all clusters in Z , 
the set KPS  of key postsures, i.e., KPS ={ }key

ie  can 
be constructed for human action sequence analysis. 

IV. OBJECT TRACKING AND MODEL MATCHING 

The goal of this paper is to enhance the ability of 
a behavior analysis system for recognizing the 

behaviors between two persons even though they 
are occluded.  Since the occlusion problem is still 
ill-posed in computer vision, a scheme of key 
posture selection has been proposed in the previous 
section for constructing a model space.  Then, this 
section will present a novel method for choosing 
the best template model from the model space for 
tackling the occlusion problem.   
A. Object Tracking Using Particle Filters  

 
Fig. 5.  The region is found by particle filters. 

R Particle Filter   

Distance 
transform

Reference 
Templates  

(a)              (b) 
Fig. 6: Flowchart of template model selection.  
(a) Tracking using particle filters.  (b) Model 
selection using distance transform.  
Let Z denote the set of template models.  This 

paper presents a coarse-to-fine approach for finding 
the best model from Z.  To avoid a full search on 
the whole image, at the coarse stage, the technique 
of particle filters is used for tracking each occluded 
objects.  The particle filter algorithm [3] , [4] .is 
very similar to the mean-shift one but the 
difference is that the particle filter combines with 
Monte Carlo rule and condensation algorithm to 
filter out the new object position frame by frame. 
The former uses the sample sets to predict the 
object of candidates and the later involves a 
stochastic dynamic model to reserve the samples 
with high probability in the previous state.  Then, 
each pedestrian will be bounded by a rectangle.  
Like Fig. 6, two rectangles with different colors 
were shown for denoting the tracked persons.  
From the tracking result, in what follows, different 
features (including contour, color, and centroid) 
will be used and integrated for finding the best 
model from Z more accurately.      



                                                                             

B. Model Matching Using Triangulation  

Given an occluded object kO , the technique of 
particle filters can roughly locate its position.  To 
obtain its best matching model from Z, this section 
will propose a triangulation-based scheme for 
tackling the occlusion problem. 

      
(a)         (b)           (c) 

Fig. 7: (a) An occluded region R.  (b) 
Triangulation result of R using its contour 
feature.  (c) Triangulation result of R 
using its edge feature. 
Assume that R is the foreground region 

(extracted through background subtraction) in 
which different objects are occluded together.  
This scheme first over-segments R to different 
triangulation meshes using its edge features rather 
than its contours.  Like Fig. 9(b), if the contour 
feature is used, it does not provide lots of triangular 
meshes for separating occluded objects to 
individual ones.  However, if the triangulation 
task is done according to the edge feature, more 
useful meshes can be extracted for analyzing the 
inner structures of R (like Fig. 9(c)).  Then, based 
on the triangulation results, a novel matching 
scheme will be proposed for tackling the occlusion 
task.  Then, based on the triangulation results, a 
labeling technique will be presented for labeling 
each mesh so that the occluded pedestrians in R can 
be well separated for further behavior analysis.  
Thus, in this paper, the edges in R are used for 
guiding this over-segmentation process. 

Assume that  kt  is one triangulated mesh in R 
and there are K objects in R.  Then, a label field L 
={ |l l∈ [0,..., -1]}K  on R can be created.   Thus, 
the segmentation problem can be converted to a 
labeling algorithm on G.  Given kt , its optimal 
label 

kt
l  can be estimated by maximizing a 

posteriori probability ( | )kP l t  as follows: 

arg max ( | )
kt kl L

l P l t
∈

= . 

Using the Bayesian rule, the posteriori probability 
can be further rewritten by 
 ( | ) ( | ) ( )k kP l t p t l P l∝ , (7) 

where ( )P l  is the priori probability of the lth 
object and ( | )kp t l  is the likelihood probability of 

kt  belonging to the lth object.  According to the 
template and color models of kt , ( | )kp t l  can be 
further decomposed to two components, i.e., 

( | ) ( | ) ( | )k template k color kp t l p t l p t l= , 

where 2( | ) exp(- ( , )/ )template k template k templatep t l d t l σ=  

and 2( | ) exp(- ( , )/ )color k color k colorp t l d t l σ= . 

C. Distance Transform 

     

OccludedNon-occluded

x   

Occluded Non-occluded

x  
(a)            (b)        (c) 

Fig. 8: An occluded region and its two 
objects.  (a) Occluded foreground region R.  
(b) and (c): Occluded objects in R.     
Assume that R is a foreground region and there 

are N occluded objects kO  in it.  Like Fig. 8, 
there are two occluded objects in R.  For one 
object kO  in R , we can use the technique of 
particle filter for tracking its position and then 
extract it using a bounding box.  (b) and (c) show 
the objects extracted by these two boxes.  The 
occluded case shown in Fig. 8 is not serious.  
When the case shown in Fig. 6 is handled, the best 
template model should be selected from Z for more 
accurately segmenting each object kO  from R.  
The goal of template selection is achieved by 
transforming kO  to its corresponding distance 
map 

kODT . 
Given an object kO , its distance map 

kODT  
supplies each pixel of kO  with the distance to the 
nearest edge pixel.  More accurately, the value of 



                                                                             

a pixel r in 
kODT  is the shortest distance between 

it and all edge pixels in kO , i.e.,  
    

( )  
( ) min ( , )

k
k

O q edge O
DT r d r q

∈
= , (8) 

where ( )kedge O  denotes the edge map of kO  
(obtained from Canny edge detector) and ( , )d r q  
is the Euclidian distance between r and q.  The 
distance between the two distance maps of two 
objects kO  and D can be defined as follows:   

 1( , ) | ( ) ( ) |
| | k l

k

edge k l O M
r Ok

d O M DT r DT r
O ∈

= −∑ , (9) 

where | |kO  represents the image size of kO . 
When calculating Eq.(9), kO  and lM  must be 
normalized to a unit size and their centers must be 
set to the origins of kO  and lM , respectively.   
Then, the best template can be selected from the 
model space Z according to this form:   
 arg min ( , )

k
l

O edge k lM Z
M d O M

∈
= . (10) 

However, the distance edged  is not accurate when 
an occluded object is compared.  In Eq.(9), all the 
pixels in kO  are equally set for calculating edged .  
When an occluded object is handled, like Fig. 8(b) 
or (c), the pixels close to the non-occluded side 
should play more important roles than the ones 
close to the occluded side in template matching.  
When considering this effect, we weight a pixel r 
with the following equation: 
 ( ) exp( | |)rw r xκ= ,  (11) 

where 0.1κ =  and rx  is the difference between r 
and the occluded side in the x coordinate (see Fig. 
8(b) and (c)). When the weighting function is 
considered, we modify Eq.(9) as follows: 

1( , ) ( ) | ( ) ( ) |
k l

k

edge k l O M
r O

d O M w r DT r DT r
C ∈

= −∑ .(12) 

where ( )
kr O

C w r
∈

= ∑ . 

D. Color model  

Once each model template is built, the triangulation 
technique is used for over-segmenting each input 

model to different regions.  Let l
nO  denote the 

nth template of the lth object.  Then, l
nO  will be 

divided to different body parts l
n

i
O

R  using the 

triangulation technique.  Assume that ,
l
n

i j
O

R  is one 

of triangulation meshes found from l
n

i
O

R .  To 

tackle the occlusion problem, each mesh ,
l
n

i j
O

R  is 

further modeled using a Gaussian function whose 
parameters are the mean and variance of the major 
color in ,

l
n

i j
O

R  as follows: 
, ( , , , , , )l
n

i j
O

R Gaussian r r g g b bμ σ μ σ μ σ= . 

V. OCCLUDED OBJECT SEGMENTATION 

To separate two objects from an occluded region 
R, the previous section adopts a distance transform 
for selecting a possible template for guiding the 
segmentation problem. This section will we use the 
triangulation technique to over-segment R to 
different triangulation meshes. 
A. Over-segmentation Using Triangulation 

To separate two occluded objects to different 
parts, we first over-segment the occluded region R 
to different triangulation meshes using its edge 
features. For this over-segmentation task, the 
contour feature is not a good choice for capturing 
the inner structure of R.  Like Fig. 9(b), the 
contour feature does not provide lots of triangular 
meshes for separating these two occluded objects to 
individual ones.  However, if the edge feature is 
used for the triangulation task, more useful meshes 
can be extracted for analyzing the inner structures 
of R.  Like Fig. 9(c), if the edges in R are adopted, 
more detailed triangulation meshes can be extracted 
for segmenting R to different parts.      

      
(a)         (b)           (c) 

Fig. 9: (a) An occluded region R.  (b) 
Triangulation result of R using its contour 
feature.  (c) Triangulation result of R 



                                                                             

using its edge feature. 
Assume that  kt  is one triangulated mesh in R 

and there are K objects in R.  Then, a label field L 
={ |l l∈ [0,..., -1]}K  on R can be created.   Thus, 
the segmentation problem can be converted to a 
labeling algorithm on G.  Given kt , its optimal 
label 

kt
l  can be estimated by maximizing a 

posteriori probability ( | )kP l t  as follows: 

arg max ( | )
kt kl L

l P l t
∈

= . 

Using the Bayesian rule, the posteriori probability 
can be further rewritten by 
        ( | ) ( | ) ( )k kP l t p t l P l∝ , (13) 

where ( )P l  is the priori probability of the lth 
object and ( | )kp t l  is the likelihood probability of 

kt  belonging to the lth object.  According to the 
template and color models of kt , ( | )kp t l  can be 
further decomposed to two components, i.e., 

( | ) ( | ) ( | )k template k color kp t l p t l p t l= , 

where 2( | ) exp(- ( , )/ )template k template k templatep t l d t l σ=  

and 2( | ) exp(- ( , )/ )color k color k colorp t l d t l σ= . 
( , )template kd t l  and ( , )color kd t l  denote the template 

and color distances between kt  and the lth object, 
respectively.  2

templateσ  and 2
colorσ  represent the 

variances of ( , )template kd t l  and ( , )color kd t l , 
respectively. To calculate ( , )template kd t l , a 
re-projection technique will be first described for 
projecting kt  on the lth object and then estimating 
their dissimilarity.  After that, the color distance 

( , )color kd t l  will be discussed in Section 6.3.  

B. Template Re-projection  

               
(a)            (b)          (c)         

Fig.10: Template re-projection. (a) A mesh 
shown by a red dot.  (b) Projection of a 

mesh kt  on the selected template model 

lOM . (c) Re-projection.  

In Section 5, the technique of particle filter is 
used for tracking each object lO  in an occluded 
region R (see Fig. 6).  Since there are lots of 
occluded pixels found in R, given a mesh kt , 
which object it belongs to is till difficultly 
determined.  In what follows, a novel template 
re-projection technique will be described for 
calculating the dissimilarity between kt  and each 
template model. 

Let 
OlMc  and 

kt
c  dente the central positions of 

lOM  and kt  in R, respectively.  With 
OlMc  and 

kt
c , kt  in 

lOM  can be determined as follows:   
( )

O k Ol lM k t Mp t c c= − , 

where the center of 
OlMc  is the origin.  Fig.10 

shows an example to illustrate our idea.  In (a), a 
mesh kt  (denoted by a red dot) is given.  (b) 
shows one of template models selected by the 
distance transform.  Let ig  denote one of body 
parts in 

lOM  whose center is denoted by a yellow 
dot like Fig.10(b).  Then, with ( )

OlM kp t , the 

relative position between kt  and ig  can be 
accordingly obtained.  Thus, two projection tasks 
for building the spatial relations between R and 

lOM  can be performed, i.e., the one from R to 

lOM  and the other one from 
lOM  to R.  For the 

first one, we project kt  on 
lOM  so its 

corresponding mesh kt  in 
lOM  can be found (see 

the red dot in Fig.10(b)).  For the second one, all 
the body parts ig  in 

lOM  are projected on R and 
then their corresponding meshes 

igt  from R can be 
found using the nearest neighbor criterion.  Let 

gn  denote the number of body parts in 
lOM .  

Then, the distance between kt  and 
lOM  can be 

calculated as follows:        



                                                                             

1

1( , ) [ ( , ) ( , )]
1

g

l i

n

template k O k k k g
ig

d t M d t t d t t
n Δ Δ

=

≅ +
+ ∑ ,  

where ( , )i jd t tΔ  is the distance between two 
triangular meshes it  and jt .  Let th  denote the 
color histogram of a triangular mesh t .  Then, the 
KL distance is used to measure ( , )i jd t tΔ :  

 [ ]
[ ]
[ ]

1

0

( , ) log
bin

j

i

i

n
t

i j t
k t

h k
d t t h k

h k

−

Δ
=

⎞⎛
= ⎟⎜⎜ ⎟

⎝ ⎠
∑ . (14) 

C. Color Similarity  

In Section 4.2, a clustering technique to cluster the 
colors of template models to different clusters.  
Let lC  denote the set of color models in the lth 
object and l

nC  the nth color model in lC .  Then, 
the color distance ( , )color kd t l  between kt  and the 
lth model is defined by:  

2 2 2

2 2 2
, , ,

( ) ( ) ( )
( , ) min

l l l
k k kn n n

l l
n

k k k

t t tC C C
color k

C C
t r t g t b

r r g g b b
d t l

σ σ σ∈

− − −
= + + . (15) 

After normalization, ( , )color kd t l  is redefined as 
follows: 

 ( , )( , )
( , )

c k
color k

c k
l

d t ld t l
d t l

=
∑

. (16) 

D. Object Recovering 

      
     (a)        (b)   (c)   (d)    (e)   (f)   

Fig.11: Repairing results of occluded objects. 

Once an occluded region is separated to 
different objects, the next task is to recognize their 
related posture and behavior types.   Like Fig.11, 
two rectangle boxes were used to track the 
observed objects.  In (b), we use the blue area to 
denote the overlapping component between them.  
Let  aO  and bO  denote the extracted objects 
from the occluded object R. In addition, RA  denote 
this overlapping component of R.  Then, with RA , 

we can an ‘union’ operation to repair aO  and bO , 
respectively, as follow: 
 a a RO O A= ∪  and b b RO O A= ∪ . (17) 
Like Fig.11(c) and (d), two objects aO  and bO  
are extracted from the occluded object R in (a) 
using the technique proposed in Section 5.  Then, 
we repair aO  and bO  as aO  and bO , 
respectively, using Eq.(17).  Actually, the 
repairing task is only performed only when a 
serious fragmentation happens.   To detect this 
case, a fragmentation ratio is defined as 

min(| |,| |) ,
max(| |,| |)

a b
ratio

a b

O Of
O O

=  

where | |O  denotes the number of pixels in O .  
If ratiof  < 30%, a serious fragmentation happens.  
Under this case, only the smaller object (like aO ) 
will be repaired and the larger one (like bO ) is kept.  
In real cases, some holes will exist in each object.  
Thus, a morphological operation ‘closing’ is further 
used to fill the above holes.  Fig.11(e) and (f) 
show the repairing results of aO  and bO , 
respectively.  After repairing, the posture types of 

aO  and bO  can be then recognized using Eq.(4), 
respectively.   
VI. BEHAVIOR RECOGNITION 

In this paper, each movement sequence of a 
human subject is represented by a continuous 
sequence of postures which changes over time.  
This paper tries to present a novel approach to 
recognize human behaviors directly from videos 
even though occlusions happen. 

Let { }0 1, ,..., ,....A A A
tA Q Q Q= denote an action 

sequence.  We can convert it to a string using 
Eq.(4) and then analyze throng a string matching 
scheme.  Assume A

tK  is the recognized type of a 
query posture A

tQ  in A.  In real cases, there 
should be some key postures in 

QtKΩ  which are 

very similar to A
tK .  Thus, the correct type of 

each posture A
tQ  in A will not be always found.  

To enlarge the difference between A
tK  and other 



                                                                             

similar postures in 
QtKΩ , we represent A

tQ  using 

not only A
tK  but also the similarities between A

tK  

and other key postures in 90
KPS

°

.  Thus, a feature 
vector A

th  for representing the tth posture A
tQ  is 

constructed using the form: 
 ( ) ( , )A A

t cc t ih i S K K= ,  (18) 

where 90
i KPK S

°

∈ .  A
th  keeps the relations between 

A
tQ  and all the key postures in 90

KPS
°

. With Eq.(18), 
we can convert A to a matrix representation as: 

 0,...,| | 1{ }A
A t t AH h = −= , (19) 

where |A| means the number of postures in A.  
Like Fig. 12, an action matrix 

sAH  is used to 
represent a “squatting” action sA . Each entry 

[ , ]
sA iH t K  records the similarity between the ith 

key posture iK  in 90
KPS

°

 and S
tQ  in sA .  

iK ( , )
sA iH t K

 query postures  Key postures

iK ( , )
sA iH t K

 query postures  Key postures

 
Fig. 12: An action matrix 

sAH  for 
representing a “squatting” action. 
Given a query action A and an action type D in 

the database, they can be converted to two action 
matrices AH  and DH , respectively.  For the ith 
element A

ih  in AH  and the jth element D
jh  in 

DH , the KL distance is used to measure their 
dissimilarity (or cost) as follows:    

   [ ] [ ]
[ ]

90| | 1

0

( ,  ) log
KP AS

A i
i D

k i

h k
cost i j h k

h k

°
−

=

⎞⎛
= ⎟⎜

⎝ ⎠
∑ . (20) 

Usually, an action sequence will different 
temporal scaling changes, different initial states, 
and symbol converting errors.  To tackle the above 
problems, a dynamic time warping (DTW) 
techqniue is used to calcuatle the distance between 

AH  and DH .  Let , ( , )
A DH HDTW i j  denote the 

warping cost between the two subsequences 
0,...,{ }A

t t ih =  and 0,...,{ }D
t t jh = . That is, , ( , )

Q DH HDTW i j  
is the minimum number of dynamic time warping 
cost needed to transform the first ( 1)i +  vectors of 

AH  into the first ( 1)j +  vectors of DH .  The 
value of , ( , )A DDTW i j  can be recursively 
calculated using the following form: 

   , ,

,

,

( , ) min( ( 1, )  ( , ),
                            ( , 1)  ( , ),
                            ( 1, 1)  ( , )).

A D A D

A D

A D

DTW i j DTW i j cost i j
DTW i j cost i j
DTW i j cost i j

= − +

− +

− − +

 (21) 

Based on Eq.(21), the distance between A and D  
can be measured. 

VIII. EXPERIMENTAL RESULTS 

     
             (a)          (b)     (c) 

Fig. 13: Occlusion due to the 
handshaking action.  (a) Input frame.  
(b) and (c):  Objects extracted from (a).   

   
(a)           (b)  (c)      

Fig. 14: Object separation when a walking 
sequence was handled.  (a) Input frame.  (b) 
and (c):  Objects extracted from (a).   

To test the efficiency and effectiveness of the 
proposed approach, we constructed a large database 
of more than thirty thousand postures, from which 
we obtained over three hundred human movement 
sequences. The first set of experiments was used to 
examine the ability of our scheme to extract objects 
from a handshaking sequence.  Fig. 13 shows the 
result of object extraction from an occluded 
foreground region.  Fig. 14 shows the result of 
object separation when a walking sequence was 
handled.  It is noticed that the trouser colors 
between them are similar.  However, our method 
still works well to separate them to different parts. 



                                                                             

   
               (a)       (b)    (c)     

Fig.15: Object separation when a walking 
sequence was handled.  (a) Input frame.  (b) 
and (c): Objects extracted from (a). 

The sequence “Walk-parallel” is two pedestrians 
walking to the same direction.  A key point 
worthy to be noticed is that they must enter the 
scene in different time, so we can establish their 
posture template.  Even though they wear blue 
jeans both in Fig.15(c) and Fig.15(f), we get the 
good performance.  

    
(a)      (b)      (c)  (d)    (e)   (f) 

Fig.16: Segmentation results of the “turn 
around” sequence.  (a) and (b): Input frames.  
(c) and (d): Results of (a).  (e) and (f): Results 
of (b). 

    
(a)    (b)          (c)    (d) 

Fig.17: Segmentation result for the “outdoor” 
sequence.  (a) and (b): Input frames. (c) and 
(d): Results of (c) and (d).  
Fig.16 shows the results of the sequence 

“turn-around”. The “turn-around” action will often 
lead to a wrong label for identifying objects.  
However, our method still works well to separate 
them to different objects. Fig.17 shows the 
segmentation results when an outdoor scene was 
handled.  In an outdoor environment, the lighting 
will change significantly.  However, this case is 
still well tackled using our scheme.  

The most difficult case is the people wearing the 
clothes with similar color.  Fig.18 shows the 
segmentation results when the clothes  colors of 
peoples are similar. However, our method performs 
well to deal with this case.  Table. 1 lists the 
precision analysis of our method under different 

test sequences.  The superiority of our proposed 
segmentation method can be proved from this table. 

     
(a)      (b)      (c)    (d)   (e)  (f) 

Fig.18: Segmentation results when the clothes 
colors are similar. (a) and (b): Input frames.  (c) 
and (d): Results of (a).  (e) and (f): Results of (b). 

Table. 1: Accuracy analysis of our 
method under different video types.  

     Methods 
Action types Proposed 

Cross 0.894 

walk parallel 0.873 

Handshake 0.9599 
Turn round 0.892 

Complicated 0.714 

Table. 2: The true positive of recognition 
human behavior. 
Types Walk-left Walk-right Stretch-left Stretch-right 
Accuracy 0.43 0.52 0.68 0.72 

 
Table. 3: The true positive of recognition 
human behavior. 
Types Walk-left Walk-right Stretch-left Stretch-right 
Accuracy 0.59 0.75 0.9 0.93 

Table. 4: Confusion matrix of behavior 
recognition using our method. 

 W-Left  W-Right Stretch Left Stretch Right
Walk Left 88 71 27 16 

Walk Right 39 72 6 2 

Stretch Left 13 8 51 3 

Stretch Right 3 10 9 56 

Once an occluded region is separated to different 
objects, we can then recognize their corresponding 
behavior types.  In this paper, four behavior types 
were recognized, i.e., walk-left, walk-right, 
stretch-left, and stretch-right. Table 2 shows the 
accuracy of these four behavior types if two 
occluded objects are matched using Eq.(4).  Due 
to occlusion, the accuracy is not so high.  
However, if the matrix representation was used (see 
Eq.(20)) for matching actions using the K-L 
distance, the recognition accuracy can be improved 
significantly.  Table 3 lists the accuracy analysis 
when the matrix representation was used. Table 5 
shows the confusion matrix among four behavior 



                                                                             

types for illustrating the accuracy of behavior 
recognition. Clearly, the number of “true-positive” 
recognition results was significantly improved. 

VIIII. CONCLUSION 
This paper has proposed a novel segmentation 

method for segmenting an occluded region into 
different objects.  The contributions of this paper 
can be summarized as follows: 

(a) A triangulation-based method was 
proposed for extracting important skeletal 
features and centroid contexts for posture 
classification and model representation. 

(b) A clustering scheme was proposed for key 
model selection.  Then, a model-driven 
approach was proposed for segmenting the 
occluded regions into different objects.  

(c) A hierarchical model selection method was 
proposed for tackling the ambiguity 
problem in model selection when postures’ 
contours are similar. 

(d) A matrix representation was proposed for 
recognizing human behaviors more 
accurately even though occlusions happen. 
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