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Abstract

In this paper, we propose a generalized hierarchical
quorum sirategy for distribuled k-muival exclusion.
This strategy 1s based on a logical generalized hierar-
chy structure. The quorum size constructed from the
strategy is always (82)093, where NS is the number
of physical nodes in the system. Morcover, this sirai-
egy can be always fauli-tolerant up to NS — k(%2)063
node failures. From our performance analysis, we
show that the generalized hierarchical quorum strai-
egy can provide a higher availability than k-majority,
cohorts, and DIV sirategies, sometimes. Moreover,
the quorum size of this strategy is always the smallest
one among these four siralegies, when no node fail-
ure occurs and NS > 15. While in the worst case,
the quorum size of this strategy is always smallest one
among these four strategies, when NS > 17.

(Key Words: K-mutual exclusion, availability, dis-
tributed systems, fault tolerance, quorum consensus.)
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1 Introduction

A distributed system consists of a collection of geo-
graphically dispersed autonomous nodes connected by
a communication network. The nodes have no shared
memory, no global clock, and communicated with one
another by passing messages. Message propagation
delay is finite but unpredictable. In the problem of
k-mutual exclusion, concurrent access to shared re-
source or the critical section (CS) must be synchro-
nized such that at any time at most k processes can
access the CS, where k> 1.

To make distributed A-mutual exclusion protocols
fault-tolerant to node and communication failures,
many protocols based on the replica control strategies,
for example coterie, have been proposed. In (5], they
extended the majority quorum strategy to k-majorily
quorum strategy; any permission from [%ﬁ] nodes

would form a quorum for k-mutual exclusion, when n
is the number of nodes in the system. In [4], they pro-
posed a cohorts quorum for k-mutual exclusion based
on a cohorts structure, Coh(k,l), which has ! pair-
wise disjoint cohorts with first cohort having & mem-
bers and the others having more than (2k — 2) mem-
bers. In [2], they partition n nodes into % classes with
each class using any traditional approach to enforce
l-mutual exclusion. When the traditional approach is
the majority quorum strategy, the constructed quo-
rums will be called DIV of majority quorums.

To reduce the overhead of achieving k-mutual ex-
clusion while supporting fault tolerance, in this paper,
we propose a strategy called generalized hierarchical
quorum for k-mutual exclusion, which imposes a log-
ical generalized hierarchy structure on the network.
The quorum size constructed from the strategy is al-
ways (842)963 where NS is the number of physical
nodes in the system. Moreover, this strategy can be
always fault-tolerant up to NS — k(&£)0-5% node fail-
ures. From our performance analysis, we show that
the generalized hierarchical quorum strategy can pro-
vide a higher availability than k-majority, cohorts,
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Figure 1: A generalized hierarchy of level 3

and DIV strategies, sometimes. Moreover, the quo-
rum size of this strategy is always the smallest one
among these four strategies, when no node failure oc-
curs and NS > 15. While in the worst case, the quo-
rum size of this strategy is always smallest one among
these four strategies, when NS > 17.

9  Generalized Hierarchical Quorums

2.1 Definitions

In this section, we first define the generalized hier-
archy and give the definition of the hierarchical quo-
rum for l-mutual exclusion [6). Next, based on the hi-
erarchical quorum for 1-mutual exclusion, we present
the generalized hierarchical quorum for k-mutual ex-
clusion.

Definition 1. A Hierarchical Quorum [6]. The
hierarchical quorum strategy is based on logically or-
ganizing a sel of copies of an object in a system into
maultilevel tree with the root as level 0. The physi-
cal copies of an object are stored only in the leaves
of this tree, while the higher level nodes of the iree
correspond to logical groups. A hierarchical quorum
(recursively) for 1-mutual exclusion consists of the hi-

erarchical quorum of the ['%-1-'] subhierarchies, where
s is the number of the subhierarchies.

Note that, here we let each site in the distributed
system be mapped to a physical node in the hierarchy,
and the number of sites be denoted as NS.

Example 1: For a hierarchy of level 3 as shown
in Figure 1, the set R of hierarchical quorum for 1-
mutual exclusion is as follows: R = { {4, 5, 7, 8}, {4,
57,9}, {4,5, 8,9}, {f, 5,10, 11}, {4, 5, 10, 12}, {4,

8}, 14

bl
b

5,11, 12}, {4, 6, 7, {4,6,7,9},{4,6,8,9

6, 10, 11}, {4, 6, 10, 12}, {4, 6, 11, 12}, {5, 6, 7, 8},
5,6, 7,9}, {5, 6, 8, 9}, {5, 6, 10, 11}, {5, 6, 10, 12},
5,6, 11, 12}, {7, 8, 10, 11}, {7, 8, 10, 12}, {7, 8, 11,
12}, {7, 9, 10, 11}, {7, 9, 10, 12}, {7, 9, 11, 12}, {8,

9,10, 11}, {8, 9, 10, 12}, {8, 9, 11, 12} }. Totally, R

contains 27 quorwns.

Definition 2. A Degree-Three Hierarchy. A
degree-three hierarchy is a finite set of one or more
nodes such that

1. there is a specially designated node called the root
in level 0.

2. the remaining nodes are pariilioned into three
subsets, where each of these subsets is a degree-
three hierarchy.

9. the nodes without any child are physical nodes,
the others are virtual nodes.

{:} Virtual node
O Physical node /\ Level 0
O T Level 1
HEI S R 1

Level 2

N S

Figure 2: A generalized hierarchy of level (h+1)

Definition 3. A Generalized Hierarchy. A gen-
eralized hierarchy is a finite set of one or more nodes
such that

1. there is a specially designated node called the root
in level 0.

2. the remaining nodes are partitioned into Sy, Sz,
<oy and Sg, where each of these sels is a degree-
three hierarchy.

Therefore, there are k(3i~1) nodes in level i. Con-
sequently, for a hierarchy of level (h+1), there are to-
h -
tally (k(352)+1) nodes which include ((E5=1)+1)
virtual nodes and k(3"~') physical nodes. Moreover,

each node in the hierarchy of level (h+1) is numbered
from top to down and left to right as 0, 1, 2, ..... .

(L(g’-h—z‘—l)) as shown in Figure 2.

Definition 4. A Generalized Hierarchical Quo-
rum. A hierarchy of level (h+1) is a collection of
interconnected nodes arranged by levels with n nodes
where h > 0, n = (&) + 1 and NS = k(3*~1).
A set Q is said 1o be a generalized hierarchical quo-
rum for k-mutual exclusion if the following conditions
is satisfied: Q contains the hierarchical quorum for 1-

mutual exclusion for any one of the subhzerarchies Sy,
Sa, ey Sk

Example 2: For a hierarchical of level 3 as shown
in Figure 1, the set R of a generalized hierarchical
quorums for 3-mutual exclusion is as follows: R = {
1[14, 5}, {4, 6}, {5, 6}, {7, 8}, {7, 9}, {8, 9}, {10; 11},

10, 12}, {11, 12} }. Totally, R contains 9 quorums.

Example 3: For a hierarchical of level 4 as shown

in Figure 3, the set R of a generalized hierarchical
uorums for 2-mutual exclusion is as follows: R = {
?9, 10, 12, 13}, {9, 10, 12, 14}, {9, 10, 13, 14}, {9, 10,
15, 16}, {9, 10, 15, 17}, {9, 10, 16, 17}, {9, 11, 12,
13}, {0, 11, 12, 14}, {9, 11, 13, 14}, {9, 11, 15, 16},
{9, 11, 15, 17}, {9, 11, 16, 17}, {10, 11, 12,13}, {10
11, 12, 14}, {10, 11, 13, 14}, {10, 11, 15, 16}, {10,
11, 15, 17}, {10, 11, 16, 17}, {12, 13, 15, 16}, {12,

et

13, 15, 17}, {12, 13, 16, 17}, {12, 14, 15, 16}, {12,
14, 15, 17}, {12, 14, 16, 17}, {13, 14, 15, 16}, {13,
14, 15, 17}, {13, 14, 16, 17}, {18, 19, 21, 22}, {18,
19, 21, 23}, {18, 19, 22, 23}, {18, 19, 24, 25}, {18,
19, 24, 26}, {18, 19, 25, 26}, {18, 20, 21, 22}, {18,
20, 21, 23}, {18, 20, 22, 23}, {18, 20, 24, 25}, {18,
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Figure 3: A hierarchy of level 4 for 2-mutual exclusion
with NS = 18

Level 0

.20, 24, 26}, {18, 20, 25, 26}, {19, 20, 21, 22}, {19,
20, 21, 23}, 119, 20, 22, 23}, {19, 20, 24, 25}, {19,
20, 24, 26}, 119, 20, 25, 26}, {21, 22, 24, 25}, {21,
22, 24, 26}, 121, 22, 25, 26}, {21, 23, 24, 25}, {21,
23, 24, 26}, 121, 23, 25, 26}, 122, 23, 24, 25}, {22,

23, 24, 26}, {22, 23, 25, 26} }. Totally, R contains 54
quorums.
2.2 Correctness

In this section, we prove that the set of the gener-
alized hierarchical quorum for k-mutual exclusion is a
k-coteries. Here, we will refer to such a k-coteries as
generalized hierarchical quorums.

Definition 5. A k-coteries C is o family of non-
emply subsets of an underlying set U, which is a set
containing all sysitem nodes 1,2,...,n. Each member
Q in C is called a quorum, and the following proper-
ties should hold for the quorums [5].

1. The non-intersection Property. For any
h(< k) pairwise disjoint quorums Q,...,Qn in
C, there exists one quorum Qpyy1 in C such that
@1,y ...y Qre1 are pairwise disjoini.

2. The intersection Property. There are no m,
m > k, pairwise disjoint quorums in C (i.e., there
are at most k pairwise disjoint quorums in C).

3. The minimality Property. There are no two
quorums @; and Qj in C such thal Q; is a super
sel of Q; where i # j.

Definition 6. Let C and D be two k-coteries. D
dominates C if and only if (C#D) and (V R € C,
35€D, SC R). A coterie 1s said to be nondomi-
nated (ND) if no coterie can dominate it [5].

Lemma 1. Let Uy, Us, ..., and Uy be nonempty seis
of nodes such that U; NU; = 0, i # j. Suppose that

C; is a I-coterie under U;, 1 < i < k. Let C ={ Q|
QeC,1<i<k 1<j<|C} and U = Ui, Us.
Then C is a k-coteries under U.

Proof. First, we show that the non-intersection
property is satisfied. Let @y, @2, ..., and Qp be
quorums in C and they are pairwise disjoint, where
1 < h < k. Note that such quorums exist as long as for
any two quorums, @;, @;, they satisfy the conditions,
Qi € Cpy, Qj € Cy,, and p; # pj, where 1< ,j < h,
1 < pi,pj < k. The reason is that Cp, N Cp,; = 0,
which is resulted from Cp, € Up,, Cp; € Up;, and
Up, NUp; = B; let W* be the union of such Cp, (Cy;).
Moreover, let C* be the union of all the C;, where

1<s<k andlet W=C" - W*. Note that W # 0,
since there are h different Cy,; in W*, k different C, in
C*, and h < k. Then, we let quorum Qp; € Corprs
where Cp,,, € W. Since Gy, ,, NCp, =0, YCp, € W*,
which is resulted from G,,, ,, € U,,, ,,, Cp, € Up,, and
Upryr NUp, = 0, we have Qry1 N Q; = 0. Therefore,

- the non-intersection property is satisfied.

Next, we show that the intersection property is sat-
isfied. Assume there exist m pairwise disjoint quo-
rums @1, @2, ..., and @, € C, where m > k. If
for any two quorums, Q;, Qj, they satisfy the con-
ditions, @; € Cp,;, Q; € Cp; and p; # p;, we have
QiNQ; = 0, where 1 < p;,p; < k. The reason is
that Cp, N Cp; = 0, which is resulted from C,, € U,,,
Cp; € Up;, and Up, NU,,; = 0. Since there are at most
k different C; under U, there exists quorums, Q;, Qj,
they satisfy the condition, @; € Cp,, Q; € Cp;, and
pi = pj, for m > k. For such quorums Q;, Q;, we have
Qi NQ; # 0, since they belong to the same C, (Cp;)
that must satisfy the intersection property, which con-
tradicts the assumption that @; and Q; are disjoint.
Consequently, there are at most k pairwise quorums
in C, and the intersection property is satisfied.

Finally, we show that the minimality property is
satisfied. Let @y, Q; € C. There are two cases to
be considered: (1) If Q;, Q; € C,, we have Q; ;
and Q; ¢ Q; dl(le)to tcg_a.tQCl, satisfies the mi%inﬁlggf
property, where 1 <5 < k. (2) If @; € Cp, and
Qj € Cp;, then @;NQ; = 0, where 1 < p;,p; <k,
and p; # p;. The reason is that C;,NC,; = 0, which is
resulted from Gy, € Up;, Cyp; € Up;, and Uy, NUp, = 0,
where 1 < p;,p; < k and p; # p;. Therefore, we have
Q: ¢ Q; and Q]j ¢ @Q;. Consequently, the minimality
property is satisfied. ]

Theorem 1. The set of the generalized hierarchical
quorums for k-mutual exclusion is a k-coteries.

Proof. Let C; be the set of the hierarchical quorums
of 1-mutual exclusion for the subhierarchy S;, 1 < i <
k. Based on the definition of the hierarchical quorum
strategy, C; is a 1-coterie [6]. Based on Lemma 1,
the set of the generalized hierarchical quorums for k-
mutual exclusion is a k-coteries. (m]

Lemma 2. Let C be a I-coterie under a nonempty
set iILJ.hThe C is dominated iff there exists a set H C U
such that (I)VQeC=>QZHand (2)VQelC =
TS

Lemma 3. Let C be a I-coterie under a nonempty
set U. If C is a nondominated I-colerie, then for
every set H C U, it satisfies the conditions (10) Qe
CandQCHor(2)3QeC and QNH =9.

Proof. Based on Lemma 2, we have that C is dom-
inated if there exists a set A C U such that (1) V
QEC=>QZCLHad ()VQeC = QnH#0.
Therefore, if C' is a nondominated 1-coterie, then
/ﬂHgUsuchthatISI)VQeC:»Qg H and
g?)VQeC#Qﬂ # 0. That is, if C is a non-
ominated 1-coterie, then for every H C U, both of
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the conditions, (1) VQ € C = Q@ € H and (2) V
Qe C = QNH # 0, can not be true. In other
words, the condition, (1) V Q € C = Q € H, can
not be true, which means that the condition, 3Q € C
and Q C H, is true. Moreover, the condition, (2) V
Qe C= QnNH # 0, can not be true, which means
that the condition, 3 Q € C and QN H = 0, is true.
Consequently, If C is a nondominated 1-coterie, then
for every set H C U, it satisfies the conditions, él) 3
QeCand@QCHor(2)3Q&eCand@nH =0. O

Lemma 4., Lei C be a k-coteries under a nonemply
setlU. The C is dominated iff there exists a set H CU
such that (1)V Q € C = Q € H and (2) for any
collection of k pairwise disjoint quorums { Q1, Qs,
@ YCC, HNQ; # 0 for some 1< i<k [7].

Lemma 5. Let Uy, Us, ..., and Uy be nonempty seis
of nodes such that U;\U; = 0, i # j. Suppose that C;
s @ nondominated I-coterie under U;, 1 < i< k. Let
C={Q1QieC,1Li<h 1<j<I|Ci|} and
U= Ule U;. Then C is a nondominated k-coteries
under U.

Proof. Assume that C is dominated. Based on
Lemma 4, there exist a set H C U such that (12
VQeC = Q¢ H and (2) for any collection of k
pairwise disjoint quorums { @1, Q2, ..., Q& }1CC,
HNQ@; # d, 1 <'i < k. Note that such k disjoint
quorums exist as long as for any two quorums, Qj,
Qj, they satisfy the conditions, Q; € Gyp,, Q; € Gy,
and p; # pj, where 1 < 4,j < k,and 1 < pi,p; S k.
The reason is that Cp; N Cp; = 0, which is resulted
from Cp; € Up;, Cp; € Uy, and Up, NUp; = 0.

Let H; = H NU,,, where Q; € Cp,, Cp; € Up,
and 1 < ¢ < k. Since C; is a nondominated 1-coterie,
there exists Qf € Cp, such that H; N QF = 0 for
1< i < k, which is resulted from the second condition
of Lemma 3. (Note that, here, the first condition of
Lemma 3 will not be true; that is, the condition,
3Q* € C,, and QF C H;, will not be true. The reason
is that iiPQ;i‘ = dp‘ and Qf C H;, then Qf € C and
Qf C H; is true, which contradicts the assumption,
VQeC=Q¢H) Let P={Q Q3 Q)
which is a collection of k pairwise digjoint quorums.
Such k disjoint quorums exist as long as for any two
quorums Qf, Qj, they satisfy the conditions, Qf €
Cpi, @ € Cyp;, and p; # pj, where 1 < 4,5 < k
and 1 < p;,p; < k. The reason is that Cp, N Cp; =
@, which is resulted from Cp; € Up,;, Cp; € Up; and
Up; N Up; = 0. Furthermore, H N Q; = 0 for all
Qr € Pdueto H = {J_, Hi, H;NQ} = 0, and
H;nH; #0,i# j,1<14,j <k, which contradicts the
assumption that for any collect of k pairwise disjoint
quorums { Q1, @2, ... Q1 } € C, HNQ; # 0, where
1 € 4 < k. (Note that, the condition, H = Uf=1 H;
and H; N H; = 0,1 # j, is true due to that H =
HOU = HA(Up, UUp, U...UT,,) = (HNU,, JU(HN
Upy)U..U(HOU,, ) = HiUH2U..UH), = iz, H; and
H;(H; = (HNU,)N(HNUy,) = HOUp, NUp; =0,
which is resulted from U, NV, =0,i# 4,1 <4,j <
k.) Consequently, C is a nondominated k-coteries. O

Theorem 2. The set of the generalized hierarchical
quorums for k-mutual exclusion is e nondominated k-
cotertes.

Proof. Let C; be the set of the hierarchical quorum
of 1-mutual exclusion for the subhierarchy S;, 1 <
i < k. Based on the definition of the hierarchical
quorum strategy, C; is a 1-coterie and N D [6]. Based
on Lemma 5, the set of the generalized hierarchical
quorums for k-mutual exclusion is a nondominated k-
coteries. i

2.3 Availability of the Generalized Hier-
archical Quorum

In this section, we analyze the availability of the hi-
erarchical quorum for 1-mutual exclusion [6] and the
generalized hierarchical quorum for k-mutual exclu-
sion. Here, we assume that all nodes have the same
up-probability p, which is the probability that a single
node is up operational. The availability of a coterie
is defined as the probability that a quorum can be
successfully formed.

For the hierarchical quorum strategy, the availabil-
ity of a hierarchy is the probability that at least [*£1]
subhierarchical quorum can be formed from the hier-
archy, where s is the number of the subhierarchies.
Therefore, the availability of the hierarchical quorum
under a degree-three hierarchy structure is the prob-
ability that at least 2 subhierarchical quorums can be
formed the degree-three hierarchy structure.

Let AVH(h) be the function evaluating the prob-
ability of a degree-three hierarchy of level (h+1). If
a degree-three hierarchy consists of only one node, it
degenerates to a central controller and the availability
of the availability of itself, i.e., AVH(0) = p. Thus
we can get the condition
AVH(h) = Z?:z AVH(h=-1)/(1- AV H(h—1))3-

Next, for the availability of the generalized hierar-
chical quorum strategy, let (k, )-availability, 1 <1 <
k, be the probability that [ pairwise disjoint quorums
of a k-coteries can be formed successfully; it is used as
a measure for the fault-tolerant ability of a solution
using k-coteries.

Let AV(h,l) be the function evaluating the prob-
ability that { pairwise disjoint quorums under gener-
alized hierarchical quorum of the level (& + 1) can be
formed simultaneously. If NS = k(3*~!), the function
AV (h,1) has the following two boundary conditions:

1. AVH(0) = p and AVH(h) = Vi, AVH(h -
1)/(1 = AVH(h - 1))3-

2. AV(h,I) = g,’;m,( k )AVH(,h ~ 1) -
AVH(h = 1))t

3 A Comparison

In this section, we make a comparison of the gener-
alized hierarchical quorum, k-majority, cohorts, and
DIV strategies in terms of availability and quorum
size.

For the availability of the k-majority strategy, func-
tion AV(k, h) has the following condition:
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AV(k,h) = Z?:hx[,’;—;t%] C(n, i) x p* x (1 —p)*~*.

For the availability of the cohorts strategy, let
AV(h,I) be the function evaluating the probability
that h pairwise disjoint quorums under Coh(k,!) can
be formed simultaneously. Function AV (h,!) has the
following three conditions:

1. AV(0,]) = 1.

2. AV(h,1) = PR(51,h,S51). (Note that a quorum
takes only one member from the first cohort to
make it the primary cohort because $; —k+1=
k—Fk+1=1 We also use S; to denote |C;| for
1 < ¢ <1, where C; is the ith item of Coh(k,1)
= (C1,...,Ci1) and we use. PR(s, a,b) to denote

Yo [Cls,d) x pf x (1= p)=i] ).

3. AV(h,l) = AV(h - 1,1 = 1) x PR(5,,5 — k +
h,5)+ AV(h, 1= 1) x PR(S1, h,Si—k+h-1).

For the availability of DIV of majority quorum,
function AV{k, k) has the following two conditions:

1o avM =TIEL L C([21,0) % x (1-p) 814,

2. AV(k,h) = b, C(kd) x AVM x (1 -
AV M),

We make a comparison of the availability of the
generalized hierarchical quorum strategy, k-majority,
cohorts, and DIV strategies with NS = 108, and / =
1, 2, 3, and 4, respectively, where the generalized hi-
erarchical quorum strategy is denoted as GHQC. For
this comparison, the generalized hierarchical strategy
is of level 5, and we let C'oh(4, 14) = (Cy, Co, ..., C14),
where |C)| = 4, and |C;] = 8, 2 < i < 14. The re-
sults are summarized in Table 1. From this table, we
show that the availability of the generalized hierar-
chical quorum strategy is always better than that of
DIV strategy, when [ = 1; the availability of the gen-
eralized hierarchical quorum strategy is always better

than that of cohorts and DIV strategies, when /=2;

the availability of the generalized hierarchical quorum
strategy is always the highest one among these four
strategies, when ! = 3 and p < 0.5; the availability of
the generalized hierarchical quorum strategy is always
better than that of cohorts and 4-majority strategies,
when =3 and p > 0.5; the availability of the gener-
alized hierarchical quorum strategy is always better
};han that of cohorts and 4-majority strategies, when
=4,

Table 2 shows a comparison of these four k-mutual
exclusion strategies in terms of quorum size. The first
two criteria are the quorum sizes in the best and worst
cases. The number of messages required to construct
a quorum is proportional to the size of the quorums.
The quorum size of J§eneralized hierarchical quorum
strategy is always (52)°%3. Note that, in the gen-
eralized hierarchical quorum strategy, NS nodes are
divided into % subhierarchies. In each subhierarchy,

the quorum size is always (52)993 [6]. Therefore, the
quorum size of generalized hierarchical quorum strat-
egy is always (42)%93. The quorum size of the co-
horts strategy varies from 2 (when & = 1) or k (when

! P The Availability

0 <p<1 | 4majority > cohorts > GHQC > DIV

P <0.59 | 4-majority > GHQC > cohorts > DIV

2 p>0.59 | &-majority > GHQC > DIV > cohorts

p<0.5 GHQC > DIV > cohorts > 4-majority

p>05 DIV > GHQC > cohorts > 4-majority | '

41 0<p<1 ]| DIV > GHQC > cohorts > 4-majority

Table 1: A comparison of the availability of the gen-
eralized hierarchical quorum, k-majority, cohorts, and
DIV strategies with NS = 108

k > 1) to n as the number of node failures in in-
creased [4]. The quorum size of the k-majority strat-

egy is always [';—:}_%] [5], and the quorum size of the
DIV strategy is always [2££] [2]. Note that, since k-
majority, cohorts, and DIV strategies have no virtual

nodes, the number of nodes is equal the number of
physical nodes. That is n = NS.

The third criteria in Table 2 is whether the strategy
is a fully distributed one. These four strategies are
fully distributed ones. The last two criteria are the
number of failed nodes which do not halt the system
and such that at most & nodes can simultaneously
access their critical section in the best and worst cases.
While in the best case, all these strategies can be fault-
tolerant up to all node failures except those nodes
which have already been constructed in % quorums.
In the best case, the cohorts strategy can be fault-
tolerant up to (n — ks + 5’—““2;1)) node failures when
Coh(k,l) = (C1,Cs,...,Ch), |Ci| = k, and |Ci| = s,
i>1 [4{ Note that, in the best case, |Qi| = s —
(k=1), Q2| = s~ (k-2), ..., le—l{ = s -1, and
|Qx| = s in the cohorts strategy. While in the worst
case, the generalized hierarchical quorum strategy can
be fault-tolerant up to k((%)%%%) — 1) node failures
and the cohorts strategy can be fault-tolerant up to
(s = k + 1) node failures. While in the worst case,
the k-majority strategy can not be fault-tolerant to
any node failure and the DIV strategy can be fault-
tolerant up to (n — k[2:E]) node failures.

Figure 4 shows a comparison of the quorum size of
these four strategies for 4-mutual exclusion when no
node failure occurs. From this figure, we observe that
the quorum size of these four strategies in a decreasing
order is 4-majority > cohorts > DIV > generalized
hierarchical quorum, when NS > 15. That is, the
quorum size of the generalized hierarchical is always
the smallest one among these four strategies, when
NS > 15. Moreover, Figure 5 shows a comparison of
the quorum size of these four strategies for 4-mutual
exclusion when node failures occur in the worst case
with NS = 124 (I = 4). From this figure, we observe
that the quorum size of the generalized hierarchical
quorum is always the smallest one among these four
strategies, when NS > 17.
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Table 2: A comparison of four A-mutual exclusion
strategies in terms of quorum size
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Figure 4: A comparison of the quorum size of the
generalized hierarchical quorum, cohorts, k-majority,
and DIV strategies for 4-mutual exclusion when no
node failure occurs
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Figure 5: A comparison of the quorum size of the
generalized hierarchical quorum, cohorts, k-majority,
and DIV strategies for 4-mutual exclusion when node
failures occur in the worst case which NS = 124 (]

4 Conclusion

In this paper, we have proposed a strategy called
generalized hierarchical quorum for k-mutual exclu-

" sion, which imposes a logical generalized hierarchy

structure on the network. In general, the generalized
hierarchical quorum, a quorum contains the hierar-
chical quorum for 1-mutual exclusion for any one of
subtree Sy, So, ..., Si. The quorum size constructed
from the strategy is always (%£)0-%3, where NS is
the number of physical nodes in the system. More-
over, this strategy can be always fault-tolerant up
to NS — k(82)%%3 node failures. From our perfor-
mance analysis, we show that the generalized hier-
archical quorum strategy can provide a higher avail-
ability than k-majority, cohorts, and DIV strategies,
sometimes. Moreover, the quorum size of this strategy
is always the smallest one among these four strategies,
when no node failure occurs and NS > 15. While in
the worst case, the quorum size of this strategy is al-
ways smallest one among these four strategies, when
NS > 17. How to extend the generalized hierarchical
quorum strategy to tolerate even more node failures
is the future research direction.
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