
Fast Vehicle and Pedestrian Detection Using 2D
Shapes and 3D Sizes

Yen-Liang Lin∗, Ping-Han Lee†, Yi-Ping Hung†
∗Graduate Institute of Networking and Multimedia

National Taiwan University
†Department of Computer Science and Information Engineering

National Taiwan University

Abstract—Most existing pedestrian and vehicle detection algo-
rithms use 2D features of objects, such as pixel values, color and
texture, shape information or motion. The use of 3D features in
object detection, on the other hand, are not well studied. In this
paper, we propose a two-stage algorithm that uses both 2D and
3D features to detect pedestrian and vehicle in videos. The first
stage compares the 2D contours between moving foreground and
a set of object-specific shape kernels, to find the object candidates.
A shape kernel is the contour of the object viewed from a certain
panning and tilting angles, as well as a bounding cube that enclose
this object. We have prepared 1584 and 1188 shape kernels for
pedestrian and vehicle, respectively, and a speedup scheme is
proposed to reduce the number of contour matching needed.
The second stage further verifies the object candidates based
on their 3D sizes, its width, height and length. Given shape
kernels, the 3D sizes of the objects in a static scene monitored
by a camera can be obtained using the intrinsic and extrinsic
parameters of that camera. We employ a calibration-free method
to estimate the camera parameters. The proposed algorithm
can also handle partially occluded objects. Our experimental
studies demonstrate that the proposed method can detect objects
accurately and efficiently. It achieves a precision of 90%(90%) in
detecting pedestrians(vehicles) at 15 frame-per-second.

Index Terms—vehicle detection, pedestrian detection

I. INTRODUCTION

With the prevalence of the all kinds of cameras and advance-
ment in computer hardwares, the computer aided surveillance
systems have become realistic in recent years. The very basic
issue in a computer aided surveillance systems is to detect
the moving objects, or foregrounds in the scene. Intensive
effort of researchers have been spent on this topic [1] [2] [3].
Typically the most interesting objects in a surveillance scene
are moving pedestrians and vehicles. There are many works
concerning pedestrian detection. An Adaboost algorithm based
on both appearance and motion features was proposed to detect
human in a single image [4]. Chen et al [5] proposed a new
cascade structure, which consists standard Adaboost-stages [6]
and meta-stages. Negative examples are further rejected in this
structure, thus besides being accurate, their algorithm is also
efficient at the same time. On elaborating feature extraction
methods, Dalal et al [7] proposed the Histograms of Oriented
Gradients (HOG) as a new feature extraction method, and
demonstrated that HOG features are very effective in detecting
human. To deal with the occlusion problems in crowded scene,
Wu and Nevatia [8] decomposed the whole human bodies into

head-shoulder, torso and legs, and formulated the partially oc-
cluded human detection problem as the maximum a posterior
(MAP) estimation problem. More pedestrian detection works
can be found in [9] [10].

There are also several works concerning vehicle detection
problem. In the work proposed by Wang and Chen [11], the
moving objects resulting from the spatial-temporal wavelet
transform on difference of consecutive frames are regarded
as vehicles in their work. Tan et al [12] proposed a two-
stage vehicle detection algorithm. The first stage is a typical
background learning procedure. The second stage classifies all
the pixels in a frame into three categories, namely road surface,
lane lines and others. The vehicle is defined as the moving
objects in the road surface. Besides model-free algorithms
[11] [12], there are some algorithms that model vehicles
explicitly [13]. Song and Nevatia [13] used generic shape
models of classes of vehicles. Under the Baysian framework,
the hypotheses of vehicles are formed and upon which the
posterior probabilities are calculated. Their algorithm was
reported to have good performance when vehicles are occluded
from each other. More vehicle detection works can be found
in [14] [15] [16] [17].

Typically detecting objects in a single image requires sliding
a detection window exhaustively on that image, probably with
several different sizes. For each detection window, features
of certain kinds (e.g. Harr-like feature) are extracted. Most
of the existing pedestrian detection algorithms fall in this
category [4] [5] [7] [8]. Basically the high computational
complexity of such algorithms prohibits these algorithms from
real-time applications. On the other hand, since usually we
are more interested in moving objects than static objects,
one can perform foreground detection first and detect objects
of interest only in the foreground regions. In this way the
computation is reduced significantly. Furthermore, potentially
we can even eliminate some false alarm in the background
regions. Some object detection algorithms of this kind are
tailor-made for traffic monitoring system and these algorithms
regard the moving objects as vehicles [11] [18].

The features for objects used in most existing object detec-
tion algorithms include pixel values, Harr wavelet, color and
texture, shape information and motion [19]. Basically these
features are 2D features from 2D images. The use of 3D
features in object detection, on the other hand, is not well



studied in the literature. The 3D features of objects in the scene
can be derived using the parameters of the camera monitoring
the scene. The camera parameters can be obtained through
some camera calibration procedure, and this procedure can be
made very simple. For example, the algorithm proposed by
Chen et al [20] simply requires users to specify 6 points of a
cuboid on a single frame captured by the camera. In this paper
we propose a vehicle and pedestrian detection method that uses
both 2D shapes and 3D sizes. We apply [20] to estimate the
camera parameters in order to calculate the objects’ 3D sizes.
Compared with the existing algorithms, the distinguishing
features of the proposed algorithms are summarized as the
following:

• It uses both 2D and 3D features, while most existing
algorithms use only 2D features.

• It is a general object detection method and can be applied
to detect pedestrian and vehicle, or other object classes,
while most of algorithms deal with a single object class.

• With the introduction of the shape kernels, the proposed
method can also determine the poses and orientations of
objects. By enforcing the consistency of objects’ poses
and orientations across consecutive video frames, the
proposed method can also be applied to perform object
tracking. The aforementioned topic highlight our future
research directions.

A. Related Work

Kanhere et al also used 3D information for vehicle detec-
tion [18]. The calibration process in [18] requires multiple
consecutive frames with a vehicle moving precisely along
the lane, and users are asked to specify 6 points or more in
several designated frames. With the camera parameters, they
found and tracked feature points in the scene and clustered
these features based on their 3D features. All feature points
belonging to the same cluster define an object, which are
assumed to be a vehicle. Their work can handle some vehicle
occlusion problems. However, their algorithm actually detects
moving objects instead of a specific object class. Their work
is not able to distinguish moving pedestrians and vehicles.
Our work, on the other hand, models the two object classes
explicitly and is able to distinguish them. Furthermore, their
calibration procedure requires more user interactions than the
cuboid algorithm we apply in this paper.

In our previous work, we proposed a pedestrian and vehicle
detection algorithm using solely 3D features [21]. In video
frames, our previous work extracts moving objects’ width and
height, and uses these 3D features to verify whether or not
a moving object is a pedestrian or a vehicle. Because of
some simplifications made in our previous work, dubbed as
the billboard model, it suffers in the following aspects:

• An object’s 3D size includes width, height and length.
Our previous work assumes that a moving object can be
regarded as a billboard, and it neglects the object’s length.
However, this assumption breaks when the objects are
close to the camera.

• The extracted widths and heights are sensitive to the
objects’ viewing angles, especially the tilting angles. A
more robust 3D size extraction algorithm across tilting
angles needs yet to be developed.

We propose the cube model that solves the aforementioned
problems. The proposed algorithm extracts objects’ widths,
heights and lengths robustly under different viewing angles
and different objects’ distances to the camera. Furthermore,
the proposed algorithm considers both object’s 2D shape and
3D sizes, and it achieves better results than our previous work.

The rest of the paper is organized as the following. Section
II gives an overview of the proposed algorithm. The proposed
algorithm is introduced in Section III, which describes the
cube model and the shape kernels (Section III-A), the 2D shape
matching scheme (Section III-B) and the 3D size estimation
method (Section III-C). The experimental results are included
in section IV, followed by the conclusions and future works
are given in section V.

II. OVERVIEW OF THE PROPOSED SYSTEM

In this paper, we propose an algorithm that detects objects
in videos based on their 2D and 3D features. Fig. 1 summarize
the proposed algorithm. The objects’ 3D features can be
derived if we have the intrinsic and extrinsic parameters
of the camera monitoring the video scene. We apply the
cuboid method [20] to estimate the camera parameters. This
calibration process requires only one frame form the camera
and needs users to specify only 6 points of a cuboid on a
single frame captured by the camera.

Upon each frame we first detect the moving foreground
using the codebook method [3] and remove shadow regions
using the algorithm proposed by Zhou and Hoang [22]. The
codebook algorithm adopts a quantization/clustering technique
to construct a background model from a long video sequence.
It captures the periodic motion and handle illumination varia-
tions, an it is efficient in memory and speed. As for the shadow
removal, generally speaking, we assume that the shadow
regions are semi-transparent. An area cast into shadows often
results in a significant change in intensity without much
change in chromaticity. To utilize the color invariant feature
of shadow, Zhou and Hoang [22] used the normalized color
components in YUV color space to detect shadows, and we
apply their algorithm in this paper.

Fig. 2 (a) illustrates a video frame, and Fig. 2 (b) shows
the corresponding foregrounds with shadow removed. The
resulting shadow-free foreground is further processed using
morphological opening and closing to eliminate the noise.
Then we find all the connected components in the processed
foreground and draw a rectangle for each connected compo-
nent, as shown in Fig. 2 (c). We define each resulting rectangle
as a moving blob. A moving blob can be a pedestrian, a
vehicle, or simply some foreground noise, and will be verified
later.

To verify whether or not a moving blob is a pedestrian or a
vehicle, we firstly find the edge map enclosed by this moving
blob and compare it with a set of object-specific 2D shape



Fig. 1. The overview of the proposed system.

(a) an input frame (b) the foreground (c) a moving blob

Fig. 2. Extraction of moving blobs in a video frame.

kernels. The shape kernels of an object class is a collection
of the contours of that object observed from different viewing
angles. We apply the chamfer distance when we calculate the
distance between a moving blob and a shape kernel. This
procedure can be seen as a template matching process, and
a speedup scheme is also proposed. If a moving blob matches
an object’s shape kernel, then we calculate the 3D sizes, the
width, length and the height of the object in this moving
blob. Two generative models are designed, one can determine
whether a moving blob is a pedestrian or not, and the other can
determine whether a moving blob is a vehicle or not. A moving
blob is identified as a pedestrian or a vehicle if it matches both
the 2D shape and the 3D size of that object class. Via using
both 3D sizes and 2D shapes jointly, the proposed system
achieves satisfying pedestrian and vehicle detection results.

III. OBJECT DETECTION USING 2D SHAPES AND 3D
SIZES

A. The Cube Model and Shape Kernels

Given a moving blob resulting from the previous section, we
assume there is only one object, or none, inside the associating
rectangle. We will verify whether or not the content enclosed
is a pedestrian or a vehicle in this Section. In the next Section
we will not assume there is only one object in a moving blob
anymore, and we propose a scheme that is able to find the
occluded pedestrians and vehicles.

Assume we detect a moving blob shown as the red rectangle
in Fig. 3 (a), the billboard model in [21] will give us the
width and the height of this rectangle in the 3D space. As
stated earlier, the extracted width and height are sensitive to the
panning and tilting angles between the object and the camera,
as well as the distance between them. To estimate the 3D size
of an object inside a moving blob more precisely, we propose

(a) Billboard Model (b) Cube Model

Fig. 3. Comparison of billboard model and cube model.

the cube model which calculates the width, height and length
of that object in this paper. To do so, a bunch of object-specific
shape kernels are needed. A shape kernel is shown as the right
most picture in Fig. 4. It is defined as the contour of the object
extracted from a certain panning and tilting angles between the
object and the camera, as well as the 3D cube that encloses
this object. As shown in Fig. 4, the width, height and length,
denoted as {W,H,L}, of the object can be calculated if we
know the four vertices on the cube: W = P1P2, H = P1P4,
and L = P1P3.

For each object class, the variation among all its possible
contours, or shapes, is caused by (1) different viewing angles;
(2) different appearance of the object. In order to efficiently
encode the variance of the shape of each object, we choose
a couple of the most representative types, and for each type
we generate shape kernels viewed from hundreds of different
camera angles. We choose four types for pedestrian: two are
men and two are women, as shown in Fig. 5 (a), (b), (c), and
(d). These pedestrian types are different in their body poses.
We also choose three vehicle types, as shown in Fig. 5 (e), (f),
and (g). For each object type, we prepare the corresponding 3D
meshes and use the Autodesk Maya, a 3D computer graphics
software, to render the contours of shape kernels and the cube
enclosing the 3D meshes under a large number of different
viewing angles of the virtual camera. These viewing angles
are combinations of 36 panning angles ranging from 0◦ to
180◦ and 11 tilting angles ranging from 0◦ to 60◦, resulting
in 396 shape kernels for an object type. Fig. 4 illustrates the
process of generating the shape kernels. Table I shows the
statistics of the shape kernels for pedestrian and vehicle. Fig.
6 and figure. 7 illustrates some examples of shape kernels for



pedestrian and vehicle, respectively.

Fig. 4. Generation of shape kernels.

(a) man1 (b) man2 (c) woman1 (d) woman2

(e) vehicle1 (f) vehicle2 (g) vehicle3

Fig. 5. Illustration of the object types used in this paper.

PEDESTRIAN VEHICLE
#shape kernels 1584 1188
#types 4 3
#panning angles 36 36
#tilting angles 11 11

TABLE I
STATISTICS OF THE SHAPE KERNELS FOR PEDESTRIAN AND VEHICLE.

The object detection algorithm using the cube model is
summarized as the following:

1) Find all the moving blob in the given video frame.
2) For each moving blob, calculate the edge map of the

enclosed image patch, and then obtain the distance-
transformed (DT) image.

3) For each object-specific shape kernel, match its contour
with the resulting DT image. We resize the shape kernel
and make it to roughly have the same size with the
moving blob.

4) If a shape kernel’s matching score exceeds a pre-defined
threshold, we assume there is an object candidate inside
this moving blob, and then the four vertices of this shape
kernel are used to calculate the 3D size of this candidate.

5) The previous step may result in a candidate whose con-
tour looks like an object, but its 3D size is inconsistent
to the real object (e.g. a 10-meter-tall pedestrian or a
vehicle of only 50 centimeter in length). We employ the
object-specific classifier to exclude the candidates with
wrong 3D sizes.

In the following, Section III-B will detail the matching
between the contour of a shape kernel and the DT image patch

(a) tilt=0◦

(b) tilt=60◦

Fig. 6. Examples of shape kernels for pedestrian.

(a) tilt=30◦

Fig. 7. Examples of shape kernels for vehicle.

enclosed by the moving blob. Section III-C will derive the 3D
width, height and length of an object enclosed by the moving
blob using the shape kernel.

B. 2D Shape Matching

Given a video frame, for each moving blob detected we first
infer whether there exist object candidates inside this moving
blob, and this inference are based on the 2D shapes. We apply
well-know template matching method, chamfer matching, to
find all matched shaped kernels.

Chamfer matching was proposed by Barrow et al. [23] and
later refined in [24]. Gavrila et al. [25] applied this technique
to detect pedestrians in videos. Assume we find a moving blob,



(a) source image (b) edge map

(c) distance-transformed (DT) image (d) source image with a shape kernel
superimposed

Fig. 8. A video frame and its edge map and the corresponding chamfer
image. The image patch enclosed by the red rectangle in (c) is denoted as
IDT .

shown as the red rectangle in Fig. 8 (a). The chamfer matching
process is summarized as the following:

1) Calculate the edge map of the original frame. Fig. 8 (b)
gives the edge map of Fig. 8 (a).

2) Based on the edge map, calculate the distance-
transformed (DT) image, and it is shown as Fig. 8 (c).
The DT image computes the distance of each pixel to
the nearest edge pixels [23]. We denote the the image
patch enclosed by the moving blob in the DT image as
IDT .

3) Superimpose the shape kernel on the IDT . There may
be one, or multiple object candidates inside IDT , and
these candidates are possibly partially occluded by each
other. To find all the candidates, we slide shape kernels
of different sizes in IDT . The height of each shape kernel
ranges from 0.6 to 1.0 times of the height of IDT and
the ratio between width and height of the shape kernel is
fixed when we resize the shape kernel. This step plays
a cruical part in detecting occluded objects using the
proposed method. Fig. 8 (d) illustrates a shape kernel
superimposed on the DT image.

4) The distance between the contour of a shape kernel,
denoted as Γ, and IDT can be written as

D(Γ, IDT ) =
1
n

∑
i

IDT (Γi) (1)

where Γ = {Γ1,Γ2, ...,Γn} is the collection of pixel
locations on the contour of the shape kernel and n is
the number of pixels on the contour.

If D(Γ, IDT ) < θ, where θ is a pre-defined threshold, then
we infer there is an object candidate inside this moving blob.

The advantage of matching a shape kernel with the DT
image rather than with the edge image is that the resulting
similarity measure will be smoother as a function of the shape
kernel transformation parameters.

For a moving blob, basically we will have to compare its
DT image between all the shape kernels for a object class.
In this paper, we have 1584 shape kernels and 1188 shape
kernels for pedestrian and vehicle, respectively. To reduce the
computation, a speedup scheme is proposed in the following
section.

Speed Up Template Matching Scheme

With knowing camera parameters, the lens center position,
C, and its projection point, P , the middle point of the bottom
of the moving blob can be obtained. Fig. 9 gives an illustration.
The tilting angle, θ, of the moving blob can be derived:

θ = cos−1

 −−→
GC ×

−−→
GP∥∥∥−−→GC∥∥∥∥∥∥−−→GP∥∥∥


As the tilting angle of each shape kernel is known, we need

Fig. 9. Calculate the tilting angle of the moving blob.The green line denotes
the tilting contour in the scene. C denotes the lens center, P denotes the
project point of the lens center on the ground and G denotes the middle point
of the bottom of the moving blob.

only to use the subset of shape kernels whose tilting angles
equals to, or are close to θ when we perform the 2D shape
matching, see Fig. 10.

There are two advantages of this speedup scheme:
• We use less shape kernels to execute the template match-

ing process, which will speed up the matching process
up to 11 times faster than using all shape kernels.

• Using only the shape kernels with correct θ can reduce
a lot of false alarms caused by the matched shape kernel
with incorrect θ.

C. 3D Size Estimation

In the previous section we have identified the object can-
didates inside the moving blobs. Object candidates are those
whose 2D shapes match the object’s contour, but we don’t
know whether or not their 3D sizes match the certain object’s
3D size. In this section we will further verify the 3D sizes
of object candidates. We will calculate the 3D sizes first, and



Fig. 10. Speedup template matching process.The red cube implies the subset
of shape kernels, the tilting angles of which are closet to the tilting angle of
the moving blob.For describing our method clearly, we only draw parts of our
shape kernels.

based on which the object-specific classifier will perform the
final object verification.

The object’s 3D size are its width, height and length,
denoted as W , H and L respectively (see Fig. 11). Suppose a
shape kernel matches a moving blob, and it is superimposed
on the image, as illustrated in Fig. 11. In this case we
know the four vertices on the image, p1, p2, p3 and p4,
where pi = {xi, yi}. In the following we will derive the
corresponding four vertices in the 3D space, P1, P2, P3 and
P4, where Pi = {Xi, Yi, Zi}. We will derive P1, P2 and P3

first, and based on P1, we can derive P4.

Calculating P1, P2 and P3

Since typically the objects of interest are on the ground, we
assume Z1 = Z2 = Z3 = 0. Let’s focus on the point P1 for
the moment. With Z1 = 0, we can rewrite the camera equation

λp = K[R3∗3 | t3∗1]P, (2)

as

K[R(1) R(2)|t]

 X/λ

Y/λ

1/λ

 =

 x

y

1

 , (3)

where R(i) is the i-th column in the rotation matrix R. The
three unknown variables, X/λ, Y/λ and 1/λ, in equation
(3) can be solved, and thus X and Y can be obtained via
multiplying the first and the second variables by λ. Similarly,
we can also solve P2 = {X2, Y2, 0} and P3 = {X2, Y2, 0}.

Calculating P4

Once the we solve P1 = {X1, Y1, 0}, we can also solve
P4 = {X4, Y4, Z4} with the assumption X1 = X4, Y1 = Y4.

Firstly, we rewrite the camera equation λp = K[R|t]P as

λ

[
x

y

1

]
= K[R|t]

 X

Y

Z

1

 =

[
c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

] X

Y

Z

1

 , (4)

or, equivalently,

λ

 x

y

1

 = (5)

 c11

c21

c31

X +

 c12

c22

c32

Y +

 c13

c23

c33

Z +

 c14

c24

c34

 .
Using the fact that λ = c31X+ c32Y + c33Z+ 1 and simplify
equation 6, we have  c13 − c33x

c23 − c33y
0

Z = (6)

 (c31x− c11)X + (c32x− c12)Y + (c34x− c14)
(c31y − c21)X + (c32y − c22)Y + (c34y − c24)

0

 .
Note that the third equation can be eliminated and now we
have 2 equations with 1 unknown variable Z. The Z can be
estimated using the least-mean-square method. The authors in
[18] had also derived how to solve X3, Y3 and Z1 between a
pair {P1, P3} in a similar scenario, and basically our derivation
yields the same result with theirs. With P1, P2, P3 and P4

solved, we associate the cube in 2D image with a cube in
3D space, the 3D features of which are W = dist(P1, P3),
H = dist(P1, P3) and L = dist(P1, P2). dist(Pi, Pj) is the
distance between Pi and Pj in 3D space. Note that the W , H
and L of a real pedestrian, or vehicle, should be in consistent
in different scenes or different locations with different viewing
angles in the same scene.

Fig. 11. See text.



Object Verification Based on 3D size

The resulting 3D size Ωx = {Wx, Hx, Lx} of the object
candidate is verified using the object-specific classifier.

There are two main sources of error which make Ωxs
noisy. One is the object localization error in ’noisy’ contour
image using shape kernels, the other is the error in coordinate
transformation from 2D image plane to 3D space using the
cuboid method. These error are assumed to be Gaussian, and
we construct a generative model for each object class. For
each of the two object classes, its training samples are re-
sulted from the above 3D size estimation process of manually
specified 500 pedestrian locations and 300 vehicle locations.
These samples are collected from several other videos with
different camera viewing angles. More precisely, for each
object class, we fit all the pedestrian training data into a
normal distribution to obtain the N(µp,Σp), and likewise we
obtain N(µv,Σv). Using the generative model achieves good
detection rate in our experimental study, more importantly, its
low computational complexity makes it excellent choice for
the real-time application. When detecting an object class in
video, take the pedestrian for example, we say that a pedestrian
is detected, if the Mahalanobis distance between its associated
generative is below a pre-defined threshold. The Mahalanobis
distance between a new observation Ωx and N(µp,Σp) is√

(Ωx − µp)T Σ−1
p (Ωx − µp).

IV. EXPERIMENTAL RESULTS

We evaluate the proposed algorithm on outdoor video
sequences with the resolution of 320*240. These video se-
quences are different from the sequences used for training
our object models and contains both pedestrians and vehicles.
We manually annotate all pedestrians and vehicles with both
width and height greater than 20 pixels (i.e. we specify the
corresponding rectangles and the object class labels.). To
calculate the accuracy, we define a successful detection being
the detected rectangle occupies at least 50% of a ground truth
rectangle and its size is no greater than 200% 1 of that ground
truth rectangle.

We have compared our algorithm with a pedestrian detection
algorithm [5], a simple 2D Ratio Model, and our previous work
[21], denoted as the Billboard Model. The 2D Ratio Model
simply uses the ratio between the height and width of the
moving blob as the features to detect vehicle and pedestrian.
Table II includes pedestrian and vehicle detection results. We
can see in this table that the proposed method has comparable
performance to [5]. However, the proposed algorithm, is 7
times faster than [5]. It achieves 15 fps while [5] is only 2
fps, on a laptop with 1.66 GHz Intel core2 CPU. Furthermore,
[5] can only detect pedestrian, while the proposed algorithm
can detect both pedestrians and vehicles. In additional, among

1The accuracy of the algorithm in comparison [5] is affected by the size
of detecting rectangles. We found that the accuracy drop significantly when
this value being smaller than 300%, under which precision and recall are
87.0% and 80.0%. The proposed algorithm, on the other hand, has the same
performance when this values equals to 120% and 300%. The proposed
algorithm has much more compact detection results compared with [5].

Pedestrian(#1524) Vehicle(#895)
Precision Recall Precision Recall

[5] 53% 50% n\a n\a
2D Ratio Model 92% 73% 83% 62%

Billboard Model [21] 96% 71% 96% 48%
The proposed 90% 86% 90% 91%

TABLE II
PEDESTRIAN AND VEHICLE DETECTION RESULTS.

(a) (b)

(c) (d)

(e) (f)

Fig. 12. Some results of vehicle and pedestrian detection. Where the blue
contour within the cube denotes the best matched shape kernels, the red
and green cube denotes detecting pedestrian and vehicle respectively.The
W(width), H(height), L(length) of a object in the 3D space are shown on
the bottom of the 3D bounding box

all 1524(895) of pedestrians(vehicles), only 18(6) are wrongly
detected as vehicles(pedestrians). Only 24 pedestrians and
vehicles out of 2419 ones (0.9%) are wrongly detected as the
other. This result shows that the generative models for the two
object classes are well separated from each other, making the
proposed algorithm very effective in discriminating the two
classes.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a two-stage object detection
system using both 2D shapes and 3D sizes, which are width,
height and length of objects. We created 1584 shape kernels
for pedestrian and 1188 shape kernels for vehicle. These shape
kernels are taken under many combinations of panning and
tilting angles, and they are effective in matching objects’ 2D
contours and 3D sizes. To handle the partially occlusion of
objects, a scheme that slides shape kernels in the occluded



foreground regions is also proposed. The proposed algorithm
is able to detect pedestrians and vehicles with precision of
90% and 90% at 15 frame per second. We also find that
the proposed algorithm is able to effectively discriminate
pedestrians and vehicles. This may primarily due to the width,
height and length of pedestrians and vehicles are very different
from each other. The proposed algorithm performs reasonably
well when the occlusion between objects are not significant.

The introduction of the shape kernels not only allow us to
detect objects based on their 2D and 3D information, but it also
enable a new way to track objects. Since each shape kernel
has its own attributes, the panning and tilting angles, and the
type, we can assume that the same object in the consecutive
frames should have similar panning and tilting angles, and
their type should be the same. Our future work will model
this relationship using the Hidden-Markov Model, and apply
it to the object tracking problem.

VI. ACKNOWLEDGEMENTS

This paper is mainly supported by Construction of Vision-
Based Intelligent Environment, National Chiao Tung Univer-
sity of Taiwan under grant NO. 97-EC-17-A-02-S1-032.

REFERENCES

[1] C. Stauffer and W. Grimson, “Adaptive background mixture models for
real-time tracking,” Computer Vision and Pattern Recognition, vol. 2,
no. -252, 1999.

[2] W. L.Li, I. Y.-H. Gu, and Q. Tian, “Statistical modeling of complex
backgrounds for foreground object detection,” IEEE Transactions on
Image Processing, vol. 13, pp. 1459–1472, 2004.

[3] T. H. C. Kyungnam Kim, “Real-time foreground-background using
codebook model,” Real-Time Imageing, vol. 11, pp. 172–185, 2005.

[4] P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using patterns
of motion and appearance,” ICCV, vol. 2, pp. 734– 741, 2003.

[5] Y.-T. Chen and C.-S. Chen, “A cascade of feed-forward classifiers for
fast pedestrian detection,” ACCV, pp. 905– 914, 2007.

[6] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” CVPR, pp. 511–518, 2001.

[7] N. Dalai and B. Triggs, “Histograms of oriented gradients for human
detection,” CVPR, vol. 1, pp. 886–893, 2005.

[8] B. Wu and R. Nevatia, “Detection of multiple, partially occluded humans
in a single image by bayesian combination of edgelet part detectors,”
ICCV, vol. 1, pp. 90–97, 2005.

[9] Q. Zhu, M.-C. Yeh, and K.-T. Chen, “Fast human detection using a
cascade of histograms of oriented gradients,” CVPR, vol. 2, pp. 1491–
1498, 2006.

[10] B. Wu and R. Nevatia, “Cluster boosted classifier for multi-view, multi-
pose object detection,” International Conference on Computer Vision,
vol. 2, pp. 1491–1498, 2007.

[11] Y.-K. Wang and S.-H. Chen, “A robust vehicle detection approach,”
IEEE Conference on Advanced Video and Signal Based Surveillance,
pp. 117– 122, 2005.

[12] X. Tan, J. Li, and C. Liu, “A video-based real-time vehicle detection
method by classified background learning,” World Transactions on
Engineering and Technology Education, vol. 6, pp. 189–192, 2007.

[13] X. Song and R. Nevatia, “A model-based vehicle segmentation method
for tracking,” ICCV, vol. 2, pp. 1124–1131, 2005.

[14] R. Taktak, M. Dufaut, and R. Husson, “Road modelling and vehicle
detection by using image processing,” IEEE International Conference on
Systems, Man, and Cybernetics, Humans, Information and Technology,
vol. 3, pp. 2153–2158, 1994.

[15] G. B. Z. Sun and R. Miller, “On-road vehicle detection using gabor
filters and support vector machines,” International Conference on Digital
Signal Processing, 2002.

[16] Z. Sun, G. Bebis, and R. Miller, “Improving the performance of on-road
vehicle detection by combining gabor and wavelet features,” The IEEE
5th International Conference on Intelligent Transportation Systems, pp.
130–135, 2002.

[17] N. Chumerin and M. V. Hulle, “An approach to on-road vehicle detec-
tion, description and tracking,” IEEE Workshop on Machine Learning
for Signal Processing, no. 265-269, 2007.

[18] N. K. Kanhere, S. T. Birchfield, and W. A. Sarasua, “Vehicle segmenta-
tion and tracking in the presence of occlusions,” Intelligent Transporta-
tion Systems and Vehicle-Highway Automation, pp. 89– 97, 2006.

[19] L. M. Brown, “View independent vehicle/person classification,” in Pro-
ceedings of the ACM 2nd international workshop on Video surveillance
and sensor networks, 2004, pp. 114–123.

[20] C. S. Chen, C. K. Yu, and Y. P. Hung, “New calibration-free approach
for augmented reality based on parameterized cuboid structure,” ICCV,
vol. 1, pp. 30–37, 1999.

[21] P.-H. Lee, Y.-L. Lin, T.-H. Chiu, and Y.-P. Hung, “Real-time pedestrian
and vehicle detection in video using 3d cues,” ICME, 2009.

[22] J. P. Zhou and J. Hoang, “Real-time robust human detection and tracking
system,” CVPR Workshops, pp. 149–149, 2005.

[23] H. Barrow, R. B. J.M. Tenenbaum, and H. Wolf, “Parametric correspon-
dence and chamfer matching: Two new techniques for image matching,”
IJCAI, 1977.

[24] G. Borgefors, “Hierarchical chamfer matching: A parametric edge
matching algorithms,” PAMI, 1988.

[25] D. Gavrila, “Pedestrian detection from a moving vehicle,” ECCV, 2000.


