
Solving Route Planning Using Euler Path Transform
Yi-Chong Zeng

Institute of Information Science, Academia Sinica, Taiwan
yichongzeng@iis.sinica.edu.tw

Abstract— This paper presents a method to solve route
planning problem in maze game and waste collection
using Euler path transform, the core technique is
mixed-integer linear programming (MILP). There are
three issues are considered in the transformation,
including, the direction of edge, the limited number of
edge, and the user-defined starting and ending vertices.
The experiment results show that the proposed method is
capable of finding the optimal result for route planning.

Index Terms―Euler path, route planning, mixed-integer
linear programming

I. INTRODUCTION
In 1736, the great mathematician Leonhard Euler

published a paper to solve the problem of seven
bridges of Königsberg, and he translated it into the
graph theory problem [1]. Recently, research
workers study Euler path problem, it applies on
various fields, i.e., DNA sequence alignment,
minimal de Bruijn sequence construction, route
planning, image processing, etc.

For Eulerian directed graph with an arc-labeling,
Matamala and Moreno proposed the algorithm to
construct the minimal Eulerian trail and minimal de
Bruijn sequence [2]. Zhang and Waterman used
Euler path approach in order to avoid the expensive
computation of multiple sequence alignment for a
large number of DNA sequence [3]. The
computational time and the amount of memory size
for Zhang and Waterman’s approach become
approximately linear to size of sequence analyzed.
Qian and Yasuhara studied the drawing order
recovering of handwritten image to find the
smoothest path covered all edges of graph [4]. The
direction context was exploited to calculate the
smoothness between the edges, and the smoothest
path can be found by solving the optimal Euler path
problem. Furthermore, Euler path transform can
solve the route planning, and the route planning has
various calls, such as, the sweeping problem [5],
the waste collection planning [6], the periodic

vehicle routing problem [7], etc. The objective of
route planning is to find the proper route in a graph.

In [6], Shih and Lin proposed a multiple criteria
optimization approach, which employs integer
programming to solve the problem of route
planning for waste collection. Integer programming
is one kind of linear programming, which is
defined as the problem of maximizing or
minimizing a linear function subjected to linear
constraints [8]. In this paper, the proposed method
utilizes mixed-integer linear programming (MILP)
to estimate the number of passed edge in order to
implement Euler path transform. Then, the
proposed method is applied to two real world cases:
waste collection and maze game.

The rest of this paper is organized as follows:
Section II describes the definitions of Euler circuit
and Euler path. Sections III and VI introduce the
problem description and the proposed method,
respectively. The experiment results are shown in
Section V, and the conclusions are made in Section
VI.

II. EULER CIRCUIT AND EULER PATH
Euler’s well-known theorem is described: ‘if a

graph has an Euler circuit, then every vertex of the
graph has even degree’ [1]. This theorem is further
exactly described: ‘if every vertex of a nonempty
graph has even degree and the graph is connected,
then the graph has an Euler circuit’. Hence, the
graph of Euler circuit must satisfy two conditions:
(1) the graph is nonempty, and (2) all vertices of
the graph have the even degrees. The nonempty
graph means that a simple path exists to connect
any two distinct vertices of the graph. For the
second condition, the degree means the number of
edge connected to a vertex. On the other hand,
every vertex of the graph is connected with even
number of edges.

The Euler path is a sequence of adjacent edges
from two different vertices (for example, vertex vk
and vertex vl, and k ≠ l), which the sequence starts
at vk and ends at vl. The corollary is described:
‘there is an Euler path from vk to vl if, and only if,
the graph is connected and those two vertices have
odd degrees, and the rest of the vertices have even
degrees’ [1]. Hence, the graph of Euler path must
satisfy three conditions: (1) the graph is nonempty,
(2) two vertices have odd degrees, and (3) the other
vertices have even degrees. Therefore, the
difference between Euler circuit and Euler path is
that two vertices have odd degrees. Removing one
edge in a graph of Euler circuit, the graph will
become an Euler path.

III. PROBLEM DESCRIPTION
The objective of this paper is to find the optimal

route by Euler path transform. The proposed
method estimates the number of every edge which
will be passed through, and then our method is
applied to two real world cases: waste collection
and maze game. For waste collection, the vehicle
drives through the selected streets under the
constraint of lowest oil consumption which
associates with the sum of edge length. One-way
street and two-way street correspond to directional
edge and non-directional edge, respectively,
therefore, edge direction must be considered in case.
For maze game, the entrance and the exit
correspond to the starting vertex and the ending
vertex, respectively, and those two vertices are set
initially. After implementing Euler path transform
on maze game, the resultant of maze game is the
linkage of the edges which are only passed one
time.

IV. PROPOSED METHOD
The nonempty graph is composed of vertices and

edges, and we define two types of edges, namely
non-directional edge and directional edge.
Furthermore, the directional edges are classified
into two terms depended on vertex, namely the
imported edge and the exported edge. An example
is shown in Fig.1(a), the directional edge e4
connects two vertices v2 and v3. The edge e4 is
exported at v3, thus, it is called the exported edge at
v3. On the contrary, the edge e4 is imported at v2,

thus, it is called the imported edge at v2. In this
study, we emphasize on the general form that the
graph is composed of both non-directional and
directional edges. An example is shown in Fig.1(a).
Euler path transform is conducted via three phases,
including, pseudo edge setting, number estimation
of passed edge, and edge direction determination.
The detail of every phase is described below.

A. Pseudo Edge Setting
As aforementioned in Section II, the difference

between Euler circuit and Euler path is that two
vertices of a graph have odd degrees and the others
vertices have even degrees in Euler path. Hence,
these two vertices are connected with odd numbers
of edges. All edges in the graph of Euler circuit
have even degrees. Once we remove one edge in
the graph of Euler circuit, the graph will become
Euler path because two vertices between the
removed edge have odd degrees. Under this
circumstance, we initially set a pseudo edge
between the two specified vertices as shown in
Fig.1(a) and the pseudo edge is only passed one
time. After estimating the number of edge which is
passed through, the graph will become Euler circuit.
Subsequently, the pseudo edge is removed and then
the Euler path is obtained.

It is worth to notice that the direction of pseudo
edge determines the starting and ending points in
Euler path. For example, Fig.1(a) shows that two
vertices v1 and v3 are set as the starting vertex and
the ending vertex, respectively. Then, we must
assign the direction of the pseudo edge, eps, which
starts from v3 to v1.

B. Number Estimation of Passed Edge
Assume that a graph is composed of M edges

and N vertices. The variables αi and βi in (1) denote
the numbers of the i-th non-directional edge and the
i-th directional edge which will be passed,
respectively. The variable Aj represents the total
number of the non-directional edge at vertex vj, and
Bj is the difference of the total number of exported
edge subtracts that of imported edge at vertex vj.
For instance, the first vertex v1 has A1=3 and B1=−1
as shown in Fig.1(a). The equations are defined as
follows:

()

}.1 ..., 1, {0, and

},1 ,0 ,1{

},1 ,0{
,0

},1 ,0{

,2 subject to

 minimize

,

,

1

0
,

1

0
,

1

0

−=

−∈

∈
≥
∈

=⎟
⎠

⎞
⎜
⎝

⎛
+⋅+⎟

⎠

⎞
⎜
⎝

⎛
+⋅

+⋅

∑∑

∑
−

=

−

=

−

=

Nj

q

p

dBqΑp

βαc

ji

ji

i

i

jj

M

i
ijij

M

i
iji

M

i
iii

β
α

βα

(1)

where ci is the length of the i-th edge. pi,j represents
the relationship between the non-directional edge ei
and vertex vj. Similarly, qi,j represents the
relationship between the directional edge ei and
vertex vj. dj is a non-negative integer to ensure that
the vertex vj has even degree. If the i-th
non-directional edge connects the j-th vertex, the
variable is set to pi,j=1; otherwise, pi,j=0. If the i-th

directional edge connects the j-th vertex, the
variable is set to either qi,j=−1 for exported edge or
qi,j=1 for imported edge; otherwise, qi,j=0. Once i-th
edge is the pseudo edge, both of pi,j and qi,j are set
to zero. To analyze (1), it is the form of
mixed-integer linear programming; hence, the
above equations can be simplified,

UL

eqeq

T

, subject to
 minimize

xxx

bxA
xc

≤≤

=

(2)

where xL and xU represent the lower-bound column
vector and upper-bound column vector of x,
respectively. For the example of Fig.1(a), the graph
is composed of 4 vertices and 7 edges which are 4
non-directional edges, 2 directional edges and 1
pseudo edge, and the parameters are set as follows:

(a) (b)

Fig.1. Number Estimation of Passed Edge: Pseudo edge eps connects two vertices v1 and v3, and Euler path will start
at v1 and end at v3. (a) Original graph, and (b) the gray line between v2 and v4 represents e5 will be passed through
once again.

[]

,.

200001000000010100
020001010000000010
002000010000010001
000200000000000111

,,,,,,,,,,, ,

eq

T
421721721

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−

=

=

A

x ddd KKK βββααα

(3)

[]
[]
[]
[]TU

T
L

T

T
eq

1111111

,00000000000000

,000005656560565656

,3212

∞∞∞∞∞∞∞∞∞∞∞=

∞−∞−∞−∞−=

=

−−−−=

x

x

c

b

Mixed-integer linear programming is utilized to
solve (3), we estimate the solution of x, which is
x=[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2]T.
For α5=1, it means that only the non-directional
edge e5 needs to be passed once again, which is
represented as a gray line in Fig.1(b). Hence, e5 is
passed twice totally.

C. Edge Direction Determination
The beginning of edge direction determination is

to initialize the direction to all non-directional
edges. To assign the initial direction, we assume
that the edge ei connects two vertices vk and vl, and
the direction of the edge starts from vk and vl, where
k < l. The initial direction of Fig.1(b) is illustrated
in Fig.2(a). Let ri,j represent the direction of the i-th
edge at the j-th vertex, and ϕi be the modification

coefficient of the i-th edge. If ri,j=1, it implies the
i-th edge is imported at the j-th vertex. On the
contrary, if ri,j=−1, it implies the i-th edge is
exported at the j-th vertex. In addition, ϕi=0 means
that the direction of i-th edge needs to be reversed;
otherwise, we maintain the direction of the i-th
edge as ϕi=1. Using mixed-integer linear
programming, ϕ is solved and the edge direction is
determined. The equations are defined as follows:

()

}1,,1,0{ and
},1 ,0{

,012 subject to

 maximum

1'

0
,

1'

0

−=
∈

=′+−⋅∑

∑
−

=

−

=

Nj

Br

i

j

M

i
iji

M

i
i

K

φ

φ

φ

 (4)

(a) (b)

(c)
Fig.2. Edge Direction Determination: (a) Initial directions of the graph, (b) the correct directions of the resultant
graph, and (c) one of the possible routes.

where M' denotes the total number edge of the
resultant graph, B'j is the difference of the total
number of exported edge subtracts that of imported
edge at vertex vj. Consequently, Fig.2(a) only needs
to reverse the direction of e3, and the resultant is
shown in Fig.2(b). In Fig.2(c), it illustrates one of
possible route.

V. EXPERIMENT RESULTS
The first experiment is to find the optimal route

for vehicle in waste collection. Fig.3(a) shows that
the selected streets illustrated by red lines. The
graph is composed of 21 vertices and 30
non-directional edges as displayed in Fig.3(b), and
this graph is transformed to Euler path. The path

(a) (b)

(c)

Fig.3. Route Planning for Waste Collection: (a) Red lines represent the selected streets where the vehicle drives; (b)
initial graph; and (c) the final route is found by using the proposed method.

starts at the top-left corner (v1) and ends at the
bottom-left corner (v6). The final route planning is
shown in Fig.3(c) and the computing time is 2.08
sec. Ten edges pass twice, including, e3, e5, e6, e14,
e15, e17, e20, e24, e27 and e29. The path is listed
below,
v1(e1)v2(e3)v7(e10)v9(e14)v12(e18)v15(e24)v16(e23)
v14(e17)v11(e11)v7(e3)v2(e2)v3(e5)v8(e12)v9(e14)v12(e19)
v13(e20)v18(e25)v16(e24)v15(e16)v11(e17)v14(e22)v19(e29)
v20(e26)v17(e15)v10(e7)v4(e6)v5(e9)v21(e27)v17(e21)
v13(e20)v18(e28)v19(e29)v20(e30)v21(e27)v17(e15)v10(e13)
v8(e5)v3(e4)v4(e6)v5(e8)v6. (5)

In second experiment, two mazes are tested.
Those two mazes shown in Figs.4(a) and (b) have
the same entrances, but the exits are different to
each other. The graph of the maze is composed of
142 edges and 143 vertices. The Euler path and
final route of Fig.4(a) are shown in Figs.5(a) and
(b), respectively. The process time is 126.01 second.
Similarly, the Euler path and final route of Fig.4(b)
are shown in Figs.6(a) and (b), respectively. The
process time is 63.23 second. For both Fig.5(a) and
Fig.6(a), the green line represents the edge has been
passed twice or more times; the red line is the final
desired resultant. Furthermore, the resultants of
four test mazes and are shown in Fig.7.

VI. CONCLUSIONS
We propose a method to transform graph to Euler

path by using mixed-integer linear programming.
The user can self-define the starting vertex and the
ending vertex in the graph. The proposed method
solves the problem of route planning in order to
two applications: the maze game and the waste
collection. The experiment results demonstrate the
effectiveness of our method. All programs are
executed in MATLAB software using a 1.5GHz
Pentium-M processor.

REFERENCES
[1] Susanna S. Epp, Discrete mathematics with

applications, Wadsworth, California, 1990.
[2] Y. Zhang and S. Waterman, “An Eulerian path

approach to local multiple alignment for DNA
sequences,” PNAS, vol.102, no.5,
pp.1285-1290, Feb. 2005.

[3] M. Matamala and E. Moreno, “Minimal
Eulerian trail in a labeled digraph,” Tech.
Report DIM-CMM, Universidad de Chile,
August 2004.

[4] Y. Qiao and M. Yasuhara, “Recovering
drawing order from offline handwritten image
using direction context and optimal Euler
path,” ICASSP 2006, vol.2, pp.765-768, 2006.

(a) (b)

Fig.4. Maze Game [9]: (a) Maze 1 and (b) Maze 2 have the same entrances but the exits are different to each other.

[5] A. Tucker, “A new applicable proof of the
Euler circuit theorem,” The American
Mathematical Monthly, vol.83, no.8,
pp.638-640, Oct. 1976.

[6] L.-H. Shih, and Y.-T. Lin, “Multicriteria
optimization for infectious medical waste

collection system planning,” Practice
Periodical of Hazardous, Toxic, and
Radioactive Waste Management, ASCE, vol. 7,
no. 2, pp.78-85, 2003.

[7] A. Mingozzi, “The multi-depot periodic
vehicle routing problem,” SARA, LNAI 3607,

(a) (b)

Fig.5. Resultant of Maze Game: (a) Euler path, and (b) final route of Fig.4(a). The green line represents the edge
has been passed twice or more times; the red line is the final desired resultant.

(a) (b)

Fig.6. Resultant of Maze Game: (a) Euler path, and (b) final route of Fig.4(b). The green line represents the edge
has been passed twice or more times; the red line is the final desired resultant.

pp.347-350, 2005.
[8] T. S. Ferguson, “Linear programming, a

concise introduction,
 ”http://www.math.ucla.edu/~tom/LP.pdf.

[9] The Maze Generator,
http://www.billsgames.com/mazegenerator/

[10] BlackDog’s Animal Mazes,
http://blackdog4kids.com/games/maze/animal/
index.html

Fig.7. Resultants of four tested mazes [10].

