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Abstract— This paper presents a method to solve route 
planning problem in maze game and waste collection 
using Euler path transform, the core technique is 
mixed-integer linear programming (MILP). There are 
three issues are considered in the transformation, 
including, the direction of edge, the limited number of 
edge, and the user-defined starting and ending vertices. 
The experiment results show that the proposed method is 
capable of finding the optimal result for route planning.  

Index Terms―Euler path, route planning, mixed-integer 
linear programming 

I. INTRODUCTION 
In 1736, the great mathematician Leonhard Euler 

published a paper to solve the problem of seven 
bridges of Königsberg, and he translated it into the 
graph theory problem [1]. Recently, research 
workers study Euler path problem, it applies on 
various fields, i.e., DNA sequence alignment, 
minimal de Bruijn sequence construction, route 
planning, image processing, etc. 

For Eulerian directed graph with an arc-labeling, 
Matamala and Moreno proposed the algorithm to 
construct the minimal Eulerian trail and minimal de 
Bruijn sequence [2]. Zhang and Waterman used 
Euler path approach in order to avoid the expensive 
computation of multiple sequence alignment for a 
large number of DNA sequence [3]. The 
computational time and the amount of memory size 
for Zhang and Waterman’s approach become 
approximately linear to size of sequence analyzed. 
Qian and Yasuhara studied the drawing order 
recovering of handwritten image to find the 
smoothest path covered all edges of graph [4]. The 
direction context was exploited to calculate the 
smoothness between the edges, and the smoothest 
path can be found by solving the optimal Euler path 
problem. Furthermore, Euler path transform can 
solve the route planning, and the route planning has 
various calls, such as, the sweeping problem [5], 
the waste collection planning [6], the periodic 

vehicle routing problem [7], etc. The objective of 
route planning is to find the proper route in a graph. 

In [6], Shih and Lin proposed a multiple criteria 
optimization approach, which employs integer 
programming to solve the problem of route 
planning for waste collection. Integer programming 
is one kind of linear programming, which is 
defined as the problem of maximizing or 
minimizing a linear function subjected to linear 
constraints [8]. In this paper, the proposed method 
utilizes mixed-integer linear programming (MILP) 
to estimate the number of passed edge in order to 
implement Euler path transform. Then, the 
proposed method is applied to two real world cases: 
waste collection and maze game. 

The rest of this paper is organized as follows: 
Section II describes the definitions of Euler circuit 
and Euler path. Sections III and VI introduce the 
problem description and the proposed method, 
respectively. The experiment results are shown in 
Section V, and the conclusions are made in Section 
VI. 

II. EULER CIRCUIT AND EULER PATH 
Euler’s well-known theorem is described: ‘if a 

graph has an Euler circuit, then every vertex of the 
graph has even degree’ [1]. This theorem is further 
exactly described: ‘if every vertex of a nonempty 
graph has even degree and the graph is connected, 
then the graph has an Euler circuit’. Hence, the 
graph of Euler circuit must satisfy two conditions: 
(1) the graph is nonempty, and (2) all vertices of 
the graph have the even degrees. The nonempty 
graph means that a simple path exists to connect 
any two distinct vertices of the graph. For the 
second condition, the degree means the number of 
edge connected to a vertex. On the other hand, 
every vertex of the graph is connected with even 
number of edges. 



The Euler path is a sequence of adjacent edges 
from two different vertices (for example, vertex vk 
and vertex vl, and k ≠ l), which the sequence starts 
at vk and ends at vl. The corollary is described: 
‘there is an Euler path from vk to vl if, and only if, 
the graph is connected and those two vertices have 
odd degrees, and the rest of the vertices have even 
degrees’ [1]. Hence, the graph of Euler path must 
satisfy three conditions: (1) the graph is nonempty, 
(2) two vertices have odd degrees, and (3) the other 
vertices have even degrees. Therefore, the 
difference between Euler circuit and Euler path is 
that two vertices have odd degrees. Removing one 
edge in a graph of Euler circuit, the graph will 
become an Euler path. 

III. PROBLEM DESCRIPTION 
The objective of this paper is to find the optimal 

route by Euler path transform. The proposed 
method estimates the number of every edge which 
will be passed through, and then our method is 
applied to two real world cases: waste collection 
and maze game. For waste collection, the vehicle 
drives through the selected streets under the 
constraint of lowest oil consumption which 
associates with the sum of edge length. One-way 
street and two-way street correspond to directional 
edge and non-directional edge, respectively, 
therefore, edge direction must be considered in case. 
For maze game, the entrance and the exit 
correspond to the starting vertex and the ending 
vertex, respectively, and those two vertices are set 
initially. After implementing Euler path transform 
on maze game, the resultant of maze game is the 
linkage of the edges which are only passed one 
time. 

IV. PROPOSED METHOD 
The nonempty graph is composed of vertices and 

edges, and we define two types of edges, namely 
non-directional edge and directional edge. 
Furthermore, the directional edges are classified 
into two terms depended on vertex, namely the 
imported edge and the exported edge. An example 
is shown in Fig.1(a), the directional edge e4 
connects two vertices v2 and v3. The edge e4 is 
exported at v3, thus, it is called the exported edge at 
v3. On the contrary, the edge e4 is imported at v2, 

thus, it is called the imported edge at v2. In this 
study, we emphasize on the general form that the 
graph is composed of both non-directional and 
directional edges. An example is shown in Fig.1(a). 
Euler path transform is conducted via three phases, 
including, pseudo edge setting, number estimation 
of passed edge, and edge direction determination. 
The detail of every phase is described below. 

A. Pseudo Edge Setting 
As aforementioned in Section II, the difference 

between Euler circuit and Euler path is that two 
vertices of a graph have odd degrees and the others 
vertices have even degrees in Euler path. Hence, 
these two vertices are connected with odd numbers 
of edges. All edges in the graph of Euler circuit 
have even degrees. Once we remove one edge in 
the graph of Euler circuit, the graph will become 
Euler path because two vertices between the 
removed edge have odd degrees. Under this 
circumstance, we initially set a pseudo edge 
between the two specified vertices as shown in 
Fig.1(a) and the pseudo edge is only passed one 
time. After estimating the number of edge which is 
passed through, the graph will become Euler circuit. 
Subsequently, the pseudo edge is removed and then 
the Euler path is obtained. 

It is worth to notice that the direction of pseudo 
edge determines the starting and ending points in 
Euler path. For example, Fig.1(a) shows that two 
vertices v1 and v3 are set as the starting vertex and 
the ending vertex, respectively. Then, we must 
assign the direction of the pseudo edge, eps, which 
starts from v3 to v1. 

B. Number Estimation of Passed Edge 
Assume that a graph is composed of M edges 

and N vertices. The variables αi and βi in (1) denote 
the numbers of the i-th non-directional edge and the 
i-th directional edge which will be passed, 
respectively. The variable Aj represents the total 
number of the non-directional edge at vertex vj, and 
Bj is the difference of the total number of exported 
edge subtracts that of imported edge at vertex vj. 
For instance, the first vertex v1 has A1=3 and B1=−1 
as shown in Fig.1(a). The equations are defined as 
follows: 
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where ci is the length of the i-th edge. pi,j represents 
the relationship between the non-directional edge ei 
and vertex vj. Similarly, qi,j represents the 
relationship between the directional edge ei and 
vertex vj. dj is a non-negative integer to ensure that 
the vertex vj has even degree. If the i-th 
non-directional edge connects the j-th vertex, the 
variable is set to pi,j=1; otherwise, pi,j=0. If the i-th 

directional edge connects the j-th vertex, the 
variable is set to either qi,j=−1 for exported edge or 
qi,j=1 for imported edge; otherwise, qi,j=0. Once i-th 
edge is the pseudo edge, both of pi,j and qi,j are set 
to zero. To analyze (1), it is the form of 
mixed-integer linear programming; hence, the 
above equations can be simplified, 
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where xL and xU represent the lower-bound column 
vector and upper-bound column vector of x, 
respectively. For the example of Fig.1(a), the graph 
is composed of 4 vertices and 7 edges which are 4 
non-directional edges, 2 directional edges and 1 
pseudo edge, and the parameters are set as follows: 

  
(a)                                          (b) 

Fig.1. Number Estimation of Passed Edge: Pseudo edge eps connects two vertices v1 and v3, and Euler path will start
at v1 and end at v3. (a) Original graph, and (b) the gray line between v2 and v4 represents e5 will be passed through
once again.  
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Mixed-integer linear programming is utilized to 
solve (3), we estimate the solution of x, which is 
x=[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2]T. 
For α5=1, it means that only the non-directional 
edge e5 needs to be passed once again, which is 
represented as a gray line in Fig.1(b). Hence, e5 is 
passed twice totally. 

C. Edge Direction Determination 
The beginning of edge direction determination is 

to initialize the direction to all non-directional 
edges. To assign the initial direction, we assume 
that the edge ei connects two vertices vk and vl, and 
the direction of the edge starts from vk and vl, where 
k < l. The initial direction of Fig.1(b) is illustrated 
in Fig.2(a). Let ri,j represent the direction of the i-th 
edge at the j-th vertex, and ϕi be the modification 

coefficient of the i-th edge. If ri,j=1, it implies the 
i-th edge is imported at the j-th vertex. On the 
contrary, if ri,j=−1, it implies the i-th edge is 
exported at the j-th vertex. In addition, ϕi=0 means 
that the direction of i-th edge needs to be reversed; 
otherwise, we maintain the direction of the i-th 
edge as ϕi=1. Using mixed-integer linear 
programming, ϕ is solved and the edge direction is 
determined. The equations are defined as follows: 
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(a)                                      (b) 

 

(c) 
Fig.2. Edge Direction Determination: (a) Initial directions of the graph, (b) the correct directions of the resultant
graph, and (c) one of the possible routes. 



where M' denotes the total number edge of the 
resultant graph, B'j is the difference of the total 
number of exported edge subtracts that of imported 
edge at vertex vj. Consequently, Fig.2(a) only needs 
to reverse the direction of e3, and the resultant is 
shown in Fig.2(b). In Fig.2(c), it illustrates one of 
possible route. 

V. EXPERIMENT RESULTS 
The first experiment is to find the optimal route 

for vehicle in waste collection. Fig.3(a) shows that 
the selected streets illustrated by red lines. The 
graph is composed of 21 vertices and 30 
non-directional edges as displayed in Fig.3(b), and 
this graph is transformed to Euler path. The path 

 

  
(a)                                           (b) 

 
(c) 

Fig.3. Route Planning for Waste Collection: (a) Red lines represent the selected streets where the vehicle drives; (b)
initial graph; and (c) the final route is found by using the proposed method. 
 



starts at the top-left corner (v1) and ends at the 
bottom-left corner (v6). The final route planning is 
shown in Fig.3(c) and the computing time is 2.08 
sec. Ten edges pass twice, including, e3, e5, e6, e14, 
e15, e17, e20, e24, e27 and e29. The path is listed 
below, 
v1(e1)v2(e3)v7(e10)v9(e14)v12(e18)v15(e24)v16(e23) 
v14(e17)v11(e11)v7(e3)v2(e2)v3(e5)v8(e12)v9(e14)v12(e19)
v13(e20)v18(e25)v16(e24)v15(e16)v11(e17)v14(e22)v19(e29) 
v20(e26)v17(e15)v10(e7)v4(e6)v5(e9)v21(e27)v17(e21) 
v13(e20)v18(e28)v19(e29)v20(e30)v21(e27)v17(e15)v10(e13) 
v8(e5)v3(e4)v4(e6)v5(e8)v6.                   (5) 

In second experiment, two mazes are tested. 
Those two mazes shown in Figs.4(a) and (b) have 
the same entrances, but the exits are different to 
each other. The graph of the maze is composed of 
142 edges and 143 vertices. The Euler path and 
final route of Fig.4(a) are shown in Figs.5(a) and 
(b), respectively. The process time is 126.01 second. 
Similarly, the Euler path and final route of Fig.4(b) 
are shown in Figs.6(a) and (b), respectively. The 
process time is 63.23 second. For both Fig.5(a) and 
Fig.6(a), the green line represents the edge has been 
passed twice or more times; the red line is the final 
desired resultant. Furthermore, the resultants of 
four test mazes and are shown in Fig.7. 

VI. CONCLUSIONS 
We propose a method to transform graph to Euler 

path by using mixed-integer linear programming. 
The user can self-define the starting vertex and the 
ending vertex in the graph. The proposed method 
solves the problem of route planning in order to 
two applications: the maze game and the waste 
collection. The experiment results demonstrate the 
effectiveness of our method. All programs are 
executed in MATLAB software using a 1.5GHz 
Pentium-M processor. 
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(a)                                                (b) 

Fig.4. Maze Game [9]: (a) Maze 1 and (b) Maze 2 have the same entrances but the exits are different to each other.
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(a)                                  (b) 

Fig.5. Resultant of Maze Game: (a) Euler path, and (b) final route of Fig.4(a). The green line represents the edge
has been passed twice or more times; the red line is the final desired resultant. 
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Fig.6. Resultant of Maze Game: (a) Euler path, and (b) final route of Fig.4(b). The green line represents the edge 
has been passed twice or more times; the red line is the final desired resultant. 
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Fig.7. Resultants of four tested mazes [10]. 


