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Abstract

This paper proposes an efficient evolutionary algorithm
(EEA) with a novel orthogonal array crossover (OAX) for
solving the accurate polygonal approximation problem.
Using the OAX, t he chrom osomes of the children are
formed from the best combinations of the better genes from
the parents rather th an the conventional random
combinations of the parents’ genes. The choice of the better
genes is derived by way of a systematic reasoning approach
Jor evaluating contribution of the individual gene based on
the orthogonal arra . Genetic algorithm approach has been
proposed and its performance is much better than that of
several superior methods in obtaining accurate solutions of
polygonal approximation problems. It is shown empirically
that the proposed FEA outperforms the superior genetic
algorithm proposed in literature under the same cost
condition in the quality of the best solution, average
solution, variance of solutions, and the convergence speed,
especially in solving large polygonal approximation
problems.
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1. INTRODUCTION

The approximation of shape representation is an important
issue [1-18]. The statement of the polygonal approximation
problem is simple as follows For a given number of
approximating vertices, the objective is to minimize the
error norm between the digital curve and the approximatin
polygon. Many polygonal approximation methods can be
found in literature such as dynamic programming approach
[2,3], Newton's method [4] , iterative point elimination
approach [5], sequential approach [6,7], split-and-merge
approach [8-10], dominant point s detection approach
[11-15], k-means based approach [16-17], and GA-based
approach [18]. A new method for polygonal approximati
using a genetic algorithm, proposed by Yin [18 , has been
shown that its performance is much better than those of
several superior methods in obtaining accurate solutions of
polygonal approximation problems usingthe same
benchmark [13].

In this paper we solve the polygonal approximation
problem using an efficient evolutionary algorithm (EEA)
with a novel orthogonal array crossover (OAX) thatis an
efficient general-purposed algorithm capable of solving
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large parameter optimization problems. The merit of EEA
is the use of the orthogonal array (OA) to achieve an
intelligent genetic crossove . The chromosomes of the
children are formed from the best combinations of the
betier genes from the parents rather than the conventional
random combinations of the parents’ genes. The choice of
the better genes is derived by way of a systematic reasoning
approach for evaluating contribution of the individual gene
based on OA. Theoretical analysis and experimental studies
for the superiority of the intelligent crossover can be fo und
in our recent work [19]. In this study, we try to achieve the
following goals

(1)  Show empirically that the proposed EEA outperforms
the genetic algorithm approach proposed by Yin [18]
in solving the accurate polygonal approximation
problem using the same benchmark. The comparisons
of performance evaluation take the following factors
into consideration: the quality -of the best solution,
average solution, variance of solutions, and the
convergence speed under the same cost condition.

(2) Inreal world applications, the image contours may be
larger than the used laboratory contour benchmark
{11]. To compare the performance for solving large
polygonal approximation problems with the
competitive Yin [18], we use a large real contour with
900 points, taken from di gitization of real objects in
real applications, and apply it to test four superior
polygonal approximation algorithms. Fr om the
encouraging simulation results, we show that EEA i
more superior to the other genetic algorithms i
solving large polygonal approximation problems.

(3) A modified fitness function with a penalty term for
dealing with the infeasible individuals is used t
reveal the essentiality of maintaining feasibility for
crossover operations and demonstrates the superiorit
of the proposed OAX in solving accurate polygonal
approximation problems.

2. PRELIMINARY OF CROSSOVER

Since genetic algorithm (GA) emplo s parallel search and
has good performance in solving optimization problems
[20,21], it can also be used to solve the optimal polygonal
approximation problem. It has been theoretically proven
that GA provides robust search even if the search space is
not continuous. Crossover is the main operator of GAs. The
crossovers for solving the binary string decision problem

can be categorized intotwo classes, described in the

following two subsections.



2.1 Crossover without maintaining feasibility

GA produces new solutions by recombining the encoded
solutions from apopulation. Because GA works by
recombining and altering solutions, maintaining feasibilit
is difficult for many problems. Crossover may yield
infeasible children from two feasible parents. This
especially arises in combinatorial optimization where the
encoding is the traditional bit string representation and the
crossover is the general -purposed crossover. Generally, a
penalty function approachis used to cope with the
infeasible solutions as follows [22]. Given an optim izati
problem,

Min. Z(x) st x€ A, xeB (1)

where x is a vector of decision variables, the constraints
“xeA” are relatively easy to satisfy, and the constraints
“xeB” are relatively hard to satisfy. The problem can be
reformulated as

Min Z(x)+ pd(x,B)) st xeA (2)

where d(x, B) is a metric function describing the distance of
the vector x from the region B, and p(.) is a penalt
function such that p(0) = 0. This is an exterior penalt
function defined such that if the function p(.) grows quickl
enough outside of B, the optimal solution of Egn. (1) will
also be optimal for Eqn. (2). Furthermore, any optimal
solution of Eqn. (2) will provide an upper bound on the
optimum for Eqn (1), and this bound will in general be
tighter than that obtained by simply optimizing Z(x) over A.
It can be recognized that when the strength of the penalt
function is too large, the search algorithm is not allowed t
enter the infeasible region, and consequently, might spend
more time in finding feasible region than in finding the
optimum. However, if the strength is to small, the search
algorithm will spent too much time in evaluating invalid
solutions. How to effectively determine the penalt
function is in general problem-dependent.

Let @ and A beparenis pairs that have the same
numbers of “0” and “1” in a bit strings chromosome
before performing crossover operations. Assume that
feasible solution has the same number of “0” and “1” in a
chromosome. An integer number s between [1, N -1] is
randomly, where N is the bit string length. The children
@’ and £’ are obtainedby swapping all the bits of «
and A after position s using a traditional one -cut-point
crossover. For example, feasible parents @ and A3 with
N =10 and s = 5 can generate infeasible children «’ and
/37 as follows

¢ =0100111000 ¢’=0100110101

A =0010010101 £°=0010011000

To cope with the infeasible children problem, the penalt

function must be added into the fiiting function. A
general-purpose penalty function for binary string decision
problem is described as follows. Let the number of “1” ina
chromosome be K and the number of “1” after a crossover
operation be W. The penalty function can be defined as p(x)
=7IW — Kl, whereyis a weighting constant. However,
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how to efficiently determine the ¢ value is not an easy
task.

2.2 Crossover with maintaining feasibility

One solution for preserving feasibility of children ist
increase the complexity ofthe crossove Some
application-dependent crossovers have been proposed [23].
A GA repair operator, usedby Yin [18], adopts a similar
two-cut-point crossover for polygonal approximation. At
first, an integer number s between {1, N-2] is randomly
generated as the first cut point and, then, check the numbers
of corresponding (0,1)-pair and (1,0) -pair after positi s in
the parents’ bit strings. If one of themis zero, regenerate
another number until thenu mbers of (0,1)~pair and
(1,0)-pair are both non-zero. The second cut point can be
determined in the position ¢ such that the numbers of
(0,1)-pair and (1,0)-pair between s and ¢ are identical, It is
guaranieed by swapping (0,1)-pairs and (1,0)-pairs
simultaneously between parents to contain the same
number of 1’s for the string offspring usingthe
two-cut-point crossover. Take the same example using «
and 3. If s = 7, the numbers of (0,1)-pair and (1,0)-pair
are 2 and 0. Therefore, this crossover will fail since the
second cut point can not be determined. If s = 6, it can
obtain the second cut point in the position # = § and, then,
the feasible children ¢’ and B° can be obtained as
follows

a =0100111000 ¢’=0100110100

B =0010010101 A'=0010011001

Since the offspring always are feasible solutions, no penait
function is needed.

Although, the above mentione d two-cut-point crossover
can always produce feasible offspring, the children can be
formed from only the exchange of the middle substring. We
will propose an orthogonal array crossover OAX, which
utilizes the decomposition of the chromosome intoa
variable number of substrings, can produce the children
using the best combinations of the better substrings from
the parents. The choice of the better substrings is derived
by way of a systematic reasoning approach for evaluatin
contribution of the individual substring based on OA.

3. PROPOSED EFFICIENT EVOLUTIONAR
ALGORITHM

EEA uses a novel OAX based on the ability of OA, which
is descried in Section 3.1. Section 3.2 presents OAX
procedure. The illustration of OAX using a concise
example is given in Section 3.3. EEA is provided in Section
34

3.1 Orthogonal arrays and factor analysis

Orthogonal amray (OA) and factor analysis, which are
representative methods of quality control [24], also work to
improve the crossover more efficiently. The superiority of
OA on obtaining better results for large parameter

optimization problems has been demonstrated in our recent



work [19,25]. The definition of the O is as follows. Let
there is N factors of two levels. The number of total
combination is 2. Columns of two factors are orthogonal
when 4 pairs, (1,1), (1,2), (2,1), and (2,2), occur equally in
all experiments. When any two factors in an experimental
set are orthogonal, the set is called an OA. To establish an
OA of N factors of two levels, we obtain an integer

n= Zrl"g(N“ﬂ, build an orthogonal arra  L,(2 ™) with n
rows and ( n-1) columns, and select N columns. Factor
analysis can evaluate the effects of factors on the evaluation
function, rank the most effective factors, and determine the
best level fore ach factor such that the evaluationis
optimized. Orthogonal experiment design can reduce the
number of experiments for the factor analysis. The number
of OA experiments for single factor analysis is only n. For
instance, Table 1 shows an orthogonal arra Lg (27). Let y,
be the positive function evaluation value of experiment no.
t. Define the main ect of factor f, with level k-5 ,

ZY the level of Exp.no.t ()
P of factor jisk

here . 1 if the condition is true
[condztzon ]= )
0 otherwise ,

and

Yy, if the function is to be max .

=11
A . If the function is tobe mix.

Note that the main effect reveals the individual effect of a
factor. The most effective factor j has the largest main
effect difference (MED) | Sj; — Spp | . 81> S;, the level
1 of factor j is better than the level 2 on the contribution for
the optimization function. Otherwise, level 2 is better.

3.2 Orthogonal array crossover OAX

Let the length of the bit string chromosome be N and the
number of 1's be K. The newly produced strings (or
offspring) after OAX are forced to contain the same
number of 1°s as their parents. The OAX is as follows
Step 1:  Determine the maximal number M of segments
using M-1 cut points such that the numbers of 1 ’s
in any two corresponding segments of the parenis
are identical and any two corresponding segments
are not identical . If M = 0, OAX will notb
applied before performing the mutation operation.
For example, let N=10, K=5, and two parents
strings P; and P, be as follows. I can be
determined that M = 3.

P/=1010111000

=0101010101

Select the first M columns of OA L,(2 ™) where

n =202 Note that one segment ina
chromosome is regarded as a factor in OQA. Let
level 1 and level 2 o f factor j represent the j©
segmenis coming from P; and P», respectively.
Evaluate the function value , for experiment no.

Step 2:

Step 3:
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twheret=1,2,...,n

Compute the main effect S where j=1, 2, ...,
Mandk=1,2.

Determine the best level for each segment.
Select level 1 for the /* segment if 51> 552
Otherwise, select level 2.

The chromosome of the first child is formed from
the best combinations of the better segment
derived from the corresponding parents.

Rank the most effective factors from rank 1 to
rank M. The factor with large MED has higher
rank.

The chromosome of the second child is formed
similarly as the first child except that the segment
with the lowest rank adopts the other level.

Step 4:

Step 5:
Step 6:
Step 7:

Step 8:

3.3 Hlustration by a concise example

In this section, OAX is illustrated by a concise example and
the simulation results are show in Tables 1 and 2. Let P,
and P, be parents, and C, and C, be the children after
performing OAX procedure. The polygon figure-8 with 45
points (N=45) and 9 vertices (K=9) in Figure 1(d ) is
adopted. The feasible solution must have 9 1’s and36 (’s in
a chromosome. The maximal number M of segments for P,
and P, is 6. Therefore, the first 6 columns of OA Ls(27)

are used. Let
P; = (100000 0010000 100010000 110100000000 1000000 0100)

and

P> = (001000 1000000 000010100 000010100001 (010000 1000).

The values of all variables for factor analysis are shown in
Table 1. For instance, in the 3" experiment, the function
evaluation value V3 (177 88) can be obtained usm§ ﬂn (4)
from the 1%, 4% and 5" segments of Py, and the 2", 3", and
& segments of P, The mam effect S31 (8.28) can be
obtained using S3; = y;° +y2 +y7 +yg 2 from Egn. (3). The
child C; can be derived from combining the 2 nd 39 5% and
6" segments of Py, and the 1% and 4% segments of P,. Based
on MED, the child G, is only different in segment 6 with
the lowest rank from C ;. The OAX results are shown in
Table 2.

Table 1. Orthogonal array [, (27) and factor analysis.

Factors

Function

Exp.mo. | 1 2 3 4 5 ¢ 17 |Evaluation

value y, (E,)

1 1 1 1 1 1 1 1w s8mn

2 11 1 2 2 2 2|y 6310

3 1 2 2 1 1 2 2 |ys|17788

4 1 2 2 2 2 1 1|y 13659

5 2 1 2 1 2 1 2 |ys|161.08

6 2 1 2 2 1 2 1|y 6170

7 2 02 1 1 2 2 1 |y|13800

3 2 2 1 2 1 1 2 |ys| 5048
Su(10%) |4.68 84 [B.28 2.5¢ B1gfo1g -
Sp(10™) 5.30 3.86 396 598 -
MED(10%)(2.78 1.54 441 7.05 423 0.18 -
Rank |4 5 2 1 3 6 -




Table 2. Results of OAX,

1 2 | 3 4 | 5 3 E;

Py |100000 [0010000 {100010004 |110100000000 {l1000000 [fo10d § 87. 1
P, |1001004 1000000 000010100 (00001010000} l0010000 1000 | 129.14

Cy (001000 {0010000 |100010000 |000010100001 | 1000000 0100 || 46.82

C; 001000 (0010000 |100010000 |000010100001 | 1000000 {1000 | 49.44

3.4 Efficient evolutionary algorithm

In this section, solving polygonal approximation problems
using EE  is described in detail. Assume the given digital
curve S has N points and the specified degree of the
approximating polygon is K, then this problem has search
space C(N, K). Let a@= a,a...ay be a binary string of
length N and the number of 1’s in @be K wherea; = 1
means the i point of  is chosen as a vertex of the pol ygon
and a; = 0 means the i* point is eliminated. Consequently,
@ represents a possible solution of the polygonal
approximation problem. Let the perpendicular distance
between the " point of S and the nearest line segment in
the approximating polygonbee (). The error norm is
define as [e{ @), since integral square error can evaluate
the whole accurate effect of fitness function. The objective
of the problem is to minimize the approximation error
between S and its approximating polygon. The fitness
function value of @ can be define as

2

£(0) = Bfo) = 3 Je(od] (@)

i=1
EEA can be written as follows.

Step I: Initiation Randomly generates an initial

population with size N,,,. Each individual /;

contains K 1’s and (N-K) O’s where { =1, 2,...,

Niop-

Elitist strategy : Repeat the following steps for

i=210 Npyp

2a: Select I; and [; as the parents and produce
two children 7,; and I, using OAX.

2b: Replace I; and I; using the best and the
second best individuals according to fitness
performance among I;, I, I; and I,
respectively.

Evaluation: Evaluate the function values for all

individuals.

Selection Use the rank selection that replace the

worst Py * N, individuals using the best

individual to form the new population where P, is

the selection probability.

Crossover Select P, * Ny, parenis for OAX

where P, is the crossover probability. Apply OAX

to the selected pairs of parents. Two individuals

with the better fitness function valves among t he

parents and children replace the two children for

the elitist strategy.

Mutation: Apply the swap mutation operator t

the randomly selected Py, * N, individuals in the

new population where P, is the mutation

probability. To prevent the fitness value fr om

deteriorating, mutation is not applied to the best

individual.

Termination test: If a prespecified stopping

condition is satisfied, end the algorithm

Otherwise, go to Step 3.

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

C-55

4. EXPERIMENTAL
PERFORMANCE

RESULTS AND
COMPARISOM

4.1 Performance evaluation wusing the small
benchmark :

In order to demonstrate the superiority of our algorithm, we
compare its performance with that of Yin's geneti
algorithm (YinGA) [18], which has shown the superiorit
as the best approach in the accurate polygonal
approximation problem domain. The three benchmarks are
chromosome with 60 points Figure 1(a), figure-8 with 45
points Figure 1(d), and circles with 102 points Figure 1(g).
The parameters of EEA are as follows: Ny, = 100, ps =
0.04, p.=0.5, and py, = 0.2. The simulation of the small
benchmark conducts ten independent runs for EEA. All the
reported results are obtained under the same cost (number
of function evaluation, FITs). The simulation results of
YinGA and EEA are shown in Figure 1 (b), (e) and (h) and
Figure 1 (c), (f) and (i), respectively. The average error
values are summarized in Table 3. It can be seen that EE
outperforms YinGA in the quality of the best solution,
average solution, variance of solutions, and the
convergence speed. The convergence spee and average
accuracy for YinGA and EE  are illustrated in Figure 2.

(a) (b) (©

() (h) 6

Figure 1. Three small benchmarks and the comparative
results of YinGA and EEA. (a) Chromosome; (b) Apply
YinGA using 14 vertices; (¢) Apply EEA using 14 vertices,
(d) figure-8; (e) Apply YinGA using 10 verttices; (f) Appl

“EEA using 10 vertices, (g) circles; (h) Apply YinGA usin

19 vertices; and (i) Apply EEA using 19 vertices.



Resulis of Figure 1(d)

BEST E, AVERAGEE,; | VARTANCE

YinGA | EEA | YinGA | EEA |YinGA| EEA

6 17.49 | 1749 | 1825 1822 2.15 | 0.41

9 6.84 | 454 541 {478 | 081 |0.17

10 3.91 369 | 442 | 394 | 037 | 005

11 3.83 | 290 352 | 320 0.18 | 0.05

13 224 | 2.04 254 | 2.38 | 0.14 | 0.06

15 2.01 1.61 1.98 | 1.83 | 0.10 | 0.05

16 1.94 141 | 1.87 1.58 | 0.08 |0.03

total | 38.26 | 33.68 | 37.99 |3593| 3.83 | 0.82

EEA/

bl
YinGA 88.0% 94.6% 21.4%
Results of Figure 1(g)
K BESTE, AVERAGE E, | VARIANCE

YinGA | EEA | YinGA | EEA |YinGA| EEA

10 5295 13892 | 69.27 |44.07| 113.3 |76.50

CONVERGENCE (k=8) CONVERGENCE (k=18)
Ea Ea
90
—&— YinGA
70 &~ EEA
50
30
10 FiTs FITs
0 6000 12000 18000 0 6000 12000 18000
(a)
COMVERGENCE (k=6) CONVERGENCE (k=16)
Es Ea
55 1 70 1
} —&— YinGA
45 ' 5.5
~8— EEA
35 4.0
25 2.5 T,
S WU E—
15 FITs 1.0 FITs
0 6000 12000 18000 0 6000 12000 18000
®)
CONVERGENCE (k=10) CONVERGENCE (k=30)
Ex E-
175
145
115
85
55
25 FITs
0~ 6000 12000 18000 0 6000 12000 18000

Figure 2. The convergence speed and average accuracy of
YinGA and EEA for various benchmarks (a) chromosome,
(b) figure-8, and (c) circles with various K’s value.

Table 3. Experimental results of small bechmarks for
YinGA and EEA.

12 4285 |26.00| 40.99 |29.53| 86.52 | 5.08

14 2993 | 1739 27.22 }20.14 | 31.47 | 4.69

17 1741 1222 ) 20.03 |14.58| 18.24 | 2.23

18 14.80 | 11.34 | 16.35 |12.86| 6.81 | 1.56

19 1494 11004 | 15.03 |11.52| 5.06 | 0.92

22 1291 | 7.19 | 11.40 | 852 | 2.29 | 0.59

27 7.04 | 3.74 751 | 503} 1.22 |0.52

30 6.61 284 | 612 | 357 | 093 | 034

total | 1994 |129.7| 2139 |149.8 | 265.8 |92.43

EEA/ 65.0% 70.0% 34.8%

YinGA

Results of Figure 1(a)

BEST E, AVERAGEE,; | VARIANCE

YinGA | EEA | YinGA | EEA |YinGA| EEA

8 17.41 | 1343 | 16.87 | 15.51 | 11.96 | 2.33
9 13.82 | 12.08 | 14.47 | 1349 | 7.21 | 1.63
12 799 | 582 797 6.79 | 246 | 0.87
14 547 | 417 | 6.02 511 1 144 1 0.56
15 522 380 | 5.15 432 | 075 | 0.28
17 4.58 313 | 4.56 355 ] 035 | 0.16
18 417 | 2.83 3.68 3.04 | 0.18 | 0.05

total | 58.66 |45.26 | 58.72 | 51.81} 24.35 | 5.88

EEA/ A ,,
Vinca| - 712% 88.2% 24.1%
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4.2 Performance evaluation using the large
benchmark

Most of the existent works deal only with laboratory
contours, that is to say, curves specifically designed or
selected by the authors to show the goodness of their
approaches; or curves with a small number of points
commonly utilized in the literature in order to make their
results comparable [11 p.685). In this section, a large
contour with 900 points taken from digitization of a real
popular USA map in practical applications is usedt
analyze the effects of various crossovers, as shownin
Figure 3(2). To demonstrate the superionity of the
orthogonal array crossover and reveal the essentiality of
maintaining feasible solutions in solving accurate
polygonal approximation problems, additional two
crossovers that may produce infeasible individuals are
applied. The fitness function considering the infeasible
solution is modified as follows

f)=E@=Y @ +w-8

i=1




The first crossover is the traditional simple one-cut-point
crossover that may produce infeasible offspring. Let
YinGAP be the same genetic algorithm as YinGA except
that the one -cut-point crossover is incorporated and the
fitness function with the penalty term in Eqn. (5) is applied
simultaneously. In order to generate infeasible individuals
for testing the capability of OAX in EEA, a hybrid
orthogonal array crossover is used. The hybrid crossover is
the same as OAX described in Section 3.2 except Step 1. In
the Step 1, a simple one-cut-point crossover is first used.
Then, determine the maximal number M of segments usin
M-1 cut-points such that the numbers of I’s in any two
corresponding segments of the parents are identical except
the last segment which may not be identi cal. Let EEAP be
the same algorithm as EEA except that the hybrid crossover
and Eqn. (5) are used. The parameters of YinGA and
YinGAP are as follows ¢ = 20, Ny = 100, ps, pe, and pm
are the same as those of YinGA for small benchmarks, and
the generation number of stopping condition is 200. The
parameters of EEA and EEAP are as follows ¢ = 20, Nyop
= 50, p; = 0.04, p. = 0.5, and py, = 0.18. All the results are
obtained under the same cost condition as YinGA and’
YinGAP. The simulation of the large benchmark conducts
ten independent runs for the four algorithms, YinGAP,
YinGA, EEA, and EEAP, and the average results are
summarized in Table 4. Two approximating polygons
derived from YinGA and EEA are illustrated in Figure 3(b)
and 3(c), respectively. The convergence speed and average
accuracy of the four algorithms are shown in Figure 4. The
simulation resulis reveal the following

(1) The crossover, whichcan maintain feasibility, is
superior to the crossover which may produce
infeasible individuals.

(2) EEA withtheO AX is more superior to the
investigated GA with other crossovers, even applied to
the infeasible individuals. Note that EEAP is superior
to YinGA.

(3) The relationship pairs for the number of points and the
average E, error ratio ‘EEA/YiInGA’ are (45, 94.6%),
(60, 88.2%), (102, 70.0%), and (900, 36.97%) for
polygons in Figure 1(d), 1(a), 1(g) and Figure 3(a),
illustrated in Tables 3 and 4. The large number of
points results in small error ratio. Compare the ratios
of the large benchmark withthose of the small
benchmark, it can be recognized that EEA with OAX
is more efficient to solve the Ilarge polygonal
approximation problems.
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(a)

(b)




CONVERGENCE (K=180)

—2— YinGAP
~—&— YinGA
—S&— EEAP
—&— EEA

0 9000 18000 27000 36

000FITs

Figure. 4. The convergence speed and average accuracy of
YinGA, YinGAP, EEA and EE P for the contour of USA
map with various K’s value.

Table 4. Experimental results of large benchmark for
various algorithms.

(©)

Figuré¢ 3. The large contour of USA ap and the
comparative results of YinGA and EEA. (a) A large
contour of USA map with 900 points, (b) Apply YinGA
using 135 line segments, and (c) Apply EEA using 135 line
segments.

CONVERGENCE (K=96)

E»
1000 —%—YinGAP
J —&— YinGA
2500 ©— EEAP
S— EEA
2000
1500
1000
500 ‘B\"‘—E—__B_‘ ]
0 , . . »
FIT
0 9000 18000 27000 36000 s
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BEST E,
K | YinGAP | YinGA | EEAP | EEA
90 | 85333 | 83233 | 46260 | 32351
135 | 47232 | 39934 | 26005 | 161.67
180 | 30426 | 25285 | 180.59 | 107.54
total | 162091 | 1484.52 | 91224 | 592.72
(ﬁfj"rs 3637% | 39.93% | 64.97% —
AVERAGEE,
K | YinGAP | YinGA | EEAP | EEA
90 | 118282 | 104047 | 67496 | 380.49
135 | 57190 | 54289 | 37068 | 201.28
180 | 37136 | 33215 | 23471 | 126.44
toial | 212608 | 191551 | 128035 | 70821
(ﬁfﬁé 3331% | 3697% | 5531% -
VARIANCE
K | YinGAP | YinGA | EEAP | EEA
90 | 1636692 | 1101024 | 8944.00 | 1389.53
135 | 727100 | 474353 | 272049 | 38271
180 | 165745 | 131479 | 71499 | 136.80
fotal | 2529546 | 17068.56 | 12379.48 | 1909.04
fﬁg’s 755% | 11.18% | 15.42% —




5. CONCLUSION

It has been demonstrated that the proposed EEA
outperforms the existent genetic algorithm approach,
especially in solving large polygonal approximation
problems in the quality of the best solution, average
solution, variance of solution, and convergence spee . By
observing the general statistical analyses in EEA and
YinGA, it is easy to see that EEA outperforms YinGA,
especially in large real contour problems. Even if usin
general penalty design, EEAP using OAs is better then
YinGAP and YinGA. The results demonsirate that EE
makes use of the systematic reasoning abilit of OAs can
efficiently obtain accurate solutions. As a result, EBA is
suitable for solving C(N, K) pro-blems, since polygonal
approximation problem is a canonical type of the C(N, K)
problems.
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