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Abstract

In this poper we have implemented a translator with
translating a single process to multithreads on Win-
dows NT. The performance of ten DOALL loops, two
DOACROSS loops and four DOCONSIDER loops are
demonstrated on 2-CPU multiprocessor system, and almost
these applications translated to muliithreads can achieve
high speedup rates. Meantime, we have improved the run-
time parallelizing strategy by using different schedules in
evecutor phase. The inspector can choose the suitable
scheduling strategy and the ezecutor can utilize this sched-
ule to partition loop iterations of a wavefront into multiple
threads. By using our translator, the ezperimental results
show that the new method could achieve higher speedup on
multiprocessor systems.

1 Introduction

Multithreaded support seems to be the most obvious ap-
proach for helping programmers to take the advantage of
operating system parallelism. Modern operating systems
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like Mach, Windows NT [PG95], OS/2, and Solaris all sup-
port multiple threads of control within the same address .
space. With the wide availability of multiprocessor com-
puters in the coming years, multithreaded programming
will be a viable and important techmique for application
programmers to master. With threads, a process can have
multiple instruction streams executing simultaneously with
much lower overhead than concurrent processes. Threads
within the same address space inherently share that mem-
ory of process, which makes communication and data shar-
ing among threads efficient. In addition, multithreading
technology is absolutely essential for domains such as paral-
lelizing compiler [BEH4-94, Wol95, ZC90), real-time multi-
media and distributed systems. Although multithreaded is
powerful for a lot of multiprocessors, we sometimes still lack
good parallelizing compilers to help programmers exploit
parallelism and gain performance benefits from parallel ma-
chines. Therefore, it has become an important issue to
develop parallelizing compiling techniques that exploit the
potential power of multiprocessors on multithreaded oper-
ating systems. In the past from years, we have designed
and implemented a portable FORTRAN parallelizing com-
piler (PFPC) [YTH+97] with loop partitioning for the Ac-
erAltos 10000 multiprocessor system running OSF/1. The
compiler can partition parallel loops into multithreaded
codes based on several loop-partitioning algorithms. At
the present time, among all the operating systems which
support multithreads, Windows NT is the most popular
one. Therefore, based upon the past experiences and tech-
nologies in building PFPC, we implement a translator with
translating single-threaded process to multithreaded pro-
cess on Windows NT.

This paper describes the processes of implementation of
a multithreaded translator to parallelize loops and achieve
high acceleration rates on multiprocessor systems. First
of all, we present the implementation of an S2M translator
with loop partitioning under Windows NT. In order to port
the translator to other system environments, a minimal set
of thread-related data types and functions on Win32 APl is
defined and used, which is required {or an operating system
to support execution of the translator. Besides, this trans-
lator is highly modularized, and includes some routines
which can be used to generate thread-specific codes and
partitioned loops for different platforms; that is, the trans-
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lator is portable. This translator can partition DOALL,
DOACROSS and DOCONSIDER loops into multithreaded
codes based on several loop scheduling algorithms [TN93].
Purthermore, we have improved the run-time paralieliz-
ing strategy by using different schedules in executor phase.
The inspector can choose the suitable scheduling strategy
and the executor can utilize this schedule to partition loop
iterations of a wavefront into multiple threads. The exper-
imental results clearly show that our translator achieves
good speedup under Windows NT. In the study of high-
performance parallelizing compilers, results of this paper
will be able to deliver theoretical and technical contribu-
tions.

2 Technologies used in Our Translator

2.1 Windows NT

In Windows NT, a process is a collection of system re-
source like memory address space, file and device handles,
security attributes, synchronization objects,plus at least
one thread of execution. Each thread in a process also has
private resources: kernel and user stacks, a set of registers
and object attributes, and a program counter. Thread in
a process access and share all the resources of the process,
for example, all threads can access the same memory space.
A process is a Windows NT object with several properties:
security attributes, execution context, scheduling priority,
and processor affinity; these properties affect all threads
running in the process’s address space.

2.1.1 Thread Scheduling

The scheduling policy of Windows NT is preemptive mul-
titasking. Unlike DOS or Microsoft Windows, Windows
NT is truly a multitasking environment because it allows
many processes and applications to be run concurrently.
Each program believes it has the whole machine to itself;
however, the actual hardware is limited to the number of
processors, the available physical memory, and other sys-
tem resources. In order to emulate a virtual machine for
each process, Windows NT provides each process with a
virtual address space, and it simulates parallelism by di-
viding processor time among running threads. A unit of
time during which a thread can execute on a processor is
called a time slice or time quantum.

Normally, each thread waits for its turn to utilize a pro-
cessor. When the time quantum of a running thread runs
out, that thread is temporarily taken.off the processor to
allow another thread to execute. The first thread has been
preempted. When it is time for the preempted thread to
use the processor again, the operating system restores the
state of the thread and allows it to continue executing,

2.1.2 Thread Creation

A process begins with a single thread of execution. From
this initial thread, other threads can be started by calling
CreateThread, which has the following interface:

HANDLE CreateThread (
LPSECURITY.ATTRIBUTES lpsa,
DWORD cbStack,
LPTHREAD.START.ROUTINE 1pStartAddr,
LPVOID lpvThreadParm,
DHWORD fdwCreate,
LPWORD 1pIDThread );

The first argument is a pointer to a
LPSECURITY.ATTRIBUTE structure that contains a security
descriptor. The second argument specifies the size of the
new thread’s stack in bytes. The third argument is a func-
tion address from which the new thread begins execution.
The fourth argument is data to be passed to this function.
The fifth argument specifies whether the thread should be-
gin execution immediately. The last argument is given the
thread ID when the thread is created. The CreateThread
function returns a valid thread handle if it successfully cre-
ated a thread, or 0 if it failed.

2.1.3 Thread Synchronization

One advantage of multithreaded programming is that you
can speed up a program by dividing it into independent
threads; the threads can be executed concurrently. For ex-
ample, suppose we have to program a server application
that accepts requests from and provides services to client
applications. Using multithreaded programming, we can
implement this application with a dispatcher thread that
listens to client requests, and then create a separate thread
to handle each such request concurrently. The problem
with this strategy, however, is that we must properly syn-
chronize the several server threads if they access shared
data, in order to ensure that updates do not mterfere with
one another. In other word, one thread may need to wait
for another to finish before it can proceed.

2.1.4 Wait Operations

In Windows NT, a synchronization object can have
one of two states: signaled (available) or not-signaled
(owned). A thread wishing to synchronize using one
of these objects must call WaitForSingleObject, or call
HaitForMultipleObjects to use a set of them,

DHORD WaitForSingleObject (
HANDLE hObject,
DHORD dwTimeout
)3

HaitForSingleObject accepts a synchronization object
handle plus a timeout argument. A thread wishing to wait
for one or all conditions in a set may call the

WaitForMultipleObjects. function. This function has the

following interface: o

DWORD WaitForMultipleObjects (
DWORD nCount,

. LPHANDLE lpHandles,
BOOL bHaitAll,
DHORD dwTimeout
)3

The first argument is the size of the array of object han-

dles, which is passed as the second argument. The third

argument is a Boolean flag. If its value is TRUE, the func-
tion waits for all objects to be in the signaled state at the
same time. If the flag is FALSE, the function returns when
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any object in the array attains the signaled state. Because

of this ‘wait for all’ behavior, it is easy for this function to

block indefinitely if it does not time out, possibly creating
system deadlock.

2.2 Comparisons

In OSF/1, Our parallel compiler must use busy waiting
to wait all threads terminate. The example is stated as
follows:

/# Hain program »/ MAIE_()

for (I=0; I < Count; I++) {
ThStatus = pthread.create(&Thread,
pthread.attr.default,
(void %) FORALL1, &loop[Il);
pthread.detach(&Thread);
} .
pthreadmutex lock(&CountLock);
while (ThCount != 0)
pthread condwait(&ThCond, &CountLock);
pthread_mutex.nnlbck(&CountLock) H
sstop("", OL);
} /* BAIE_ =/
void FORALL1(loop)
struct loop.args *loop;

.....

pthread.mutex lock(&CountLock) ;
ThCount=--;

pthread mutexunlock(&CountLock);
pthread condsignal (2ThCond) ;

}

In Windows NT, our parallel compiler can use object
(function) which is supported by Win32, and it is straightly
controlled by NT operating System. Therefore, the pro-
grammer can simplify the code. The example is stated as
follows:

void main(void)

for (I=0; I < Count; I++) {

ThStatus[I]=CreateThread(FULL, O,
(LPTHREAD.START.ROUTIEE)FORALL2,
(LPVOID)&loop[1],0, (LPVOID)&ThreadlD);

}

RaitForHutipleObjects(Count ,ThStatus,

TRUE,';[HFIHITE) H
} ;

OSF/1 provides P Threads and C threads packages. The
threads implementation must provide two synchronization
methods: mutes objects for short-duration mutual exclu-
sion, and condition variables for event notification. Win32
of Windows NT provides two synchronization objects:
HaitForSingleObject and WaitForMultipleObjects. We
use WaitForMultipleUbjects to implement synchromiza-
tion.

3 The Translator

2.1 The Overview of PFPC

A portable FORTRAN parallelizing compiler (PFPC)
for our shared-memory multiprocessors like the AcerAltos
10000 system, running OSF/1, was designed and imple-
mented at NCTU [YTH+97]. The PFPC generates paral-
lel object codes rather than being just a source-to-source
restructurer, and is highly modularized so that porting
to other platforms will be very easy. Firstly, the practi-
cal parallel loop detector (PPD) proposed is used to test
for data dependence relationships and then restructure se-
quential FORTRAN source programs into parallel forms,
i.e., if a loop can be parallelized or partially parallelized,
then PPD marks it as a DOALL loop or DOACROSS loop
by comment. We implemented the PPD using the aux-
iliaries of lex and yace. PPD takes FORTRAN 77 syn-
tax like programs as input, and yields prompted parallel
codes that can be accepted by the f2¢ directly. Secondly,
because there is no FORTRAN compilers for OSF/1 and -
because multithreading only supports C programming, a
FORTRAN-to-C (f2c) converter is used to convert FOR-
TRAN programs output by PPD into their C equivalents.
Thirdly, the. single-to-multiple threads translator (S2M),
takes the program obtained from f2c as input, and gener-
ates as output, parallel loops translated into sub-tasks by
replacing them with multithreaded codes. Finally, the gen-
erated parallel object codes can be scheduled and executed
in parallel on multiprocessors to achieve high performance.

3.2 New Strategy for Runtime Scheduling

Before, our executor is implemented using C Thread func-
tion calls running under OSF/1. Every wavefront is se-
quentially executed, and ideally all iterations in the same
wavefront are executed in parallel. Nevertheless, if there
are too many iterations in the same wavefront, executing
all of them simultaneously is impossible. In practice, it-
erations in the same wavefront are partitioned into equal-
sized chunks and every chunk is enclosed in one thread,
the threads scheduled by OSF/1 can be executed in par-
allel. Figure 1 shows wavefronts with sequential inspector.
Figure 2 shows wavefronts with parallel inspector.

Barriers Iterations
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Figure 1: Wavefronts with sequential inspector.
Now, we propose a method to improve the performance

of the executor. Firstly, if too many iterations are in the
same wavefront, a loop partitioning mechanism (such as
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Figure 2: Wavefronts with parallel inspector.

CSS, GSS, Factoring and TSS [TN93]) may be adopted.
Secondly, the inspector not only computes number of wave-
fronts but also depends on the style of loop to choose suit-
able scheduling strategy. For example, the style of loop
detected in inspector is increasing workload, then the in-
spector may choose TSS or Factoring as scheduling strat-
egy. Thirdly, the executor utilizes the scheduling strategy
chosen by the inspector to partition loop iterations of a
wavefront into multiple threads. Figure 3 shows a schedul-
ing example of sequential inspector.
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Figure 3: A scheduling example of sequential inspec-

tor.

The general output produced by S2M have five sessions.
The first session, thread related definition, has some thread
related definitions that $2M added to the output. The sec-
ond session is variables declaration area. The third session
partitions the parallel loop according to user assigned loop
partition algorithm. The fourth session is just to create
threads. The default number of threads to be created is
two; however, this number can be changed by a command
line option while invoking S2M. The fifth session uses the
object for synchronization purpose. We show the main pro-
gram of the general output produced by S2M as following
paragraph.

N AEEEE G

f Thread related definition [

| Variables declaration area |
main()

I Itetations calculation

Create Thread

f Synchroniz.:.tion 1

We explain our S2M algorithm with general program
code. Firstly, we must input a prompted program to our
S2M. If the loop is DOALL, the general input code is shown
as follows [YTH497]:

main()

{

I Variables declaration area

/% DOALL??? =/
for(I=..... ) {
/% L2?7 %/

}

/# ERDALL??? =/

}

Then, S2M will generate the following DOALL thread
function [YTH+97]:

void DOALL??(loop)
struct loop.args *loop;

{
int i
for(i=loop->begin;i<=loop->end;i+=loop->step){

If the loop is DOACROSS, the general input code is
shown as follows [YTH+-97):

main()
{

I Variables declaration area

.....

[% L277 =/
}
/# EEDACR??? =/

.....

Then, S2M will generate the following DOACROSS
thread function [YTH+97}:
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void DDACROSS?7(loop)
struct loop.args *loop;

{
int i3
for (i=loop->begin; i<=loop->end; i++) {

/# SIGHAL(n) =/
| Set ready.nf[i] = TRUE ]
/% WAIT(n,i-m) */
| Test if the loop iteration is head I

| Wait until ready.n[i-m] = TRUE l

If the loop is DOCONSIDER, the general input code is
shown as follows [YTH+97]:

main()

{

I Variables declaration area

/* DOCESD??? =%/
for(I=..... Y {

[ L2?? %/

}

/+ EEDCESD??? =/

If we use sequential inspector, then S2M will only gener-
ate the following EXECUTOR thread function [YTH+97]:

I Variables declaration area
void main()

{

IESPECTOR
EXECUTOR

.....

void EXECUTOR(loop)

struct loop.args *#loop;

{

int 1,3;

int IBDEX;

for (IEDEX=loop->begin; INDEX<=loop->end; IHDEX++)

.....

If we use parallel inspector, then S2M will generate the
following INSPECTOR and EXECUTOR thread functions
[YTH+97):

‘ Variables declaration area ]
void main()

{

IESPECTOR
EXECUTOR

.....

}
void IBSPECTOR(1oop)
struct loop.args.insp #loop;

{

int i, ini_index;

int j;

for(ini_index=0;iniindex<=F;ini index++){
loop~>def[iniindex] = 0;
loop->uselini_index] = 0;

}

for(i=loop~->begin;i<=loop->end;i++)

}

void EXECUTOR(1loop)

struct loop.args *loop;

{

int i,j;

int IFDEX;

for(INDEX=loop->begin ; IIDEX<=loop->end ; INDEX++)

¢¢¢¢¢

}

4 Experimental Environment and Re-
sults

4.1 Environment

Our target machine is two Intel Pentium-133 CPU multi-
processor system, running the Windows NT multithreaded
OS that supports Win32 API functions. The system in-
cludes 512K external cache and 64MB shared-memory, and
a 64-Bit high-speed frame bus. Our translator is coded and
compiled by utilizing visual C++ which provides Win32

-API functions call. Due to the symmetric architecture,

computation tasks can be easily distributed to any avail-
able processor. This means that balanced loading of all
processors can be achieved.

4.2 Experimental Results

Ten examples are used for DOALL loop parallelization
of S2M. Figures 4, 5 and 6 show the speedups of adjoint
convolution, Gaussian elimination, matrix multiplication,
reverse adjoint convolution, transitive closure, SOR, Jacobi
iteration, Gaussian-Jordan elimination, LU decomposition,
and all pairs shortest paths by using different program sizes
loop. In the experiments, CSS is used to partition every
example and obtain their corresponding performances. Ob-
viously, speedup of parallel version is always higher than
serial version. So, the S2M translator used in Windows
NT can perform high speedup on multiprocessor systems.
Particularly, for the loop with uniform workload, such as
matrix multiplication shown in Figure 4 (c}, it can achieve -
higher speedup, since the CSS is suitable for the uniform
workload loop.

We examine the characteristics of adjoint convolution and
reverse adjoint convolution. In Figure 7 (a), because ad-
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Figure 5: Part II: partial results of DOALL examples.

joint convolution is with decreasing workload, we distribute
1/3 of all workload to the first thread and 2/3 of workload
to the second thread. As a result of workload is balanced,
the speedup is raised. Moreover, in Figure 7 (b), because
reverse adjoint convolution is with increasing workload, we
distribute 2/3 of all workload to the first thread and 1/3
of workload to the second thread. As a result of workload
is balanced, the speedup is raised. Furthermore, for loop
of increasing workload, GSS can distribute workload more
balanced, so its speedup is raised again.

In order to compare performances of different loop par-
tition algorithms, we examine five representative applica-
tions. Figure 8 shows speedup when applications was run
with different loop-partitioning algorithms and arguments.
For adjoint convolution and reverse adjoint convolution,
Factoring obtains highest performance. For matrix mul-
tiplication and transitive closure, CSS/2 obtains highest
performance. For Gaussian elimination, TSS obtains high-

Figure 6: Part III: partial resulis of DOALL examples.
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Figure 7: Results of adjusted adjoint and reverse ad-

joint convolution.
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Figure 8: Result of different loop-partitioning algo-
rithms.

We use new runtime parallelizing method to improve the
performance of the previous method. Figure 9 shows the
speedup of various loop partitions used in executor. Fig-
ure 9 (a) is the loop with uniform workload, and parallel
inspector can obtain higher performance than sequential
inspector. Figure 9 (b) is the loop with increasing work-
load, and TSS strategy chosen in parallel inspector can
obtain highest performance. Figure 9 (c) is the loop with
random workload, and TSS strategy chosen in parallel in-
spector can obtain highest performance. Figure 9 (d) is the
loop with non-constant dependence distance and increas-
ing workload. The Factoring strategy chosen in parallel
inspector can obtain highest performance.

5 Conclusion and Further Work

In this paper, by calling Win32 API functions of Win-
dows NT, the translator can translate successfully sequen-
tial programs to parallel programs with multithreads and
run effectively under Windows NT. The performance of ten
DOALL loops, two DOACROSS loops and four DOCON-
SIDER loops are demonstrated on 2-CPU multiprocessor
system, and almost these applications translated to multi-
threads can achieve high speedup rate. As to run-time par-
allelism, we have proposed a new scheduling approach. A
general inspector can choose the suitable scheduling strat-
egy by detecting style of loop in run-time and the executor
utilizes this schedule to partition loop iterations of a wave-
front into multiple threads. By using our translator, the ex-
perimental resulis show that the new scheduling approach
can achieve higher speedup on multiprocessor systems. In
the study of high-performance parallelizing compilers, re-
sults of this paper will be able to deliver theoretical and
technical contributions.
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Example 1 with different strategy
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Example 2 with different strategy
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Example 3 with different strategy
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Example 4 with different strategy
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Figure 9: Results of new runtime parallelization.

Most of investigations for parallelizing loops are concen-
trated on uniform memory access shared-memory multi-
processor systems (UMA). A new research direction is on
parallelizing loops for a non-uniform memory access multi-
processor systems (NUMA). In the future, we plan to con-
nect many machines with Windows NT operating system to
clustering structure. In this structure, a process with many
threads can distribute these threads to many machines and
run concurrently in many machines. The clustering struc-
ture will exploit the features of distributed shared-memory
multiprocessors and eliminate the major interprocess com-
munication overhead for parallelizing compilers.
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