PR B\

EREREREY

FHRAFUAAARRBAGLSHERFBRHZHFE
Efficient Synchronization Mechanisms
for Multithreaded Distributed Shared Memory Systems

Ueng Jyh-Chang Shieh Ce-Kuen
Department of Electrical Department of Electrical

Engineering,
National Cheng Kung
University, Tainan, Taiwan
ujc/@eembox.ncku.edu.tw

Engineering,
National Cheng Kung
University, Tainan, Taiwan
shichi@eembox.ncku.edu.tw

TR

‘ e R SRR A S IR o B
TEERET ZRESFA L ANERRRT R R
HHE - 35 7 EE EAR4E Cohesion _FE IR »
EBREIBFTEL B EEEE -
RIET : SEEUEAEER B EH

Abstract

This paper describes three techniques for implementing
synchronization mechanisms which are able to reduce
processor idleness in multithreaded Distributed Shared
Memory (DSM) systems. All of the techniques are
implemented and tested on Cohesion. The experimental
results shows that our methods indeed reduce the amount
of processor idleness.

Keywords: Distributed Shared Memory, Synchronization

1. Introduction

A distributed shared memory (DSM) [7]system is a
software system that emulates shared memory semantics
on the hardware platform that only supports messages-
passing. These systems usually provide a parallel
programming environment to simplify the programming
for users. Synchronization is one of the most important
mechanisms in this programming environment, since it
provides for programmers the control of joint activity of
cooperating threads or to ensure serialization of
concurrent accesses to shared data by multiple threads.
Most conventional synchronization mechanisms are
optimized only for the single-threaded DSM
systems[1][2][6], which allows only a single thread to be
executed on each node. However, multithreaded DSM
systems{3][5][8][9] have become increasingly important
because of the ability to hide network latency by
overlapping one thread’s communication with another

This research is supported by the National Science Council of R.O.C.
under contact NSC86-2745-E-006-014

Liang Tyng-Yue

&R
Chang Jyh-Biau

Department of Electrical
Engineering,
National Cheng Kung
University, Tainan. Taiwan
lty@eembox.ncku.edu.tw

Department of Electrical
Engineering,
National Cheng Kung
University, Tainan, Taiwan
andrew@eespcc.ncku.edu.tw

thread’s computation, and achieve load balance by thread
migration. Unfortunately, the existing synchronization
mechanisms optimized for the multithreaded DSM
systems may induce processor idleness. In this paper we
propose three techniques, which are wused for
implementing lock , conditional variable, and barrier
respectively, to reduce the processor idleness.

The implementations of synchronization mechanisms
for single-threaded DSM systems basically deal with the
synchronization between nodes. Nevertheless, In
multithreaded DSM systems, the synchronization not
only occurs among nodes, but also among threads on a
single node. Intuitively, to reduce network messages, the
synchronization between threads locating at a same node
is processed prior to those locating at separate nodes.
However, this method will lengthen the waiting time of a
synchronization object for the remote nodes. If all
threads on a remote node wait for the synchronization
object, the processor will become idle.

Lock, conditional variable, and barrier are usually
used for synchronization of DSM programs. In case of
lock, the induced amount of processor idleness may be
massive and even result in starvation of processors, i.e.,
processors often remain idle during the execution of the
program. This is because the threads on a node
alternately hold a lock and the threads on other nodes
starve to access the lock. The conditional variable may
induce moderate amount of processor idleness. It's
reason is that number of the ready threads on each node
is unbalance. The amount of processor idleness in barrier
depends on the amount of network communications. It
may result in notable performance drop if the amount of
network communication is heavy..

In this paper, we propose a conditional grant
technique for implementing lock, a balancing access
technique for implementing conditional variable, and a
longest-job-first technique for implementing barrier.

The conditional grant technique precedentially
serving the lock synchronization of threads on a single
node when the number of ready threads on this node is
more than a threshold value. Since this condition is not
always true, a lock would not be held persistently by a

E-158

R RE A R e

node and starvation of processors would not occur.

The balancing access always resumes a thread
located on a node with the most numbers of waiting
threads. Because each node is kept a comparable
number of ready threads, the condition that all threads on
nodes waiting for a conditional variable can be almost
avoided, thus reducing the processor idleness.

The longest-job-first always precedentially schedules
a thread that possesses most network latency. In this way,
maximum overlap of threads will be achieved and the
processor idleness can be reduced.

All of the techniques presented in this paper have
been implemented and tested on Cohesion, a DSM
system which supports the eager release consistency
model and provides a multithreaded programming
environment. To verify the effectiveness of the proposed
methods, we compare our methods with the conventional
ones. All of the experiments were done by running two
real application programs, quick sort and Successive
Over Relaxation(SOR). The experimental results show
that our conditional grant technique can avoid the
starvation of processor in quick sort program, which
occurs in another version using a conventional method.
Beside, using the balancing access technique, speedup of
the quick sort program is improved by 5%. Finally, using
the longest-job-first technique, the speedup of SOR is
improved by 8%.

The rest of this paper is organized as follows. Section
2 discusses the processor idleness problem in
synchronization mechanisms. Section 3 describes our
techniques. Section 4 describes the implementation of
these techniques on Cohesion. Section 5 shows the
performance results. Finally, we conclude in section 6.

2. Processor idleness in synchronization

mechanisms

In this section, we will first introduce the conventional
designs of the synchronization mechanisms. Then we will
describe the processor idleness problem that occurs in
these synchronization mechanisms.
2.1 Conventional designs of the synchronization
mechanisms

The decentralized methods[8][9] for implementing
lock are adopted in current multithreaded DSM systems
to reduce unnecessary competition of a lock and network
messages. In this method, each node is allocated a local
lock queue. When a thread acquires a used lock, it is
inserted into the local lock queue. When a thread releases
the lock, the system selects a thread in the local lock
queue for execution. The lock is granted to the remote
threads only when the local lock queue is empty. Since
granting the lock to the thread in the local queue requires
no message, the number of messages can be reduced.

A centralized method using a global queue is usually
used for implementing conditional variable. In this
method ,when a thread waits for a conditional variable, it
is inserted into the global queue. When a thread executes

a signal operation, the thread at the head of the global
queue is selected for execution. With the global queue, a
DSM system can easily finds the threads waiting for a
conditional variable.

The local barrier technique[8][9] is exploited to
reduce network traffic for barrier. With this technique, a
local barrier manager is allocated on each node in
additional to a global barrier manager. The local barrier
manager groups the arrival messages from the local
threads into a single message, and then sends the message,
to the global barrier manager. By the technique, a lot of
messages can be reduced.

2.2 Processor idleness resulted from multithreading

Although the multithreading can potentially improve
the performance of the applications, the improvement
may be limited or even worsened if the synchronization
mechanisms do not provide suitable occurrence for
thread switching. In this subsection, we discuss this
problem in detail.

2.2.1 Processor idleness in lock

A program sharing a set of data protected by a lock
may result in processor idleness. Suppose M threads are
executed on each node. Furthermore, suppose that N of
the M threads are waiting for a lock on the node S, and
all of M threads on some other nodes are waiting for the
lock. If the N threads are consecutively resumed for
accessing the lock before the lock is granted to any
thread on the other nodes. The nodes with M threads
waiting for the lock will be idle until the ™N threads on
node S finish accessing the lock.

A program that heavily shares a set of data protected
by a lock may result in heavy processor idleness, even
starvation of processor. In some applications, all threads
in the programs heavily compete a lock, resulting most of
the threads simultaneously wait for the lock. If we always
give the node holding the lock highest priority to access
the lock, the lock may be consecutively released and
acquired by the threads on the same node. This scenario
may continue until all threads on this node terminate. As
a result, all other processors starve to access the lock.
This is a serious problem, since it cause a program to be
executed sequentially.

2.2.2 Processor idleness in conditional variable

In multithreaded DSM systems, a lot of threads may
be executed on these systems. If the conventional global
queue method is used, the queue will become long when
most of the threads wait for a conditional variable.
Further, if all of the threads on a node are appended at
the tail of the queue, this node will be forced idle and
result in processor idleness.

2.2.3 Processor idleness in barrier

A barrier is usually used to synchronize all of the
threads in DSM programs. In this circumstance, the
threads resumed from a barrier will be more than one on
each node. If we schedule the threads using a
conventional method, such as FCFS(First Come First
Serve), the thread that demands most amount of
communication usually finishes execution last. Since this

E-159

TRRENTAER2EHERES

last thread has no other thread for overlapping to hide
network latency, its waiting time due to network latency
will result in much amount of processor idleness.

3. Techniques to reduce processor idleness

Since the behavior of these three synchronization
mechanisms is different from each other, we have to
propose different technique for each of them. In this
section, we present the proposed techniques, including a
conditional grant technique, a balancing access
technique , and a longest-job-first technique.

3.1 Conditional grant in lock
The conditional grant technique prevents the

starvation of processors by ensuring fair access of a lock

for each thread. It grant a lock to a thread at remote node
instead of local node by default. Besides, to avoid the
granting node to become idle after granting the remote
request, it grants a remote request only when the number

of ready threads on the local node is more than a

threshold value. In this way, a lock will never be held

persistently by a node. Starvation of processor, therefore,
can be avoided.

We currently choose the value of one as the
threshold value, since the lock mechanism with this
threshold value can grant a remote request as soon as
possible. In fact, this value is not optimal for all
applications, and the optimal value for all applications
may be different. We are trying to adjust the value at
runtime to approach the best value for each application,

The lock algorithm including this technique is
described as follows. A waiting queue and a requesting
queue is maintained for each lock on each node. The
waiting queue is used to record the threads waiting for a
lock on a local node, while the request queue is used to
record the nodes that have threads acquiring the lock.
Each lock has an owner, which is defined as the node that
most currently holds the lock. Only the owner of a lock
has the right to grant a thread to access the lock.

The complete algorithm consists of four procedures:
lock acquiring, lock releasing, lock request receiving, and
lock grant receiving.

(1) The lock acquiring procedure is invoked when a
thread calls an acquire operation. It grants the thread
to access the shared data when the local node is the
owner of the lock and the lock is not in used.
Otherwise, it inserts the thread to the waiting queue
and sends a lock acquire message to the owner.

(2) The lock releasing procedure is invoked when a
thread calls a release operation. This procedure
releases the pertaining lock and resumes a thread
waiting for the lock. To ensure fair access of a lock,
the lock releasing procedure is partitioned into four
parts according to the state. of the waiting queue and
the requesting queue,

First, if there are threads on a remote node that
are acquiring the lock, i.e., the requesting queue is
not empty, and no local thread is waiting for the lock,

the procedure grants the thread on the remote node
to access the lock.

Second, if both of the remote node and the local
node have threads acquiring the lock, the procedure
will further checks the number of the ready threads
on the local node. If the number of the ready threads
is more than a threshold value, the procedure will
grants the remote request; otherwise, the procedure
grants the local request.

Third, if there are threads only on the local node
acquiring the lock, the procedure grants the local
request. :

Fourth, if no thread is acquiring the lock, the
procedure returns immediately.

(3) The lock request receiving procedure is invoked
when a node receives a request for a lock. The
procedure grants a remote request when the local
node is the owner of the lock and the lock is not in
use. It inserts the node issuing the request to the
requesting queue if the lock is being held. If the local
node is not the owner, the request is forwarded to the
owner.,

(4) The lock grant receiving procedure is invoked when
a lock grant message is received. It resumes a Jocal
thread waiting for the lock,

Our conditional grant technique may generate more
network messages than the conventional one described in
previous section. In the latter case, no message is
generated while the systems grants the local acquiring
threads to access the lock. However, in our method, a
node may grant a lock to remote threads while it has
acquiring threads. Therefore, additional messages have to
be sent to the new owner to acquire the lock again, and
an additional grant message need be sent back by the new
owner to allow the local acquiring threads to access the
lock. However, this technique induces only a little
additional overhead, since the size of the acquire or grant
message is small.

3.2 Balancing access in conditional variable

The balancing access technique avoids processor
idleness by always resuming a thread located on a node
with the maximum number of threads waiting for a
condition variable. In a multithreaded DSM system, the
number of threads allocated on each node is usually kept
almost the same to achieve preliminary load balance. In
this circumstance, a node that has the maximum number
of waiting threads will most probably has the minimum
number of ready threads. If the system preferentially
resume the waiting threads on this node, the possibility
that a node with all threads waiting for a conditional
variable can be lowered. The processor idleness thereby
can be reduced.

The conditional variable algorithm including the
balancing access is depicted as follows. A fixed manager
for each conditional variable is allocated to coordinate
the task of synchronization. Whenever a thread executes
a wait or signal operation, a message is sent to the

E-160

hERBNTAEZEEERESE

manager. The manager queues the thread when it
receives a wait message and resumes a thread when it
receives a signal message.

A data structure consisting of multiple queues, as
shown in fig. 1, is used. The data structure, which is
managed by the conditional variable’s manager, consists
of a doubly linked queue(DLQ) and several singly linked
queues(SLQ). The singly linked queues are used to
record the threads waiting for a conditional -variable.
Each of them is allocated for a node that has threads
waiting for a conditional variable. All of the singly linked
queues are doubly linked to form the data structure we
need. The doubly linked queue has a head node which
serves as the entry point of the data structure.

When a thread executes a wait operation, it is
appended to the SLQ that is associated with the node on
which it is executing. After the thread is appended, the
number of threads in this SLQ is compared to that in the
preceding SLQ. The sequence of these two SLQ in the
DLQ will be exchanged if the number of threads in the
newly modified SLQ is greater than that in the preceding
SLQ. The comparison and exchange are proceeded until
the number of threads in the SLQ is less than or equal to
that in a preceding SLQ. Therefore, when a signal
operation is executed, the manager can easily select a
thread from the first SLQ in DLQ for execution. To keep
the order of precedence after resuming, the number of
threads in the first SLQ is compared to that in the second
SLQ. If the former is greater than or equal to the latter,
the process completes. Otherwise, the sequence of these
two SLQs in the DLQ is exchanged. The comparison and
exchange are proceeded until the number of threads in
the former SLQ is greater than or equal to the latter SLQ.

QH SLQ SLQ SLQ

) G
[e R B B

Fig. 1 Data structure for implementng balancing access

3.3 Longest-job-first in barrier

The longest-job-first technique ensures that the
threads with the most amount of communication in the
previous iteration are always scheduled to execute prior
to the others for iterative applications. Since we cannot
exactly predict the amount of communication for each
thread before they are executed, we use the amount of
communication in previous iteration instead. This is
reasonable because barrier is uswally wused for
synchronization at the end of each iteration, and the data
accesses pattern of a thread in each iteration is similar..

In our longest-job-first technique, the amount of data
sent at each barrier synchronization is recorded for each

thread. When all the threads participating i a barrier
synchronization have arrived at the barrier and ready for
resumption, the barrier chooses a thread that demands the
maximum amount of communication in the previous
iteration for execution, and leaves the threads that have
less amount of communication in the previous iteration to
be executed later. In this way, the thread with the
minimum amount of communication will be executed
lastly. Thus reduce the amount of processor idleness.

4. Implementation

All of the proposed techniques are implemented
based on Cohesion’s parallel programming environment.
In this section, we will give a overview of Cohesion.
Then we will describe the notable issues in implementing
these techniques.
4.1 Cohesion overview

Cohesion is a multithreaded DSM system that
supports release consistency and sequential consistency
model. It provides a multithreaded environment that
supports a global view of threads, allowing each thread to
be seen by each node. The multithreaded environment is
also incorporated with a overlapping mechanism that is
capable of overlapping the execution of threads to hide
network latency. Cohesion supports thread migration,
with which load balance is achieved by migrating thread
from a node with heavy load to a node with slight load.
Cohesion also provides a single shared address space
spanning over all nodes. This make it differ from the
shared-variable DSM systems in which the shared data
must be explicitly declared.
4.2 Lock

Our lock use a decentralized local queue method. To
negotiate the local lock manager on each node, a
probable owner scheme is used. We allocate a probable
owner field for each lock on each node and it is initially
set to the root node. When an acquire operation is
invoked, the probable owner field is checked to find out
the probable owner of a lock. If the owner is not the local
node, a lock request message is sent to the probable
owner. After receiving the message, the probable owner
will check the probable owner field on it. If the node is
again not the true owner, the message is forwarded fo the
probable owner indicated in the field. Through the
forwarding, a request message can finally reach the true
owner.
4.3 Conditional variable

Conditional variable is usually used to synchronize
threads with the producer-consumer type of accessing
pattern to a shared buffer. In this kind of applications, a
thread acting as a consumer executes a wait operation
when the buffer is empty, whereas a thread acting as a
producer executes a signal operation afier it fills data to
the buffer. In a muliithreaded environment, several
threads may act as producers and several threads may act
as consumers. In this condition, the number of wait
operations executed may be not equal to that of signal

E-161

PERA\FAEREHEREE

operations. If the number of wait operations is more than
that of signal operations, the total number of threads
suspended is more than that of thread resumed. As a
result, some threads may still be pending after all
producers terminate.

To overcome this problem, our conditional variable is
allowed to set a number indicating the maximum number
of threads be waiting. When a wait operation is executed,
the manager of the conditional variable will first check if
the number of threads waiting for this conditional
variable has reached the maximum value. If the result is
no, a normal operation that suspending the thread in the
manager will be done. Otherwise, all threads waiting for
this conditional variable will be resumed. With this
support, all threads in a program can be resumed and
terminated normally even with unbalanced numbers of
wait and signal operations..

4.4 Barrier

The support of longest-job-first for the barrier is
achieved by slightly modifying a traditional ready queue
scheduling. We allocate a variable in each thread’s TCB
(Thread Control Block) to record the amount of
communication while executing a barrier synchronization.
After a thread flushes all of the updated data to all
caching nodes, the amount of the flushed data is saved in
the variable, When a barrier has completed, the
scheduling mechanism will sort the threads according to
the value in the variable, and then insert them to the
ready queue. Since the threads are executed in order, the
threads with large amount of communication can always
be executed before the threads with less amount of
communication. In this way, we can achieve maximum
overlapping and minimum processor idleness.

S. Performance

This section presents the results of two applications
that use our techniques as well as the conventional
methods. We first describe the experimental environment
and the applications, and then proceed to discuss the
effectiveness of our techniques.

5.1 Experimental environment and applications

All experiments were carried out on Cohesion, a test-
bed built on a network of 8 PCs connected by 10 Mbps
Ethernet. Each PC has a 90 MHz Intel Pentium processor
and 32 Mbytes of memory. Cohesion is isolated from
campus networks during the experiment.

Two application programs are used to evaluate the
effectiveness of the proposed methods. One is a quick
sort program, and the other is a Successive Over
Relaxation(SOR) program. The quick sort program
employs a divide-and-conquer algorithm. It sorts 2 M
integrals in our experiment. Both lock and conditional
variable are used in this program. The SOR is a iteration-
based algorithm to model natural phenomena or calculate
approximate solution of a partial differential equation. In
our experiment, a grid of points in a pending area of the
problem is represented by a matrix. We parallelize the

~ program by dividing the rows in the matrix into banks,

and each bank is computed by a thread. Only barrier is
used in this program.

To compare our methods with the conventional
methods, three versions of quick sort programs are
written. The QSORT program uses both the conditional
grant technique and the balancing access technique. The
threshold value for lock is set to one in this program. The
QSORT_CONV_C uses the conditional grant technique
with threshold value of one in lock, but the conventional
method in conditional variable. Finally, the
QSORT_CONV_L uses the balancing access technique
in conditional variable, but the conventional method in
lock. The conventional method in lock exploits the local
queue method to manage a lock synchronization similar
to our method, but it always preferentially resumes a
local thread even through other nodes have threads
waiting for the lock. The conventional method in
conditional variable uses a first-in-first-out method to
resume threads waiting for a conditional variable.

Besides, two versions of SOR programs is written for
comparison. The SOR_LJF uses the longest-job-first
technique, whereas the SOR_FCFS uses the FCFS(first
come first serve) method to schedule threads resumed
from a barrier.

5.2 Effectiveness of conditional grant

Table 1 shows the experimental results of the quick
sort programs running on eight processors with eight
threads per processor. The execution time column shows
the execution time of each program measured from the
time the program is loaded into cohesion to the time it is
terminated. The number of messages column reflects the
total number of messages issued by the eight processors
during the execution of the programs. The idle time
shows the amount of times the processors spent waiting
for locks or conditional variables.

To evaluate the effectiveness of conditional grant, we
compare the result of QSORT_CONV_L with QSORT.
Since these programs are the same except using different
lock mechanisms, it is reasonable to use them to test
effectiveness of conditional grant for lock.

As shown in table 1, the QSORT_CONV_L has
much longer execution time than that of QSORT, and the
QSORT_CONV_L has less number of messages as well.
This implies that starvation of processors occurs when
QSORT_CONV_L is executed. This conclusion is
supported by the idle time column. The idle time in
QSORT_CONV_L is 2173 sec, whereas the idle time in
QSORT is only 505 sec. The former reflects that each
processor spent 270 second on average to wait for a lock.
This means that 62 % of the execution is spent to wait for
a lock. Since only 38 % of the execution time is used for
computation, starvation of processors must OCCUF.
Besides, we had carefully observed the behavior of
execution for these two programs during the experiment. .
In fact, the execution of QSORT_CONV_L becomes
serial after it has been executed for a while.
Consequently, the performance result shows that our

E-162

FRRENTAF2EHEREGE

conditional grant is useful in implementing efficient lock
mechanism for multithreaded DSM systems.
Table 1.Performance of quick sort programs

Execution | No. of Idle
Time(sec.) | Messages | Time(sec.)

QSORT CONV L 433 16509 2173
QSORT CONV C 220 33057 717
"~ QSORT 208 34251 505

5.3 Effectiveness of balancing access

The effectiveness of balancing access can be
evaluated by comparing the experimental result of
QSORT_CONV_C and QSORT. As shown in table 1,
the execution time of QSORT_CONV_C is 12 seconds
more than that of QSORT. Similarly, the idle time of
QSORT_CONV_C is 212 sec more than that of
QSORT. This result implies that the technique of
balancing access can indeed reduce the processor
idleness, and improve the performance of the application.
5.4 Effectiveness of longest-job-first

Table 2 shows the execution time of SOR_LJF(uses
longest-job-first) and SOR_FCFS(uses FCFS), in which
a 512x4096 matrix is calculated with 100 iterations. We
chose 512x4096 as the matrix size because enough
amount of computation and communication can be
generated. We ran these programs with various number
of threads on each node for investigating the influence of
degree of multithreading. In the case of eight threads per
node, SOR_LIJF shorten the execution time by 8 %. This
implies that using longest-job-first technique can indeed
improve the performance of applications. Furthermore,
table 2 shows that the improvement of performance
increases when the number of threads on each node
increases. Consequently, we can conclude that the
longest-job-first works well in a multithreaded
environment, and it can improve performance more when
the degree of multithreading increases.
Table 2 Execution time of SOR with various no. of threads per node

No. of threads 1 2 4 g

¢r nede

Applications

SOR_FCFS
SOR_LJF

112.3
111.6

106.9 | 105.1 106.2
107.5 97.9 97.8

- 6. Conclusions

We have proposed a conditional grant technique, a
balancing access technique, and a longest-job-first
technique to reduce the processor idleness occurred in
lock, conditional variable, and barrier respectively. The
conditional grant technique can efficiently avoid
processor idleness and starvation of processor. It makes
local queue implementation of lock more suitable for
multithreaded DSM systems. The balancing access
technique inherits the global queue implementation of
conditional variable. Although it is a centralized method,
it can precisely and efficiently balance the number of
ready threads on each node, and thus reduce processor

idleness. The longest-job-first technique applies a inverse
idea from conventional scheduling algorithms. However,
it works well in multithreaded DSM systems because it
hides most of .the network latency for each thread. As
these techniques indeed reduce processor idleness and
improve the performance of the applications, we can
conclude that providing a set of efficient synchronization
mechanisms are importance for improving the
performance of distributed shared memory systems. Our
future work is to design synchronization mechanisms that
support thread migration, since thread migration is
necessary for achieving load balance.

References

[1] Bennett, J. K., Carter, J. B., and Zwaenepoel, W. Munin:
Distributed Shared Memory Based on Type-Specific
Memory Coherence. In proceedings of the Second ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming(PPOPP’90), pp. 168-177, March
1990,

{2] Bershad, B. N. Zekauskas, M. J., Sawdon, W. A. The
Midway Distributed Shared Memory Systems. /n
Proceedings of the '93 CompCon Conference, pp. 528-
537, February 1993.

[3] Freeh, V. W, Lowenthal, D. K., and Andrews, G. R.
Distributed Filaments: Efficient Fine-Grain Parallelism on
a Cluster of Workstations. In proceedings of First
Symposium on Operating Systems Design and
Implementation, pp. 201-212, Monterey, CA, November,
1994.

[4] Gharachorloo, K., et al. Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors. /i
proceedings of the 17" Annual International Symposium
on Computer Architectures, pp. 15-26. Seattle.
Washington, May 1990.

{5] Itzkovitz, A., Schuster, A. Wolfovich, L. Thread Migration
and its Applications in Distributed Shared Memory
Systems. To appear in Journal of System and Software.
1997.

[6] Keleher, P., Cox. A. L., Amza. C., Dwarkadas. S.. and
Zwaenepoel, W. TreadMarks: Distributed Shared
Memory on Standard. Workstations and Operating
Systems. In USENIX Winter 1994 Conference
Proceedings, pp. 115-132, ‘San Francisco, California,
January 1994,

[71Li, K. and Hudak, P. Memory Coherence in Shared Virtual
Memory Systems. ACM Transaction on Computer
Systems, 7(4):321-359, November 1989,

{8] Shieh, C. K., Lai, A. C, Ueng, J. Y., Laing, T. Y., Chang, T.
C., and Mac, S. C., Cohesion: An efficient Distributed
Shared Memory System Supporting Multiple Memory
Consistency Models. In Proceedings of the First dizu
International Symposium on parallel
Argorithms/Architecture Synthesis, Aizu-Wakamatsu,
Fushima, Japan, March 1995.

[9] Thitikamol, K., Keleher, P. Multithreading and Remote
Latency in Software DSMs. [n the 17" [nternational
-Conference on Distributed Computing Systems, May
1997.

E-163

