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Abstract―In an IEEE 802.16 mesh network, the routing and 
packet scheduling (RPS) problem is to design a fast scheduling 
scheme to meet the requirement of all the subscriber stations 
(SSs) so that all of the packets can be delivered to the base 
stations (BS) while minimizing the number of time slots and 
prohibiting the interference between any two packets. There has 
existed an integer linear programming formulation (ILPF) for 
the RPS problem, named as ILPF-for-RPS, which can find its 
optimal solution. However, the execution time of MIPF-for-MSC 
is very long when the number of SSs is large. This is because that 
the RPS problem has been proven to be NP-complete. In this 
paper, the Lagrange relaxation method is applied to shrink the 
solution space of the ILPF-for-RPS for the purpose of shortening 
the solution-searching time. First, we theoretically transform the 
ILPF-for-RPS into a Lagrange relaxation ILPF-for-RPS, whose 
objective function is then proved to be a concave function. This 
Lagrange relaxation ILPF-for-RPS simplifies the original 
ILPF-for-RPS and can be used to find an optimal solution for 
the RPS problem within a shorter time. According to the 
computer simulations, in contrast to the original ILPF-for-RPS, 
our Lagrange relaxation ILPF-for-RPS can attain a minimum 
time slot schedule within a shorter time for the RPS problem. To 
be more specific, compared with the original ILPF-for-RPS, our 
Lagrange relaxation ILPF-for-RPS can decrease the running 
time by more than 90% in most cases. 

Index Terms―IEEE 802.16 mesh network, Lagrange 
relaxation, Linear programming, NP-complete, WiMAX 
technology. 

I. INTRODUCTION 
The IEEE 802.16 standard, also known as the 

WiMAX technology, is a technology of wireless 
network access which can service a large area. Its 
transmission rate exceeds 100 Mbps [1], which 

qualifies itself to fit the category of high-speed 
wireless broadband network technology. Since the 
IEEE 802.16 standard adopts the multi-hop 
technique to deal with data packets among 
subscriber stations (SSs), only a few base stations 
(BSs) are required to cover a large metropolitan 
area. For this reason, an efficient routing and 
packet scheduling (RPS) algorithm is necessary to 
deal with SS-to-SS and SS-to-BS data 
transmissions. In fact, the RPS problem has 
recently become an important research topic in the 
multi-hop IEEE 802.16 standard [4][9][10][11][12] 
[15]. In this paper, we study the RPS problem in 
the IEEE 802.16 network and propose a fast 
method to solve it. 

The multi-hop IEEE 802.16 standard can be 
subdivided into two types: mesh networks and 
mobile multi-hop relay networks. In this paper, 
mesh networks are concerned. In a mesh network, 
the objective of the RPS problem is to maximize 
the throughput of the network. In other words, the 
RPS problem is to design a fast scheduling scheme 
to meet the requirement of all the SSs so that all of 
the packets can be delivered to the BS while 
minimizing the number of time slots and 
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prohibiting the interference between any two 
packets. 

Integer or mixed integer linear programming 
formulations [8] have been adopted by many 
researchers to solve various problems in wireless 
networks [2][3][5][14]. Similarly, there has existed 
an integer linear programming formulation (ILPF) 
for the RPS problem, named as ILPF-for-RPS, 
which can find its optimal solution [9]. However, 
the execution time of MIPF-for-MSC is very long 
when the number of SSs is large. This is because 
the authors of literature [9] have proven that the 
RPS problem is NP-complete for a general network 
topology. This means that it must take exponential 
time to find the optimal solution of the RPS 
problem. 

As an approach to the ILPF of a NP-complete 
problem, an efficient computational methodology 
was proposed around 1970, namely, the Lagrange 
relaxation method [6][7]. The basic idea is that 
some constraints of a given ILPF can be relaxed so 
as to reduce the solution space, which in turn 
shortens the solution-searching time.  In other 
words, this method relaxes the constraints which 
may otherwise make the running time of the ILPF 
of a combinatorial optimization problem become 
exponential. These relaxed constraints are merged 
into the objective function such that the original 
ILPF becomes a Lagrange relaxation ILPF. In 
general, an optimal solution to the resultant 
Lagrange relaxation ILPF can be obtained within a 
shorter period of time.  

In this paper, the Lagrange relaxation method 
is applied to shrink the solution space of the 
ILPF-for-RPS for the purpose of shortening the 
solution-searching time. First, we theoretically 

transform the ILPF-for-RPS into a Lagrange 
relaxation ILPF-for-RPS, whose objective function 
is then proved to be a concave function. This 
Lagrange relaxation ILPF-for-RPS simplifies the 
original ILPF-for-RPS and can be used to find an 
optimal solution for the RPS problem within a 
shorter time. In fact, to speed up the search of an 
optimal solution, we have cut down the solution 
space of the original ILPF-for-RPS. Our computer 
simulations show a decrease of the solution space 
by 37.73%. In other words, if the solution space 
must be searched by the original ILPF-for-RPS [9] 
in is 100%, our Lagrange relaxation ILPF-for-RPS 
can find an optimal time slot schedule with 62.27% 
of its solution space. Our method is feasible. This is 
because different schedules of minimum time slots 
usually exist in the RPS problem. We eliminate 
37.73% of the solution space without completely 
eliminating all the minimum time slot schedules. 

According to the computer simulations, in 
contrast to the original ILPF-for-RPS in [9], our 
Lagrange relaxation ILPF-for-RPS can attain a 
minimum time slot schedule within a shorter time 
for the RPS problem. To be more specific, 
compared with the original ILPF-for-RPS, our 
Lagrange relaxation ILPF-for-RPS can decrease the 
running time by more than 90% in most cases. In 
conclusion, our Lagrange relaxation method is 
demonstrated to be valuable for its contribution of a 
shorter solution time of the RPS problem. 

The rest of this paper is organized as follows: 
In Section II, the RPS problem is described in 
detail and defined formally. In addition, an example 
is given to illustrate the RPS problem and its main 
constraints for packet transmissions. In Section III, 
the known ILPF-for-RPS is presented. In Section 
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IV, we apply the Lagrange relaxation method to the 
known ILPF-for-RPS, theoretically transform it 
into a Lagrange relaxation ILPF-for-RPS, and then 
prove the objective function of the Lagrange 
relaxation ILPF-for-RPS to be a concave function. 
In Section V, the performance of our Lagrange 
relaxation ILPF-for-RPS is evaluated and compared 
with that of the original ILPF-for-RPS through 
computer simulations. Finally, in Section VI, the 
conclusions of this study are drawn and our main 
contributions are stated. 

II.  PROBLEM DESCRIPTION 
In this section, we present the RPS problem. 

In the RPS problem, a centralized scheduling is 
adopted. Therefore, the BS serves as the centralized 
schedulers for the entire network. In the following, 
the network considered is assumed to contain only 
one BS and several SSs. Each SS has packets to 
send to the BS. In this paper, we assume that the 
routing must follows the three constraints proposed 
by the literature [9]. 
(1) A SS cannot send and receive simultaneously. 
(2) There must be only one transmitter in the 

neighborhood of a receiver. 
(3) There must be only one receiver in the 

neighborhood of a transmitter. 

A.  Problem statement 

Given a graph ),,( wEVG =  and a 
transmission schedule ),,,( 21 msssS = , where set 
V  consists of a single BS: 0v  and multiple SSs: 

1 2, , , nv v v .  E  is the set of all links in G . If iv  
and jv  are within transmission ranges of each 
other, then there exists a link Evv ji ∈),( .  A 
packet-transmission function +→ RVw :  is 

defined. For each SS, it gives the number of 
packets that will be sent to BS. },{ ttt EVs =  is the 
transmission schedule at timeslot t , where tV  is 
the transmitter set and tE  is the link set at timeslot 
t . The RPS problem is to find a routing tree and a 
transmission schedule set S , so that only a 
minimal amount of timeslot is used to send all 
packets from each SS to BS. 

B. An example to illustrate the RPS problem 

Let us use the example in Figure 1 to illustrate 
the RPS problem. The network in Figure 1 consists 
of a BS: 0v  and five SSs: 1v , 2v , 3v , 4v  and 5v . 
In Figure 1, the number within braces adjacent to 
each node iv  shows the number of packets to be 
sent from iv  to 0v .  For example, the number ‘1’ 
in the braces next to 1v  means that there is one 
packet needs to be sent from 1v  to 0v  for further 
process.  For simplicity, in this example, we 
assume that each of the five SSs: 1v , 2v , 3v , 4v  and 

5v  has only one single packet to be sent to BS. 
That is, there are five packets in total to be sent to 

0v . Each column of the table in Figure 1 
corresponds to each node: 1v , 2v , 3v , 4v  and 5v . 
Each row represents a serial number denoting the 
timeslot. There are five timeslots in total which 
means all the packets from all the SSs can be sent 
to BS within five timeslots. 

(1)               

(0)

(1)

(1) (1) (1)

0V

2V

1V 4V

3V 5V
000005
000014
010103
100112
111101
111110

5
4
3
2
1
0

543210

Nodes

Timeslots

 
Fig. 1 An example to illustrate the RPS problem. 
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In the beginning, the first row represents the 

state at timeslot 0 which no packets is received by 

0v  and each SS has one packet to send. Next, at 
timeslot 1, SS 1v  sent a packet to BS 0v . Hence, 
the value with 1v  is decreased to 0. At the same 
time, the value with 0v  is increased by 1 to means 
that a packet is already received from 1v .  
Meanwhile (at timeslot 1), all the nodes must obey 
the three routing constrains. As a result, 1v  can not 
receive packets from 2v  or 3v  and send packets 
to 0v .  Similarly, 0v  can not receive packets 
from 4v  and receive packets from 1v . Therefore, 
there are still four packets waiting to be sent after 

1v  sent a packet to 0v . At timeslot 2 1v  served as 
a repeater while 3v  sent a packet, i.e., 1v  
retransmits the packet 0v . At the same time, 4v  
also sends a packet to 0v . Therefore, there remain 
three packets to be sent in the entire network.  At 
timeslot 3, 1v  sends the packet coming from 3v  
to 0v , and 5v  sends its packet to 4v . Hence, there 
are two packets waiting to be sent. At timeslot 4, 

2v  then send its packet to 1v  while 4v  sends 
packet to 0v . Thus, only one packet is left to be 
transmitted.  Finally, at timeslot 5, 1v  sends the 
packet to 0v . Thus, all the packets in the entire 
network have arrived at BS.  Therefore, at least 
five timeslots are needed to send all the five 
packets from SSs to BS in Figure 1. 

III. A KNOWN ILPF FOR THE RPS PROBLEM 
In this section, we described a known ILPF for 

RPS problem: ILPF-for-RPS, provided by [9]. 
Variables used in ILPF-for-RPS are defined as 

follows: tY  is a Boolean variable at timeslot t . 
When all the packets have arrived at BS, 1=tY ; 

Otherwise, 0=tY . ijR  is a Boolean variable. 
When jv  is father of iv , 1=ijR ; Otherwise, 

0=ijR . ijtX  is a Boolean variable. When iv  
sends packets to jv  at timeslot t , 1=ijtX ; 
Otherwise, 0=ijtX . itw  denotes the number of 
packets to be sent in node iv  at timeslot t . tA  
denotes the number of packets that haven’t arrived 
at BS. U  is an upper bound of timeslots in need. 
It is not hard to see that the number of required 
timeslots reaches the highest value when only one 
node sends a packet at each timeslot. That is, the 
highest value is equal to the sum of the products of 
packets in each node and the least hops from the 
node to the root. 

Based on the above notation and definition, 
ILPF-for-RPS can be described as follows: 
Objective function: 

   ∑ =
=

U

t ttY
1IP(RPS) MinimizeZ       (1) 

Subject to constrains: 

},,0{},,,1{ njniER ijij ∈∀∈∀≤   (2) 

},,1{1
0

niRn

j ij ∈∀=∑ =
    (3) 

},,1{},,,0{},,,1{ Utnjni
RX ijijt

∈∀∈∀∈∀

≤ (4)

1    

1

, {1, , },  {0, , }, {1, , }

ikt jkt

ijt jkt

X X i j

X X

i j n k n t U

+ ≤ ∀ ≠⎧⎪
⎨ + ≤⎪⎩
∀ ∈ ∈ ∈

(5.1)
(5.2)

( 1)

{1, , }
jt j t ijt jkti k

w w X X

t U
−= + −

∀ ∈
∑ ∑    (6) 

},,1{
1

UtwA n

i itt ∈∀=∑ =
    (7) 
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1
1

=∑ =

U

t tY        (8) 

},,1{)1(0 UtYAA tt ∈∀−≤     (9)  

⎩
⎨
⎧ =

=
otherwise    ,0

0     ,1 t
t

A
Y       (10) 

⎩
⎨
⎧

=
otherwise   ,0

 ofparent   theis     ,1 ij
ij

vv
R    (11) 

1,   sends a packet to  at timeslot 

0,  otherwise
i j

ijt

v v t
X

⎧
= ⎨
⎩

(12) 

Inequality (2) means that 1=ijR  only when 
link ),( ji vv  exists. Equation (3) shows that each 

iv  only has a single parent node. Inequality (4) 
requires that iv  may send packets to jv  only 
when link ),( ji vv  exists in a multicast tree. 
According to the three routing constrains proposed 
by [9], Inequalities (5.1) and (5.2) are obtained. 
Equation (6) requires that the number of packets 
queued in iv  at timeslot t must be equal to the 
number of the packets remained from the previous 
timeslots plus the number of packets received at the 
present timeslot, and minus the number of packets 
just sent. Equation (7) accumulates all the packets 
that have not arrived at BS in Variable tA . 
Equation (8) and Inequality (9) turn tY  into 1 
when all the packets are received by BS at timeslot 
t . The ranges of tY , ijR , and ijtX  are specified 
by functions (10) to (12), respectively. 

The computational complexity of 
ILPF-for_RPS is )( 2UnO , where n  is the 
number of nodes and U  is the unknown upper 
bound of total timeslots. Therefore, constrains (8) 

and (9) of the ILPF-for-RPS will increase along 
with, such that the time for solving RPS problem 
will grow accordingly. In order to shorten the time 
for finding a solution, we will relax constrains (8) 
and (9). 

IV. USING THE LAGRANGE RELAXATION 

METHOD TO ANALYZE ILPF-FOR-RPS 

A. Introduction to the Lagrange relaxation 

method 

As an approach to the ILPF of a NP-complete 
problem, an efficient computational methodology 
was proposed around 1970, namely, the Lagrange 
relaxation method. The basic idea is that some 
constraints of a given ILPF can be relaxed so as to 
reduce the solution space, which in turn shortens 
the solution-searching time.  In other words, this 
method relaxes the constraints which may 
otherwise make the running time of the ILPF of a 
combinatorial optimization problem become 
exponential. These relaxed constraints are merged 
into the objective function such that the original 
ILPF becomes a Lagrange relaxation ILPF. In 
general, an optimal solution to the resultant 
Lagrange relaxation ILPF can be obtained within a 
shorter period of time.   

Let us use the following ILPF to illustrate the 
Lagrange relaxation method.  
Objective function: 

∑ =
=

n
ii xc

1tIP MinimizeZ
a

    (13) 

Constrains: 

j
m

j

n

i iij bxa ≤∑ ∑= =1 1
     (14) 
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},,1{ and 0 nixx ii ∈∀Ν∈≥    (15) 

Constrain (15) denotes all variables  
kxxx ,,, 21 fall in the range of natural number N , 

and { | 1, 2... } 0ix i k= ≥ . In constrain (14), the sum 

of the products of each ix  and ija  is bounded by 

jb . Now, suppose that the constrain (14) will make 

the objective function be unable to minimize 

∑=

n

i ii xc
1

 under polynomial time, we then relax 

constrain (14) and merge it into the objective 
function to form a Lagrangian relaxation ILPF. 
Thus, the Lagrange relaxation ILPF can easily find 

the minimum of ∑ =

n

i ii xc
1

. The Lagrange 

relaxation ILPF is composed of the objective 
function (13) and Constrains (14) and (15). 
Relaxed objective function: 

)( MinimizeZ
1 11LRa ∑ ∑∑ = ==

−⋅+=
m

j

n

i jiij
n

i ii bxaxc λ  

(16) 

Relaxed constrain: 
},,1{ and 0 nixx ii ∈∀Ν∈≥ ,     (17) 

where λ  is Lagrange multiplier. We can modify 
λ  so that the solution space can be reduced, which 
in turn speed up the solution-searching process. 

B. Definitions and theorems 

In this subsection, we propose several 
Theorems for RPS problem. First of all, we relax 

Equation (8) (i.e. 1
1

=∑ =

U

t tY ) and Inequality (9) (i.e. 

tYAA tt ∀−≤ )1(0 ) and merge them into 

objective function (1)  

(i.e. ∑ =
=

U

t ttY
1IP(RPS) MinimizeZ ) to transform 

MILP-for-RPS into a Lagrange relaxation 
MILP-for-RPS. This Lagrange relaxation 
MILP-for-RPS can shrink the solution space of 
original one and find an optimal solution in short 
time. 

The Lagrange relaxation MILP-for-RPS is 
defined as follows: 
Relaxed objective function: 

   

{ ( )
[ ]}∑
∑∑

=

==

−−⋅+

−⋅+=
U

t tt

U

t t
U

t t

YAA

YtYλ

1 02

11121LR(RPS)

)1(

1 Minimize),(Z

λ

λλ
 

(18) 

where 1λ  and 2λ  are Lagrange multipliers. 
Subject to Relaxed constrains: 
Constrains (2), (3), (4), (5), (6), (7), (10), (11), and 
(12). 
 
Definition 1: If there is a function ( ) :Z x R R→ , 
and there exists three points 1x , 2x , and 3x  in [a, 
b], such that 1 2 3a x x x b< < < <  and ( ) ( )2 2Z x L x≥ , 
where ( )L x  is a linear equation through Points 

))(,( 11 xZx  and ))(,( 33 xZx , then ( )Z x  is a 
concave function.  

Theorem 1: Let },,2,1|{ KkYQ k
t == be a 

feasible solution set, where Ν∈Q . If Q  is a 
finite set, i.e., ∞<Q , then 

( ) ( )

( )
1 1

0
1

, 1

1

U U
k k

t t
t t

U
k k

t t t
t

tY Y

A A Y Y Q

λ λ λ

λ

= =

=

⎧ ⎛ ⎞
= + ⋅ −⎨ ⎜ ⎟

⎝ ⎠⎩
⎫⎡ ⎤+ ⋅ − − ∈ ⎬⎣ ⎦ ⎭

∑ ∑

∑

1 2 1LR RPS

2

Z Minimize
 

is a concave function. 
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Proof: Since },,2,1|{ KkYQ k
t ==  is a finite 

feasible solution set, K
ttt YYY ,,, 21 are feasible 

solutions. Therefore, Function ),(Z 21LR(RPS) λλ  can 
be expressed as follows: 

( ) ( )

( )

1 1 1

0
1

, 1

1

U U
k k

t tk K t t

U
k

t t
t

tY Y

A A Y

λ λ λ

λ

≤ ≤ = =

=

⎧ ⎛ ⎞= + ⋅ −⎨ ⎜ ⎟
⎝ ⎠⎩

⎫⎡ ⎤+ ⋅ − − ⎬⎣ ⎦⎭

∑ ∑

∑

1 2 1LR RPS

2

Z Minimize
 

If ),(Z 21LR(RPS) λλ  has the minimum feasible 
solution q

tY , then 

( ) ( )

( )
1 1

0
1

, 1

1

U U
q q

t t
t t

U
q

t t
t

tY Y

A A Y

λ λ λ

λ

= =

=

⎛ ⎞= + ⋅ −⎜ ⎟
⎝ ⎠

⎡ ⎤+ ⋅ − −⎣ ⎦

∑ ∑

∑

1 2 1LR RPS

2

Z
. 

Because 01
1

=−∑ =

U

t tY  by (8), we can temporally 
ignore 1λ  so that we rewrite ),(Z 21LR(RPS) λλ  as 

( ) ( ) ( )0
1 1

1
U U

q q
t t t

t t

tY A A Yλ λ
= =

⎡ ⎤= + ⋅ − −⎣ ⎦∑ ∑2 2LR RPSZ . 

Now suppose that there exists a Lagrange 
multiplier ba

22
*
2 )1( λαλαλ ⋅−+⋅=  such that 

)(Z *
2LR(RPS) λ  has the largest solution space under 

the minimum feasible solution q
tY , where 

]1,0[=α . We have 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( )

0
1 1

01 1 1

1

(1 )

(1 ) 1

(1 )

1

(1 )

a b

U U
q a b q

t t t
t t

a b

U U
k a k

t t tk K t t

tk K

tY A A Y

tY A A Y

tY

λ α λ α λ

α λ α λ

α λ α λ

α λ

α

∗

= =

≤ ≤ = =

≤ ≤

= ⋅ + − ⋅

⎛ ⎞⎡ ⎤= + ⋅ + − ⋅ ⋅ − −⎜ ⎟⎣ ⎦⎝ ⎠

≥ ⋅ + − ⋅

⎛ ⎞⎧ ⎫⎡ ⎤= ⋅ + ⋅ − −⎨ ⎬⎜ ⎟⎣ ⎦⎩ ⎭⎝ ⎠

+ − ⋅

∑ ∑

∑ ∑

2 2 2LR RPS LR RPS

2 2

2 2LR RPS LR RPS

2

     Z Z

Z Z

Minimize

Minimize ( )0
1 1

1
U U

k b k
t t

t t

A A Yλ
= =

⎛ ⎞⎧ ⎫⎡ ⎤+ ⋅ − −⎨ ⎬⎜ ⎟⎣ ⎦⎩ ⎭⎝ ⎠
∑ ∑2

 

From the LR(RPS)Z  diagram in Figure 2, we 
know that the corresponding values on line u or 
curve v can be obtain when parameter *

2λ  is given. 
Because parameter *

2λ  is between a
2λ  and b

2λ , 
the corresponding value )(Z *

2LR(RPS) λ on 

line LR(RPS)Z  when parameter *
2λ  is substituted 

into line u is the linear combination of )(Z 2LR(RPS)
aλ  

and )(Z 2LR(RPS)
bλ . Hence, 

*
LR(RPS) 2 LR(RPS) 2 LR(RPS) 2Z ( ) Z ( ) (1 ) Z ( )a bλ α λ α λ= ⋅ + − ⋅ . 

Because we assume that with 
ba
22

*
2 )1( λαλαλ ⋅−+⋅= , )(Z *

2LR(RPS) λ  have the 
largest solution space under the minimum feasible 
solution q

tY , and according to the inference above, 
the value )(Z *

2LR(RPS) λ  on line LR(RPS)Z  
corresponding to *

2λ  is greater than the medium 
value. This result is only satisfied at the 
corresponding value on curve v. It implies that 

)(Z 2LR(RPS) λ  has the feature of concave function. 
These inferences also satisfy the sufficient and 
necessary conditions for Definition 1. 

We know that substituting some 2λ  into 
)(Z 2LR(RPS) λ  makes it has the largest solution space 

under the minimum feasible solution q
tY . This 

implies that there is only one 2λ  making 
)(Z 2LR(RPS) λ  possesses the largest solution. 

Therefore, we suppose that 
(1 )a bλ λ α λ α λ∗= = ⋅ + − ⋅2 2 2 2  makes ( ) ( )λ∗

2LR RPSZ  has the 
largest solution space under the minimum feasible 
solution q

tY . 

( )LR RPSZ

(1 )a bλ α λ α λ∗ = ⋅ + − ⋅2 2 2

λ∗
2

2λ

( ) ( )λ∗
2LR RPSZ

( ) ( )aλ2LR RPSZ

aλ2
bλ2

X

( ) ( )bλ2LR RPSZ

( ) ( )
( ) ( ) ( ) ( )(1 )a b

λ

α λ α λ

∗=

= ⋅ + − ⋅

2LR RPS

2 2LR RPS LR RPS

x Z

Z Z

u

v

 
Fig. 2 Diagram of ( )LR RPSZ  in 2-dimension. 
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It means that the solution space of ( ) ( )λ∗
2LR RPSZ  

is greater than those of both ( ) ( )aλ2LR RPSZ  and 

( ) ( )bλ2LR RPSZ .  That is to say, 

( ) ( ) ( ) ( )aλ λ∗ >2 2LR RPS LR RPSZ Z  and 

( ) ( ) ( ) ( )bλ λ∗ >2 2LR RPS LR RPSZ Z . In this case, we 
rationalized 

( ) ( ) ( ) ( ) ( ) ( )(1 )a bλ α λ α λ∗ ≥ ⋅ + − ⋅2 2 2LR RPS LR RPS LR RPSZ Z Z , so it 
can be claimed that ( ) ( )2λLR RPSZ  is a concave 
function. Hence, we have showed that 

( ) ( ) ( ) ( ),λ λ λ2 1 2LR RPS LR RPSZ = Z  is a concave function.□                  

Theorem 2: If function ( ) ( ) ( ) ( ),λ λ λ2 1 2LR RPS LR RPSZ = Z  
is a concave function, then there exists a parameter 
λ∗

2  and a set { }| 1, 2, ,iS s i n= =  such that 

( ) ( ) ( ) ( ) ( )isλ λ λ λ∗ ∗+ ⋅ − ≥2 2 2 2LR RPS LR RPSZ Z  holds, where 
* 1 2, , , , , ns s s Rλ λ∀ ∈ . 

Proof: First of all, suppose that ( ) ( )λ2LR RPSZ  is a 
concave function. A set ( ) ( ){ }( , ) |I Z Zλ λ= ≤2 2LR RPSZ  
is given such that ( , )a aZλ2  and ( , )b bZλ2  both 
belong to I . Thus, we can obtain a point 

),( **
2 Zλ between ( , )a aZλ2  and ( , )b bZλ2  such that  

))1(,)1((

),()1(),(),(

22

22
**

2
baba

bbaa

ZZ

ZZZ

⋅−+⋅⋅−+⋅=

⋅−+⋅=

ααλαλα

λαλαλ  

where [ ]0, 1α = . By Theorem 1, we know that 
substituting (1 )a bα λ α λ⋅ + − ⋅2 2  into the concave 
function ( ) ( )⋅LR RPSZ  can satisfy the following 
condition: 

( ) ( )
( ) ( ) ( ) ( )

(1 )

(1 )

(1 ) .

a b

a b

a bZ Z

α λ α λ

α λ α λ

α α

⋅ + − ⋅

≥ ⋅ + − ⋅

= ⋅ + − ⋅

2 2LR RPS

2 2LR RPS LR RPS

Z

Z Z  

By Theorem 1, it can be found that the 
concave function ( ) ( )(1 )a bα λ α λ⋅ + − ⋅2 2LR RPSZ  will be 
always greater than or equal to (1 )a bZ Zα α⋅ + − ⋅ .  
Therefore, it is sure that the function passes 
through ( , )a aZλ2  and ( , )b bZλ2  is not linear.  In 

this case, it can be guaranteed that the point 
( )(1 ) , (1 )a b a bZ Zα λ α λ α α⋅ + − ⋅ ⋅ + − ⋅2 2  between 
( , )a aZλ2  and ( , )b bZλ2  belongs to set I . So, it can 
be claimed that I  is a convex set. 

Suppose that there exists a point 

( ) ( )( ),λ λ∗ ∗
2 2LR RPSZ  located at the margin of the 

solution space of set I , and there exists an 
orthogonal tangent plane ( ) ( ) ( )isλ λ λ∗ ∗+ ⋅ −2 2 2LR RPSZ  
which passes through ( ) ( )( ),λ λ∗ ∗

2 2LR RPSZ  and is 
generated by is . Let us let λ λ∗<2 2 , then the 
following can be satisfied: 

( ) ( ) ( ) ( )isλ λ λ λ∗ ∗+ ⋅ − >2 2 2 LR 2LR RPSZ Z  

where (1 )a bλ α λ α λ∗ = ⋅ + − ⋅2 2 2  and [ ]0, 1α = .  

With the above procedure, 

( ) ( ) ( ) ( )i a asλ λ λ λ∗ ∗+ ⋅ − >2 2 2 LR 2LR RPSZ Z  and 

( ) ( ) ( ) ( )i b bsλ λ λ λ∗ ∗+ ⋅ − >2 2 2 LR 2LR RPSZ Z  can be both 
fulfilled. By further expanding these conditions, we 
can obtain the following inequality: 

 ( ) ( ) { }
( ) ( ) ( ) ( )

(1 )

(1 )

i a b

a b

sλ α λ α λ λ

α λ α λ

∗ ∗⎡ ⎤+ ⋅ ⋅ + − ⋅ −⎣ ⎦

≥ ⋅ + − ⋅

2 2 2 2LR RPS

2 2LR RPS LR RPS

Z

Z Z
. 

Since parameter { }(1 )i a bs α λ α λ λ∗⎡ ⎤⋅ ⋅ + − ⋅ −⎣ ⎦2 2 2  is a very 
small and negative value, it is even eliminated and 

( ) ( ) ( ) ( ) ( ) ( )(1 )a bλ α λ α λ∗ ≥ ⋅ + − ⋅2 2 2LR RPS LR RPS LR RPSZ Z Z  still 
holds.                                   □ 
Definition 2: If ( ) : R R→LR RPSZ  is a concave 
function, and there exist multiplier Rλ∗ ∈2  and 
parameter s R∈  such that 

( ) ( ) ( ) ( ) ( )sλ λ λ λ∗ ∗+ ⋅ − ≥2 2 2 2LR RPS LR RPSZ Z  Rλ∀ ∈2 , then 
we denote s  as a subgradient of ( ) ( )⋅LR RPSZ  at λ∗

2 , 
and the set consisting of subgradients generated by 

( ) ( )⋅LR RPSZ  at λ∗
2  is denoted as 

( ) ( )λ
λ

∗
∗

∂
∂ 2LR RPS

2

Z . 

Theorem 3: Suppose linear programming 
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relaxation formulation ( ) : R R→LR RPSZ  is a concave 
function such that ( ) ( )⋅LR RPSZ  has the largest 
feasible solution space (i.e., 

( ) ( )max{ | , 0}Rλ λ λ∈ ≥2 2 2LR RPSZ ), after Lagrange 
multiplier λ2  converges to λ∗

2  and is substitute 
into ( ) ( )⋅LR RPSZ .  Hence, λ2  converges to λ∗

2  if 
and only if 

( ) ( ) 0is λ
λ

∗
∗

∂
= =
∂ 2LR RPS

2

Z . 

Proof: By Definition 2, 

( ) ( ) ( ) ( ) ( )isλ λ λ λ∗ ∗+ ⋅ − ≥2 2 2 2LR RPS LR RPSZ Z holds and 

implies ( ) ( ) ( ) ( ) ( )is λ λ λ λ∗ ∗⋅ − ≥ −2 2 2 2LR RPS LR RPSZ Z . 

Therefore, suppose that the necessary and sufficient 

condition of λ2  converging to λ∗
2  is a subgradient 

( ) ( ) 0is λ λ∗ ∗= ∂ ∂ =2 2LR RPS/ Z , then it is clearly that 

( ) ( ) ( ) ( ) ( )0 λ λ λ λ∗ ∗⋅ − ≥ −2 2 2 2LR RPS LR RPSZ Z  holds, which 

leads ( ) ( ) ( ) ( )λ λ∗ ≥2 2LR RPS LR RPSZ Z . Because the 

feasible solution space of ( ) ( )λ∗
2LR RPSZ  is close to 

the one of linear programming formulation ( )IP RPSZ  

when Lagrange multiplier λ2  converges to λ∗
2 , the 

feasible solution space of ( ) ( )λ∗
2LR RPSZ  is larger 

than that of ( ) ( )⋅LR RPSZ  at any other Rλ ∈2 , which 

justifies our assumption.      □ 
Theorem 4: If there exist several feasible solutions 

1 2, , , K
t t tY Y Y  for ( ) ( )⋅LR RPSZ , in which a feasible 

solution k
tY  makes the following be held: 

( ) ( ) ( )0
1 1

1
U U

k k
t t tk K t t

tY A A Yλ λ∗ ∗

∈ = =

⎧ ⎫⎡ ⎤= + ⋅ − −⎨ ⎬⎣ ⎦⎩ ⎭
∑ ∑2 2LR RPSZ Minimize  

Therefore, given a set 

( ) ( ) ( )0
1 1

1
U U

i i
t t t

t t
M i tY A A Yλ λ∗ ∗

= =

⎧ ⎫⎡ ⎤= = + ⋅ − −⎨ ⎬⎣ ⎦⎩ ⎭
∑ ∑2 2LR RPSZ , 

then there exists a subgradient for any i M∈  

( ) ( ) ( )0
1

1
U

i i
t t

t
s A A Yλ

λ
∗

∗
=

∂ ⎡ ⎤= = − −⎣ ⎦∂ ∑2LR RPS
2

Z  

where is  is a subgradient of ( ) ( )⋅LR RPSZ  at λ∗
2 , 

and ( ) ( )/is λ λ∗ ∗⊆ ∂ ∂ 2 2LR RPSZ . If each element i  in set 
M  satisfies the following equation 

( ) ( ) ( )0
1

1
U

i i
t t

t
s A A Yλ

λ
∗

∗
=

∂ ⎡ ⎤= = − −⎣ ⎦∂ ∑2LR RPS
2

Z , 

then at λ∗
2 , ( ) ( )⋅LR RPSZ  has multiple subgradients:  

( ) ( ) , 1, 2, ,is i nλ
λ

∗
∗

∂
⊆ =
∂ 2LR RPS

2

Z . 

Proof: 

( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0
1

0 0
1 1

1

1 1

i

U
i

t t
t

U U
i i

t t t t
t t

i

s

A A Y

A A Y A A Y

s

λ λ

λ λ

λ λ

λ λ

λ λ λ λ

∗

∗

=

∗

= =

∗

∗ ∗

⋅ −

⎡ ⎤= − − ⋅ −⎣ ⎦

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤= ⋅ − − − ⋅ − −⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

≥ −

⇒ + ⋅ − ≥

∑

∑ ∑

2 2

2 2

2 2

2 2LR RPS LR RPS

2 2 2 2LR RPS LR RPS

Z Z

Z Z

 

By Definition 2, we know that is  is a subgradient 
( is  is defined by 

( ) ( ) ( )0
1

1
U

i i
t t

t
s A A Yλ

λ
∗

∗
=

∂ ⎡ ⎤= = − −⎣ ⎦∂ ∑2LR RPS
2

Z ).  

With a similar inference, it can be justified that 
each element 1, 2, ,i n=  in set M satisfies the 
equation 

( ) ( ) ( )0
1

1
U

i i
t t

t
s A A Yλ

λ
∗

∗
=

∂ ⎡ ⎤= = − −⎣ ⎦∂ ∑2LR RPS
2

Z . 

Hence at λ∗
2 , ( ) ( )⋅LR RPSZ  has multiple subgradients:   

  ( ) ( ) , 1, 2, ,is i nλ
λ

∗
∗

∂
⊆ =
∂ 2LR RPS

2

Z             □ 

C. The choice of Lagrangian parameter 2λ  

By Theorem 1 and Theorem 2, ( ) ( )λ2LR RPSZ  
has been proved to be a concave function. 
Therefore, there must exist exactly one λ∗

2  in our 
Lagrangian ILP-for-RPS such that the solution 
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space of ( ) ( )λ∗
2LR RPSZ  contains the optimal feasible 

solution tY ∗ . According to Theorem 4, we first 
substitute λ∗

2  into )(LR(RPS)Z , and then we choose 
a subgradient *s  from the generated subgradient 
set ( ) ( )/ λ λ∗ ∗∂ ∂ 2 2LR RPSZ .  If *s  complies with 
Theorem 3 (i.e., ( ) ( )/ 0is λ λ∗ ∗= ∂ ∂ =2 2LR RPSZ ), then λ2  
has converged to the optimal λ∗

2 . Finally, 
according to those theorems above, we establish 
Algorithm 1 (see Figure 3) to generate Lagrangian 
parameter λ2 . 

V. COMPUTER SIMULATIONS 
In the computer simulation, our hardware 

contains a PC with two Intel(R) Pentium(R) IV 
CPU runs at 3.40GHz and 1014MB RAM. In 
software aspect, we use C/C++ and LINGO 8.0 
[13]. 

Figure 4 shows our computer simulation 
results. When the Lagrange parameter 2λ  comes 
to 0.061756, the resultant solution space is 62.27% 
of the one searched by the original ILPF-for-RPS.  
In other words, we reduce 37.73% computation for 
scheduling, which in turn saves about 1/3 
computational time. 

The performance benchmarks reflect CPU 
execution time.  In Table 1, with 9 nodes, the 
original ILPF-for-RPS IP(RPS)Z  needs 7 minutes 
and 50 seconds to solve the RPS problem while our 
Lagrange relaxation ILPF-for-RPS LR(RPS)Z  only 
spends 10 seconds to find the optimal solution. In 
Table 1, there is no case with more than 17 nodes 
because the execution time of IP(RPS)Z  exceeds 
3600 minutes. The execution time is too long, so 
we stop to increase the number of nodes in our 
simulations. Compared with the original 
ILPF-for-RPS, Table 1 shows that with different 

numbers of nodes: 9, 11, 13, and 15, our Lagrange 
relaxation ILPF-for-RPS can decrease running time 
by 97.87%, 90.24%, 69.91%, and 96.50%, 
respectively. While a network containing 17 nodes, 
the CPU execution time can be reduced from more 
than 3600 minutes to 31 minutes and 36 seconds. 

 
Algorithm 1: The generation of Lagrangian

parameter λ2  

Step 1: Randomly select a feasible solution 
( )tupperZ  from ( )IP RPSZ , and initialize 

the Lagrangian parameter 0λ =t=1 and 
an adjusting parameter 2μ =t=1  

Step 2: Substitute current λ t  into ( )LR RPSZ to 
seek the solution to ( ) ( )λ t

LR RPSZ  

Step 3: Use ix  to calculate a subgradient 

( )λ
∂

=
∂

t
LR RPSs Z

  

Step 4: Use the parameters above to estimate

step-size ( ) ( )( )
2

λ
θ μ

−
= ×

t
Upper LR RPS

t tt

Z Z

s
 

Step 5: Use subgradient ts  and step-size θt

to adjust Lagrangian multiplier λ t by 
{ }, 0sλ λ θ= + ×t+1 t t

tmax  

Step 6: If new λ t+1  does not have significant 
change, then we re-estimate λ t+1 by 
modifies step-size θt through 

12μ μ −= ×t t  

Step 7: If λ λ ε− <t+1 t  or subgradient 0=ts , 
then we have already gained the ideal
Lagrange multiplier λ t+1 , and stop the 
algorithm. Otherwise, repeat Step 2 to 
Step 6 

Fig. 3 Algorithm 1: The generation of Lagrangian 
parameter λ2 . 



 

 

11

19.624%

44.903%
37.7772%

20.44%

45.397%

62.27%

23.247%
37.044%

20.576%

0%
10%
20%
30%
40%
50%
60%
70%

0.0
46

31
7

0.05
403

7

0.057
89

6

0.06
17

56

0.07
71

95

0.0
926

34

0.1
080

73

0.1
235

13

0.1
38

952

Value of Lagerange Multiplier

So
lu

tio
n 

Sp
ac

e
Pe

rc
en

ta
ge

Solution space of
i

 
Fig. 4 Quality of Lagrange Multiplier 2λ . 

Table 1 The execution time of ILPF-for-RPS and Lagrange relaxation ILPF-for-RPS with  
Lagrange Multiplier 061756.02 =λ  

Function )(RPSIPZ )(RPSLRZ  )(RPSIPZ )(RPSLRZ )(RPSIPZ )(RPSLRZ )(RPSIPZ  )(RPSLRZ  )(RPSIPZ )(RPSLRZ

Number  
of Nodes 9 11 13 15 17 

Timeslots 12/16 12/16 14/21 14/21 25/32 25/32 24/25 24/25 xx/44 27/44

Execution Time(m:s) 07:50 00:10 28:52 02:49 52:31 15:48 316:04 11:04 Over
3600:00 31:36

Feasible Solution 
Probability 100% 100% 100% 100% 100% 100% 100% 100% xx% xx% 

 
These simulation results imply that our 

Lagrange relaxation ILPF-for-RPS can reduce the 
solution-finding time significantly. 

VI. CONCLUSIONS 
In this paper, we have studied the RPS 

problem in a mesh network. The RPS problem has 
been proven to be NP-complete and an ILPF for its 
optimal solutions has been proposed. However, the 
existing ILPF-for-RPS has a heavy execution time. 
This makes the finding of the optimal solutions of 
the RPS problem impractical in most situations. In 
this paper, the Lagrange relaxation method has 

been applied to shrink the solution space of the 
ILPF-for-RPS for the purpose of shortening the 
solution-searching time. We have transformed the 
ILPF-for-RPS into a Lagrange relaxation 
ILPF-for-RPS. Further, we have proved the 
objective function of our Lagrange relaxation 
ILPF-for-RPS to be concave. Computer simulation 
results show that, in contrast to the original 
ILPF-for-RPS, our Lagrange relaxation 
ILPF-for-RPS can decrease the running time by 
more than 90% in most cases. To sum up, our 
Lagrange relaxation ILPF-for-RPS simplifies the 
original ILPF-for-RPS and can be used to find an 

2λ
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optimal solution for the RPS problem within a 
shorter time. 
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