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Abstract

This puper presenis a genetic algorithm-based optimization
approach for fucial modeling from an uncelebrated fac
image using a flexible generic parameterized facial model
(FGPFM). The FPGFM can be easily modified using th
fuacial features us parameters of FGPFM ito construct an
accurate specific 3D facial model from only a photograph
of an individual with a randomly yawed face based on the
projection transgformation. The facial modeling problem is
formulated as a parameter optimization problem and th
objective function is also given. Moreover, a ¢ oarse-to-fin
approach bosed on our intelligent genetic algorithm which
can efficiently solve the large parameter optimization
problems is used to accelerate the search for an optimal
solution. Furthermore, experimenial results with texture
mapping demonstrate the effectiveness of the proposed
method.

Keywords: Facial modeling, Genetic  algorithm,
Generic facial model, Pose determination, Optimization

1. Introduction

Face images have received considerable attention,
particularly in the fields of computer vis ion and signal
processing communities. For instance, model-based image
coding methods have been proposed for future videophone
and video conference services. However, the images in
these applications are complex and highly variable, even
for a specific individual. An important problemis how io
create a 3D model of a specific individual. Automati
creation of a 3D facial model of a specific individual plays
an important role in many applications, such as
model-based  coding  fornarrow  -band  visual
communication™™?, view independent face recognition
tasks®®, and image synthesis problems in areas like
virtualized realit  and synthesis of novel views®,

3D facial models can be categorized into two classes: those
based on the view -independent3D fac ial structure and
those considering only view-dependent facial models. The
view-dependent facial model uses multiview representation
“in which a set of 2D image -based example facial models
are combined into a flexible 3D facial modelby a weighted
sum of given example facial models®?. The limitations of
view-dependence narrow the scope of 3D facial
model-related  applications. The approaches usedt
antomatically creaie 3D facial models witha
view-independent 3D facial structure can be applied more
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extensively™.  Approaches capable of creatinga
view-independent 3D facial model of a specific individual
can be categorized into two groups: use of an actual3
face of a specific individual and use of a generic facial
model with 2D face images of an individual. Among the
approaches that needan actual 3D face include active
vision®, 3D digitizcr(s), and vision-based methods™".

Approaches belonging to the second group in which the 3
facial model of a specific individual is constructed consist
of two steps. First, select a generic model representing the
topological structure of a typical faceand a typical
front-viewed 2D face image of the individual and, then,
adjust the geometrical shape of the generic model to that of
the actual face image through 3D transformation and
modification according to the positions of some faclal
feamres such as eyes, mouth, nose, and facial contour.
Akimoto et «l?, Tang and Huang®?, and Tp and Yin™ use
two orthogonal face images of an individual's head t
acquire the features deemed necessary for fitting a gener

" model to an individual’s head. Luo and King ™ developed

a facial-feature-extraction algorithm to automate the
process of fitting the general facial wire frame model to the
actual face image. Pei et al “ used the transformation of
the generic facial model withan affine mapping for
model-based image coding by iracking 3D contour feature
points. Aizawa et al. 9 ysed multiple face images to adjust
a flexible three-dimensional facial model for a particular
face. Eisert and Girod™ changed the texture and conirol
points’ position using information from 3D laser scans to
adjust the generic 3D model to a specific individual.

Givenonly a photographof an individual witha
front-viewed randomly yawed face, can one antomaticall
create an accurate 3D facial model of the individual? For
this purpose, assessing the effectiveness of the above
approaches is relatively difficult since no work has reported
on the generalization perforfance to automatically create
3D facial models which takes the pose of the face and the
death information in the fitting process into consideration
from only a photograph. How to accurately modify the
generic facial model to fit the specific face image from an
uncalibrated face image is investigated in the work. Two
fundamental problems which must fully cooperate with
each other are the establishment of the generic facial model
and the model modification method described as follows.

(a) Used as an optimization technique, geneti
algorithns (GAs) have proven to be an effective way to
search extremely large or complex solution spaces. Since
genetic algorithms do not rely on problem -specific
knowledge, theycan be used to discover solutions that
would be difficult to find by other methods. Due to the



complexity large variance of face images, there are man
GA-based a groaches are applied to the applications about
human facel®?. A, Guarda, e ol *® used GA techniques
to learn visual feature and proposed a program which
combines and integrates the features in non-linear ways to
design a face detector. J. Ohya and F. Kishino “” detecied
deformations of facial parts from a face image regardless of
change in the position and orientation of a face using a
genetic algorithm. In addition, GAs are also used in the
facial feature extraction(zl'm, human face deiection (18'20),
human face location in images sequence®, human posiure
estimation®, and automated face recognition®®,

(b) An effective generic facial modelis in general
problem-dependent. In addition, the establishment of the
generic facial model depends on the modification method
for facial modeling. Parameterized facial model can
produce realistic and manifulable face images with a small
number of parameters ¢7*®, Although parametric facial
modeling has received considerable interest, the inverse
problem of extracting parameters from face images has
seldom been addressed. Therefore, developing a complete
parameter set which can be automatically and easil
manipulaied is extremely difficult, especially from a
monocular face image. Various kind of the wire frame
facial models are adopted in various applicationst*%2%3®),
The larger the number of triangle elements implies a better
quality of the synthesis image, however, the complexity of
modeling grows.

In light of above two problems, this paper presents a
GA-based optimization approach for facial modeling from
an uncalibrated face image using a flexible generic
parameterized facial model (FGPFM). The microstructure
information can be expressed using the structural FGPF
with representative facial features that can be accuratel
found in the image. The reconstruction procedure can be
regarded as a block function of the FGPFM, and the input
parameters are the 3D face -centered coordinates of ¢ ontrol
points. Once the control points are given, the desired 3
facial model is determined based on the topological and
geomeiric descriptions of the FGPFM. How to reconstruct
the 3D facial model is transformed into a problem of how
to acquire the accurate 3D control points. More information
about the construction of the FGPFM can be found in®,

Since the solution space is large and complex considerin

the large number of conirol points in 3D space, the

proposed coarse-to-fine approach based on our intelligent
genetic algorithm IG ©V s used to efficiently solve the

optimization problem. IGA is an efficient general-purpose
algorithm capable of solving large parameter optimization
problem. Coarse-to-fine approach can efficiendy adjust
control points in 3D space. The fitness function takes into
account the evidence from the face image and human
perception. A coarse-to-fine IGA can effectively construct
an optimal facial model. Merits of the proposed method are
summarized as follow. (1) FGPFM is presented that the
good parameters, the control poinis of the FGPFM can
yvield the good facial model for a specific person. (2) An
analytic solution for the pose determination of human faces
(PDF)®? from a monocular image is used to obtain the

initial 3D control poinis and make the coarse-to-fine IGA
more efficient. (3) The reconsiruction problem is

formulated as a parameter optimization problem based on
the ability of the FGPFM and PDF. Furthermore,a

coarse-to-fine IGA is also proposed to speed up the search
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for an optimal solution which is a set of the control poinis
of FGPFM.

The rest of this paper is organized as follows. Section 2

formulates the facial modeling problem as an optimization
problem and also outlines the rconstruction procedure.

Section 3 summaries the sensitivity analysis and shows the
experimental results with texture mapping. Conclusions are
finally made in Section 4.

2, Facial Modeling as an Optimization Problem

As widely recognized, accurate 3D control points based on
the FGPFM can lead to an accurate 3D facial model ofa
specific individual. Herein, the reconstruction problem is
formulated as a parameter optimization problem as follows.

Find a set of control points V* , such that
F(V, ) = Min. F(V)) )

where V) is the set of control points of the FGPFM. The
two major problems are:

(2) How to construct the fitness function F(V |)? And
(b) How to search for the optimal solution V: ?
2.1 Fitness functio

The formulation of fitness function F(V)) closely
corresponds to the quality of the 3D constructed model,
Two criteria for evaluating the quality of the facial model

are presented as follows

(1) Projection of the facial model from some viewpoint
must coincide with the features of the face image.

(2) The facial model must adhere to the gener
knowledge of human faces acceptedbythe human
reception.

Let R={xy, 1y, ..., 1;} denote the set of model ratios and S =
{S1, 82, ..., S} where S;is a control point/vertex or a point
which may be projecied onthe silhouette of the
transformed FGPFM. R-and S can be determined from V.
According to the two criteria, we define '

F(V] ) =£(8) + wify(V)) + waf(V) + wafi(R)  (2)

where w), w; and w; are weighting constants. Three error
estimation functions are described as follows.

[~
(1)Projection function f (S)= % ZDiSt(Si,Si)

i=l
s; and S; are the projection of S; and iis correspondin
feature point in the face image, respectively.
m
(2) Symmetry function £,(V)) = & ) S, (V). Let th
i=l
conirol point v; = (Ki ’ yi,Zi) and the symmetri
point of vibe v, = (), 7,2, ).



X,Z if v, shouldbe on the
Symmetryoxis,
Sym=W(x ,)2+(y v\F.i-(Z .)Z
i+Xi i+yi i+Zi
L otherwise.

(3) Depth value function

1 i - A - A
6(VD= | 3 Dist(z,~2;) | Z; and 2 are the
vl{=
depth values of control points in FGPFM and the
estimated depth values, respectively.

(4) Model ratio function

@) =4)1-4m0, e

where ¢, and p, are the means and standard
deviation of model ratios r; of the FGPFM, respectively.

2.2 Chromosome representation

Theoretical analysis, experimental studies and the
application of IGA can be found in our recent work ®+*9),
IGA has demonstrated the capabilities of solving the large
parameter optimization problems with fast convergence an
high accuracy. Due o the huge search space of adjustin
3D conirol points, IGA is indispensable for obtainin
optimal solutions in the facial modeling procedure.
coarse-to-fine approach using IGA is used to obtain an
optimal facial model.

Based on the ability of PDF and FGPFM, the initial control
points can be estimated by using the backpmojection
technique. Through a coarse-to-fine approach based on
IGA, it is easy to adjust the initial control point set to an
optimal control point set of FGPFM. ince the optimal
control point set is the optimal solution for FGPFM, a best
3D facial model for a specific individual can be
reconstructed accurately.

Chromosome is encoded as a siring ((my,d)),(m2,d2),...,
(my, | 4y, ) with 20

Vll parameters, whemlvl l is the
number of control points, m; is an integer from 0 to 26, and
d; is an integer from 1 to N peq, i=1, 2,..., |V1| . Where my

represents the moving direction in the3D space and m=0
means that the i conirol point is unadjusted. Where N pen
represents the partition number of search space in each

direction. Let Dy; represent the radius of search space for the
i® control point. The moving step size S «p is equal to

D,

. (1i . The new position of control points C =%, Vi ZD)
part
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is C.«l-Step‘ . Vmi . Where Vmi means the moving vecior

for direction m of i control point, lisied in Table 1. For
example: the first controlpoint C 1=(20,30,-5),

(my,d)=(17,4), Nyas=5, and Dy=3. Then, S, =2.4 and

vy7=(1,-1,-1). Therefore, new control point C1=(22.4,27.6,
-7.4).

2.3 Backprojection method for obtaining3
control points

We have successfully presented an analytic solution for the
PDF from an uncalibrated monocular face image usinga
generic facial model®®. PDF plays an important role in
automatic facial modeling. Only four stable facial feature
points, the far comers of the eyes and mouth that can be
extracted by deformable templets ®D in an image are
needed in PDF procedure. Tt can provide an exact and
analytic solution for facial plane equation determined by
the four feature points via a perspective projection
inversion approach.

Generally, the iterative process without predetermining the
pose is adopted to modify the 3D facial model until the
superimgosed face contours resemble those on the face
image ¥, However using the iterative process to solve
the combination problems of the pose and depth is not onl
difficult but also inefficient. Herein, we solve this difficult
problem based on the ability to separate the pose and depth
problems. The estimated initial control points are helpful
for IGA to accelerate the search process.

- 2.4 Coarse-to-fine approach

Due to the huge search space for adjusting 3D control
points, the search process of optimal conirol points consists
of many steps using various partition resolutions of search
space. We present a coarse -to-fine approach using IGA to
efficiently find the optimal control points. The coarse and
fine searches can be regarded as global and local searches,
respectively. The parameter D), radius of search space,
serves as the tuning parameters. Call one adjustment of all
conirol points using one run of IGA one step. Let the radius

th

of search space for thej siep be Dg =-fi where

Dil contains all the global search space. The stopping

condition for one step can be determined by an improving
factor Egep:

K=K
. = @

Estep—
i=1

where X represents the fitness function evaluation valoe of
thei® generation in IGA. If B, is smaller than a threshold
value p, it means that the optimal control poirt set has

been obtained in the given search window. Once the control
points are adjusted by moving one step according io the

derived moving direction and step size, the radius of search
window for next move must be adju sied in order to refine
the solution. Notably, an elitist sirategy is adapted in the
coarse-to-fine IGA a specific chromosome ((0,0),(0,0),...,



(6,0)) info the initial popuiation for the next step. The
stopping condition of the entire coarse-to-fine algorithm
can be determinedb

'Yi - Yi—ll

4
T @

stop—

where Y; represents the fitness function evaluation value of
it step in IGA . If E 5 is smaller than a threshold value ) .
the stop condition is met.

2.5 Overview the algorithm

Input data of the reconstructi on, procedure is a 2D face
image with the visibility of the eyes and mouth corners and
a FGPFM. Output is the 3D face -centered facial model.
The entire facial modeling procedure is designed as
follows.

Stepl. Extract facial feature points by deformable
templates, such as mouth contour, eye contours,
head contour and nose feature (if possible).

Step 2. Obtain face pose using PDF procedure.

Step3. Derive the initial3Dcontrol points by
backprojection technique.

Step4.  Derive initial 3D control points by backprojection
technique and a learning priori knowledge.

Step 5. Set starting set of conirol points using elitist
strategy.

Step 6. Perform one generation of IGA to obtain an
optimal solution for one step.

Step 7. If stopping condition of one step is not met, ie.
Esep >, goto Step 6.

Step 8.  Adjust the control points for one step.

Step9. If stopping condition of coarse-to-fine procedure

is not met, go to Step5.
Step 10. Use the coarse-to-fine IGA to obtain an optimal

solution of F(V,) and the control point set V; of
FGPFM.
Step 11. Reconstruct facial model using V: and FGPFM.

3. Experimental resulis

In this section, three experiments using FGPFM, syntheti
face images and actual face images are analyzed to
demonstrate the feasibility of the proposed method. The
first experiment demonstrates the effectiveness of the
proposed fiiting function and t he high performance of
coarse-to-fine IGA. In the second and the third experiments,
an application applies our algorithm to obtain optimal
control points in the reconstruction of a 3D facial model
from a monocular face image and two uncalibrated face
images, respectively. In all experiments, the parameters of
IGA and the simple genetic algorithm with elitist sirategy
(ESGA) are: the population size = 20, mutation rate = 0.1,
and the crossover rate = 0.5. The number of control points

|v| is 24 and Le=100.
3.1 Experiment 1
An additional synthetic testi mage is generatedb

projecting the unperturbed FGPFM from some known vie
point and focal length. Theused fitness function is
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described in Section 2.1. The aim of the GAs is to adjust
the perturbed 3D control poinis to fit the 2D image of the
transformed FGPFM and simultaneously take the human
perception of human face into consideration. The
simulation results of ESGA, IGA, coarse -to-fine ESGA and
coarse-to-fine IGA under various perturbation conditions
are illustrated  in Fig. 1. The Ny, values used in GAs
without coarse-to-fine procedure and GAs  with
coarse-to-fine procedure are 250 and 5, respectively. The
performance in Fig. 1 is average measurement using ten
independent runs. From these figures, it can reveal that
coarse-to-fine IGA is still superior to other GA approaches
using only a single 2D face image.

Define the relative error E,; as follows

Fit
l"’ll ‘L,

Ep= &)

After executing 400 steps of coarse-to-fine IGA the final
Err  values are0.44%, 14304%, and 4.5529%
corresponding to w=4, w=10,and w=20. From these
accurate results, it demonstrates the effectiveness of the
proposed fitness function for the coarse-io-fine IGA.

3.2 Experiment 2

Two uncalibrated face images, one front -viewed and one
yawed face images, are used to examine the applicability of
the proposed algorithm to actual facial images with
unknown focal length of the camera and optical center of
the image, as shown in Figs. 2(a) and 2(b).

Using PDF to obtain the initial control points of FGPFM,
the coarse-to-fine IGA is applied to obtain an optimal set of
control points. The fitness function used in the

coarse-to-fine IGA is described in Section 2.1. Fig. 3(a) and
Fig. 3(b) display the convergence from the input images
Fig. 2(a) and 2(b), respectively. Let the optimal control
point sets of coarse-to-fine IGA derived from the initial

control point set using Fig. 2(a) and Fig. 2(b) be { pfl )
pfl geeey pfl‘/ll } alld { pyl FY pyz geeey pYIVll },

respectively. Define the relative error B ¢ as follows

vy
Dist(p;, —p, )

_li=l
Epr = IVLI 1 . (6)

After executing 400 steps of coarse-to-fine IGA, the error
Ert is 1.7002%. Notably, the model ratios of FGPFM are
average measurement from sample face images and may be
different to those in the given aciual face,

Fig.4(a) shows the initial facial model constructed from the
initial control points of FGPFM using image Fig. 2(b). Fig.
4(b) and Fig. 4(c) show the optimal facial model obtained
using coarse-to-fine IGA in various poses. The
texture-mapped face images using the reconsiructed facial
model Fig, 4(b) in various poses are illustrated in Fig. 5.



3.3 Experiment 3

In this experiment, we examine the effectiveness of the
proposed algorithm for facial modeling from two
uncalibrated face images Fig. 2(a) and Fig. 2(b). To make
use of the evidence from two face images, the projection
function £,(S) of the finess function F(V,) is modified. The
optimal facial model should be optimall  superimposed
with all the given face image. Therefore, the projection
function takes all the feature points in the given face
images into consideration.

The error B ¢ i5 0.95% after 400 steps of coarse -to-fine
IGA. Tt reveals that the proposed algorithm can find the
optimal solution using various initial control points. In
other words, the proposed algorithm is vobust for various
poses of human faces. Compare the emor E ¢ of
Experiment 3 and 4, 1.7002% and 0.95%, it demonstrates
that two face images can obtain the better facial model that
a single face image. Fig. 6 illustrates the optimal facial
model which is the best fitting of Figs. 2(2) and 2(b)
simultaneously.

4. Conclusions

This study has presented anovel genetic algorithm-based
optimization appmwach for facial modeling from an
uncalibrated monocular face image using flexible generic
parameterized facial model. The proposed method has the
following features. (1) FGPFMs are presented so that the
good parameters, the control points, of the FGPFM can

yield a good facial model for a specific individual. (2) An
analytic solution for the pose determination of human faces

(PDF) from a monocular image is applied for efficient

facial modeling. (3) The reconstruction problem is
formulated as a parameter opti mization problem based on
the ability of the FGPFM and PDF Furthermore, the
coarse-to-fine IGA is proposed to accelerate the search for
an optimal solution that is a set of control points. Finally,

sensitivity analysis and experimental resulis demonsirate

the effectiveness of the proposed method.
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Figure. 1 Simulation results of various GA approaches. (a)
w=4, (b) w=10, (c) w=20. Notation: -ESGA,*IGA



+:coarse-to-fine ESGA, and o: coarse-to-fine IGA.

Figure. 2 Two input actual faces images with different poses.
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Figure. 3 The convergence speed and accuracy of Figure 2(a) and Figure 2(b), respectivel

(a) ®) ©

Figure. 4 (2) The initial unadjusted facial model in front view. (b)The adjusted facial model using coarse -to-fine IGA. (C)
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Figure. 5 The texture-mapped face images using the reconstructed facial model Figure 4(b) in various poses.

The yawed facial model of Figure 4(b).
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Table 1. Moving vectors of control points 3D space.
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Figure. 6 The optimal tow-leveled in various poses facial model Figure 2.

direction m |moving vector vy

0~8 0,00 10,01 00-1 [0,1,0 [0-1,0 |0,1,1 ]0,1,-1 ]0,-1,1 |0,-1,-1
9~17 1,00 (1,01 J1,0-1 |1,1,0 |1,-,0 1,1 |1,1,-1 |1,-1,1 i,-1,-1
18~26 -1,00 |-1,01 |-1,0,-1 |-1,1,0 }-1,-1,0 |-1,i,1 -1,1,-1 |-1,-1,1 -1,-1,-1




