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An Efficient Three-Dimensional Fractal Video Coding Method
Using Intercube Correlation Search
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Abstract

An efficient 3-D fractal video coding method that
exploits the correlation between range cubes is proposed.
Four domain cubes mapped by the previous neighboring
range cubes are considered as the good candidate cubes of
the input range cube. Simulation results show that when th
proposed method is implemented with a fast 3 -D fractal
coding algorithm, it can further reduce the encoding times
and bit rate with insignificant loss of video qttali{y.

Keywords: fractal, image compression, video compression,
search-order coding.

1. Introduction

Recently, fractal theor has been widely applied in the field
of video compression due to the advantages of resolution
independence, fast decompression and high compression
ratio [1,2]. However, the major drawback of the fractal
video compression is the high encoding complexity to find
the best match between a range cube and a large pool of
domain cubes. In order to reduce the search complexity,
many researchers have presented methods to reduce the
search space of the domain pool [2,3,4,5]. They extensivel
explored the relationships between the range cube and
domain cubes so as to find a method to reduce search space
but omitting the correlation between range cubes. It is als
noted that in these methods the range cubes within image
sequences are processed independently. However, there is
usually a high intercube correlation in natural image
sequences, thus.resulting in a high probability that the
neighboring range cubes are matched by a small subset of
the domain pool having the similar features or patterns . If
one considers the small subset instead of the whole pool of
domain cubes, it is possible to further improve the
computational efficiency of the encoding process.

There are two major approaches to fractal video coding.
The first one is a combination of intra-frame fractal coding
and motion compensated inter-frame coding [6,7,8]. This
approach is similar to MPEG video coding schemes, using
motion compensation techniques coding frames one by one,
and taking fractal coding instead of discrete transform
coding (DCT). The second one uses an extension of
two-dimensional (2-D) image to three-dimensional (3-D)
image sequences, havingthe potential for higher
compression than intra coding techniques [3-5]. While both
inter/intra and 3-D fractal block coding techniques are
resolution independent in the spatial domain, only -D
block coding is also resolution independent in the temporal
domain. In other words, all three dimensions are contracted
in true 3-D fractal coding scheme. In previous publication
we propose d the improvement of coding efficiency for
fractal coding using intra frame coding [9]. Based ona
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similar idea of previous proposal [9], we proposeda
modified method to be suited tothe 3 -D fractal video
coding.

Fractal compression of 3-D image sequences can be
taken as a direct extension of the techniques involved in
coding a 2-D image. Beaumont was the first to extend
Jacquin’s still image coding technique to video sequence
coding [6]. He presented a 3-D fractal-coding scheme using
a 12-frame memory, with range cube of 4x4x4 and domain
cube of 12x12x12. Although the data compression was
impressive, the picture quality was poor and severe
blocking artifacts were present. The failure can be mainly
attributed to inadequacy of fractal coding in modeling hi gh
pass spatial and temporal edge. To further improve the
encoding quality, a novel 3 -D partition of input frames is
introduced by Lazar and Bruton [3]. However, they suffer
from the same drawbacks as 2 -D fractal coding, thatis, the
computational expense of finding the best matchin
between range cube and a domain pool. Therefore, the
coding would lag behind capture in a sequence by at a
factor of 100, and to achieve a higher quality it may be up
to 1000 lower. Clearly, the scheme is not ready for
real-ti e applications. Another problem of the Lazar and
Bruton’s method is to use the spatio-temporal partition to
improve decoded quality of high frequency areas. However,
the partition needs complex computations and analyses
such that the encoding time becomes aggravated.

The key development of this work is to present a more
straightforward but efficient method for 3-D fractal video
coding, which exploits the correlation between neighborin
cubes of the input range cubes and encodes the position and
isometry parameters using a search-order code technique in
[10]. The proposed method can be applied to any existin
3-D fractal video coding algorithms to further reduce their
coding complexity and raise their compression efficiency.

2. Review of The 3D Fractal Video Coding Scheme

Before describing our algorithm, we briefly review the 3-D
fractal-coding scheme proposed by Lazar and Bruton [3]in
this section. They used 3-D range and domain cubes rather
than applied 2-D partition on an intra-frame basis.

Encoding procedure:

The encoding procedure of [3] tnvolves the construction
of 3-D range and domain cubes, determining the
coniraction mapping, and fractal encoding of the
parameters. These steps are outlined below

(1) Constructing range cubes and a domain pool
They first partitioned the video sequences into
R-Frames and D-Frames.
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(c) The original image.

Figure 7. The reconstructed images at 0.172 bpp.



2)

(3)

& The size of nonoverlapping 3-D range blocks (r) and
3-D overlapping domain blocks (d) are set to BXBXT
and M,BxM>BxM,T, respectively, where M), M, are
spatial scaling factors, and M;is a temporal scalin
factor.

@

Range cubes are partitioned from R-Frame, which
are consecutive and nonoverlapping groups of input
frames, Each R-Frame is restricted to length kT, k
Z, k0.

@

Domain cubes are partitioned from D-Frame, which
is associated with each R-Frame. The length of a
D-Frame must end at the same temporal location as
its associated R-Frame,but may start before the
beginning of that R-Frame. The length is restricted
tolength IM3T,le Z,1#0.

e The R-Frame staring at time ¢t is denoted by
R-Frame(t), while the associated D-Frame is
indicated by D-Frame(i). If the parameter values are
settok=2,1=4, Mi=My=2,My=1,and T =4,
the R-Frame and its associated D-Frame can be
illustrated in Figs. 1 and 2.

Domain and range cube mapping:
The fractal approximation of the range cube r; using
affine transformation is givenb

7 =0l (S(dy))+Ag 1)
where 1, , o; and Ag represent the isometry
trans-formation, contrast scale factor and luminance

shift factor, respectively. N(i) is a domain cube select
function, which associates the ith range cube with a
domain cube from adomain pool. Typically, the

~

Euclidean metric, d(7,r;), is used to measure th
distortion between the range cube 7, and transformed

cube 7.

@ Spatial scaling function
S(e) is a shrinking operator that averages the size of
a 3-D domain block into the same size of 3 -D range
block size.

¢ Isometry operation

For 3-D blocks, considerably more pixel shufflin
operations are possible than those for 2-D blocks. To
keep the number of isometries to a reasonable value,
they restricted the operation of isometries to 8 spatial
transformations  (intra-frame) and 2 temporal
transformations (inter-frame), respectively.
Intra-frame basis: pixels within frames are shuffled.
Inter-frame basis: the time -reverse ordering of
frames themselves. S0, I,(i) = Fner(f) + Liara()-

& Domain cube search method
In Lazar and Bruton’s scheme, a local search for
domain cube is conducted, whereby the domain
cubes near their corresponding range cube are used.
The mapping scheme can be illustrated in Fig.2.

Fractal encoding parameters:
Once the closest domain cube is found, namely, th
transformed cube 7; is the best approximation of th

given range cube, the parameters and the position of
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the domain cube are recorded or transmitted.
Current input Frame

R-Frame(t-2kTy R-Frame(t-kT) /~ R-Frame(t)

Range block addresses within the R-Frames
are relative to these points

Fig. 1 Partitioning input sequences into R-Frames [3].

Current input Fram:

Example domain block:

eooe

R-Frame(t)

<+——= kT Frames ——*

Example range blocks
D-Frame(r)

kT Frames

Fig. 2 Example R-Frame and associated D-Frame [3].

Decoding procedure

The decoding procedure is similar to the 2-D decoding
scheme described in [1]. Specially, the domain cubes can
be selected from frames in the sequence that has already
been decoded. Therefore, the decoder only requires a single
iteration to decode. Moreover, the scheme can decode
several frames simultaneously.

3. Intercube Correlation Search Algorithm

In order to obtain high quality decoded image sequences,
the volume of the range cube us ed in 3-D fractal vide
compression should be small. Practically, 4x4x4 and 8x8x4
range cube partitions are the most frequently used in 3-D
fractal coding schemes. Therefore, there is usually a high
correlation between the neighboring range cubes such that
the mapped domain cubes may have highly similar
characteristics. In other words, the closest domain cubes of
the neighboring cubes may be the good candidates for the
input range cube.

Generally, in the 3-D fractal video coding, image
sequences are encoded cube by cube in a raster scan order,
i.e., from left to right and top to bottom. Our algorithm als
searches for the candidate domain cubes in this order. A
regular search scheme is employed to search for four causal
neighbor cubes in spatial direction as shown in Fig. 3. The
domain cubes, D, D., Dy and Da, represent the four
candidate domain cubes, which have been mapped by
previous neighboring cubes of the input range cube. The
figure also shows the search priority order and the



associated 2-b search-order codes. The number ‘1’
represents the first priority and its search-order code is ‘00’,
the number ‘2” the second priority and its search-order code
‘01’, and so on. In this work, we found that the selection of
the priority is not critical, because the coding efficiencies
are near the same when the different priorities are chosen.
To determine whether a candidate domain cube is good

enough for the input range cube, we compute the distortion
between the input range cube and the transformed cube 7

of candidate cube. The distortion is represented by mean
square error (MSE). After the candidate (one of the D 1, D,,
Ds and Dy) is found, we check whether it is good enough
by comparing its MSE value with a threshold. If it is less
than the threshold, the candidate is good enough for the
input range cube. Otherwise, itimplies that the cube
correlation is low and a fast 3-D fractal coding is needed to
find the closest domain cube for the input range cube. To
demonstrate the efficiency of the proposed algorithm, the
fast coding algorithm in {3] is adopted, as an example, in
this paper. .

There are two search schemes are employed to search for
four causal neighbor cubes inthe spatial and the
spati -temporal directions.

(1) By considering the correlation in spatial domain. The
search scheme is employed to search for four domain
cubes mapped by causal neighboring cubes of the input
range cube in the spatial direction, as shown in Fig. 3.

(2) By considering the correlation both in spatial and
temporal domains. The search scheme is employed to
search for four domain cubes mappedby causal
neighbor cubes of the input range cube in the spatial
and temporal directions, as shown in Fig. 4.

The new algorithm can be summarized as follows

(i) Check whether the first candidate domain cube D is
‘good’. If it is true, the parameters (search -order code,
o; and Ag ) are recorded and the search ends there

and proceed to the next range cube in the same manner.

Otherwise go to step (ii).

(ii) Repeat step (i) for the next priority neighboring cube
until a ‘good’ candidate domain cube is found or all
neighboring cubes are examined. If no good candidate
is found, go to step (iii).

(iii) Perform the fast search algorithm proposed by [3] to
find the closest domain cube and the parameters ( P,

1., &;, Ag) are recorded, and then go back (i) for

m?

the next range cube.

From step (i) and step (iii), it is seen that if a good
candidate is found, we send 2 bits search-order code instead
of the position Pp and isometry I,. Therefore, the new
algorithm can further reduce the bit rate in addition t
computational complexity. In the decoder, the image cubes
are also reconstructed in a raster scan order. The search
procedure is the same as that of the encoder. To let the
decoder distinguish parameters (Pp, I,,) from search-order
code, an extra indicator bit is needed in transmission.
According to the search procedure and the search -order
code received, we can easily recover the parameters Pp and
I, of the input cube justusing the two parameters
represented in the previous cubeby the search -order code.
Although the first search scheme only use s the spatial
correlation, it doesn’t require exira memory to store the
previous decoded image frames. The second method
considers the temporal correlation except utilizing the
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spatial correlation.
Spatial ditection
=
2
2 Previously processed cubes 2 p 3 D, Dy £
é on (10)
& -

R-Frames(t)

Future

Fig.3 Intercube correlation search scheme in spatial
direction.

Spatial direction

Temporal direction

R-Frames(t=kT)

R-Frames(t) |
Future

Fig. 4 Intercube correlation search scheme in spatial and
temporal directions.

Some researchers have conducted experiments and
proved the advantages of fractal video coding includin
resolution independence and high compression ratio. Fisher
et al. have demonstrated decoding video sequences at
higher spatial resolutions [7], while Barakat et al [5] have
simulated decoding at higher spatial and temporal
resolutions using 3-D block coding with satisfactory
results.

In Lazar and Bruton’s experiments, however, they onl
performed a spatial contraction but left the time scale of the
domain cubes unchanged. This will lead to the unsuccess of
temporal resolution independence atdecoding image
sequences. It has been shown that if using a co ntraction
operator with spatial and temporal contraction, the motion
of objects can be described with more accuracy [4]).
Therefore, in this work, we use coniraction in all three
dimensions. It is noted that no motion compensation is
necessary to describe temporal redundancies, as the 3-D
domain cube contains the motion information. Therefore,
the length of D-frames is larger than that of R-frames for
our experiments in this chapter, that is, IM; > k.

4, Experimental Results

The CCITT test sequences “Miss Am erica”, which is used
in the development of video phone/video conference

standard, was used to iest the experimental resulis in this
work. The picture size is 352x288 pixels and grayscale is



256 levels. The input R-frame (KT) is first partitioned into
BxBXT, and each associated with D-frame (IM;T) is
partitioned into MBxXM,BxM-T.

In order to exhibit the successes of our methods, a local
search algorithm similar to that of Lazar and Bruton’s [3

without using spatio-temporal partition is also implemented.

The range of the domain cubes searched is +8 for spatial
direction (x, y) and —4 for temporal direction (), due tothe
causality of video sequence, with 1 pixel step size. In other
words, the number of domain cubes comparedbyeach
range cube is 16 xX16x4 = 1024 cubes. The position of the
closest domain cube mappedby the input range cube is
indicated by Pp = (ny+x, nat+y, ny+t), where the (ny, na, n3)
is the address of the input range cube.

Figure 5 shows the average rate-distortion curve for our
search scheme based on the local search in [3]. It indicates
that the quality of the reconstructed frames start to degrade
noticeably when ¢ > 16. Similar to previous work [9], w
take ¢ = 16 to test all results in this paper. For the purpose
of comparison, the parameters ¢ ; Ag, and I, were
uniform quantized using 5, 7 and 4 bits, respectively. For
the isometries used herein include 8 intra -frames and 2
inter-frame isometries described in Sec. 2. One indicator bit
is also needed in transmission to let the decoder distingui sh
parameters (Pp, I,) from search-order codes. The
compression ratio (CR) of the proposed algorithm is
calculated b

R= WxHxTx8
N; %2+ L)+ (N, -N)XF,+N,x1

bpp (2)

where

N; = total number of range cubes using the intercube
cor-relation search.

L,=total number of bits to encode the parameter (¢; , Ag ).

N, = total number of range cubes.
P, = total number of bits to encode the parameter ( Pp, 1,

ai > Ag )~
WxHxTx8 = total number of bits to represent 3-D image
sequences.
s
=100
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bit/pixel
Fig. 5 The rate-distortion curve.

The improvements are to be expected when the 3 -D
fractal coding is applied to the background and the slow
motion object of the video sequences. But, the quality in
the region with large motion degrades distinctly, since the
temporal correlation between 3-D range blocks is reduced
in the region. Just like any 3-D coding schemes, e.g., 3-D
discrete cosine transform, subband coding, etc., 3 -D fractal
coding is not able to handle alarge amount of frame motion
This is because larger inter -frame motion will destroy the
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self-transformation in image volumes. In other words, the
correlation exiting the temporal domain is very low. In
order to preserve the image quality of the region with a
motion, we encode a group of four frames each time,
namely, the length of R-frame for our experiments is sett
T = 4. Also, to fulfill the contractive requirement in the
time domain, the length of D-frame is set to M3T = 8.

The intercube correlation search schemes, shown in Figs.
3 and 4, based on [3] are conducted in this section. The
compression ratio (CR) and PSNR for different search
methods are shown in Fig. 6. Although very high the
compression ratio can be obtained when the spatial range
size is increased, the blocking artifacts can be clearly found.
This is because the compression ratio and image quality is a
trade-off. Table 1 compares the average encoding time,
PSNR, and CR. The results indicate that the prop osed
methods can further speed up the encoding process of local
search [3] over a factor of 8. The average compression
ratios are 31 and 114 for 4x4x4 and 8x8x4 range partitions,
respectively. Thus, the CR raises are (31 —~19.6) / 19.6 x
100% =58.2% and (114.1-78.8) / 78.8 x 100% = 44.8%,
respectively. The performance improvement of 4 xdx4
range partition is greater than that of 8 x8x4 range partition
due to the higher intercube correlation in4 x4x4 range
partition and the more cubes performed using our method.
The loss of image qualityis insignificant because all the
differences in PSNR obtained from [3] and our method are
less than 0.2 dB. We also can find the performance of the
time-spatial correlation search scheme is slightly better
than that of spatial c orrelation search scheme. However, an
extra memory is required to store the previous decoded
frames. It is impractical to realization the video coding
scheme.
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Fig. 6 Compression ratio and PSNR for “Miss America”
sequence.

5. Conclusions

In this paper, we present an efficient search strategy to



speed up the encoding process of the 3 -D fractal video
coding. In addition, a search-order coding technique
developed in [10] is used to further raise compression ratios
Two search methods, which take advaniageo f the
correlation between intercubes in the spatial and temporal

directions, are presented. The results indicate that average
compression ratios of 31 to 114, and a speedup factor of §

with a slight loss of quality, as compared to the local search

method. It can be performed in real-time and the subjective
quality is suitable for video -conferencing applications.
Further work will be devoted to developing low-complexit

3-D fractal coding algorithm to suitable for very low bit
rate video coding systems.

Acknowledgments

This work is supported in part now by the National
Science Council, Taiwan, R.O.C. under grant NSC
89-2213-E-014-021.

References

[1] Y. Fisher, Fractal image compression - Theory and
Applications. Springer-Verlag, New York, 1994.

[2] T. C. Ferguson and H. R. Wu, “Fractal transfor
techniques for very low bit rate video coding,” IEEE
Int. Symposium  on Circuits and Systems ,pp
1456-1459, June 1997.

(3] M.S. Lazar and L. T. Burton, “Fractal block coding of

4]

(51

[6]

(71

(8]

(9]

[10]

digital video,” IEEE Trans. on CASVT , vol. 4, pp.
297-308, June 1994,

K. U. Barthel and T. Voye, “Three-dimensional fractal
video coding,” In Proc. of ICIP’95, vol.3, pp. 260-263,
Washington D.C., Oct. 1995.

M. Barakat and J. L. Dugelay, “Image sequence coding
using 3-D LES.)” In Proc. of ICIP’96, pp.1 1-144,
Lausanne, Sept. 1996.

J. M. Beaumont, ‘Image data compression usin
fractal techniques,” BT Techn. J., vol.9, no. 4, pp.
93-109, 1991.

Y. Fisher, D. Rogovinand T. P. Shen, “Fractal
(self-VQ) encoding of video sequences,” In SPIE
Proc., Visual Communication and Image Processing ,
Chicago, Sept. 1994.

X. Dong and R. Sudhakar, “Fractal compression of
image sequences,” In Proc. of ICIP'95, vol.3, pp.
284-287, Washington D.C., Oct. 1995,

C. C. Wang, C. H. Chen and C. H. Hsieh, ‘Fast fractal
image coding using interblock correlation,” The 12th
Computer Vision, Graphics, and Image Processing
Symposium (CVGIP’'99), pp. 443-448, Wanli, Taiwan,
Aug. 1999.

C. H. Hsieh and J. C. Tsai, “Lossless compression of
VQ index with search -order coding,” IEEE Trans. on
Image Processing, vol. 5, pp. 1579-1582, Nov. 1996.

Table 1 Comparison of coding results using local search, spatial correlation search
and spatial-temporal correlation search, respectively.

Range size Methods Time (sec) PSNR (dB) CR
' Local search 181 35.72 19.6
dxdxd Spatial search 24 35.53 30.8
Spatial-temporal search 23 35.57 31.0

Local search 163 3391 78.8
8x8x4 Spatial search 39 33.65 114.1
Spatial-temporal search 37 33.71 116.5

C-34



