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Abstract 

In this paper, we developed a systematic approach for the 
reconstruction of a 3D mesh model of a human face from 
multiple images in a semi-automatic way.  Our approach 
can be divided into three steps: (1) estimation of the 
camera poses from multiple images under the assumption 
that the camera projection model is orthographic, (2) 
computation of the 3D coordinates of a set of control 
points with multi-view stereo, and (3) reconstruction of a 
mesh model of human face by deforming a generic model 
to be fit with the control points.  Experiments results 
show that our method is effective for reconstruction of 
human face models. 

Keywords: Face-model Reconstruction, Orthographic 
Projection, Camera Pose Estimation, Stereo Vision, Mesh 
Deformation. 

1 Introduction 

Reconstruction of human face models is an important 
problem in computer graphics and virtual reality due to 
many of its promising applications.  In the past, 
approaches for face model reconstruction can be divided 
into two classes.  The first class is the bottom-up 
approach.  In this class of approaches, the connectivity is 
recovered along with geometry.  Among them, many 
researchers concentrate on stereo methods.  Lengagne et 
al. proposed a method combining stereo vision and 
differential constraints [10][11].  Sara builds a system 
that four cameras are available for stereo reconstruction 
[13].  Chen et al. added smoothness constraints in 
estimating disparity surface [3].  In addition, shading 
technique and is available too [12].  The second one is 
the top-down approach that the connectivity information 
is treated as prior knowledge.  In [5][6], video stream is 
used to reconstruct head and natural expressions.  Ho, et 
al. developed an approach for reconstruction of the face 
model from a single image [8].  The animation results of 
Guenter et al. [7] are impressive for animation.  
Delingette and Montagnot proposed a method for 
deforming face model by a cloud of 3D points [4].  
Modeling has also been done from picture data by 
detecting features, modifying a given generic model and 
then mapping texture on it [1][9]. 

In this paper, we developed a semi -automatic approach 
for face model reconstruction from multiple images of a 
human head.  To reconstruct the 3D structure from 
multiple images, a fundamental problem is to estimate the 
camera pose for each image.  In this paper, based on the 
method of Tomasi and Kanade [14], we develop a 
modified approach for camera pose estimation under the 
assumption that the camera model is orthographic.  Our 
approach is more computationally stable because that (i) 
we propose a linear method to give a good initial 
estimation for nonlinear optimization, and (ii) we propose 
a new missing-feature recovering process for handling the 
partial occlusion problem.  Once the camera pose of 
each image has been estimated, our approach reconstructs 
the human face model in a two-phase procedure.  In 
phase 1, a set of 3D coordinates of the selected control 
points are obtained via multi-view stereo.  In phase 2, a 
face model is reconstructed by deforming a generic one so 
as to fit the set of control points obtained in phase 1. 

2 Camera Pose Estimation under 
Orthographic Projection 

Estimation of the camera parameters from multiple 
images and reconstruction of the 3D structures of the 
objects contained in the scene (referred to as structure 
from motion) is a central issue in 3D computer vision.  If 
the camera has not been calibrated in advance, its 
parameters have to be estimated directly from the image 
correspondences among a sequence.  In this paper, the 
camera model used for 3D reconstruction is assumed to 
be orthographic.  Orthographic projection is a good 
approximation of the camera model when the depth 
variation of the object contained in the scene image is 
small compared to the average distance from the object to 
the camera.  In our work, some (usually five) 
photographs of a human head are taken with a zoom-in 
camera in the positions which distances to the human 
head are approximately the same.  Hence, it is 
reasonable to adopt such a camera model for 3D 
reconstruction in our application.  The camera 
calibration problem can also be simplified by using an 
orthographic camera model because no intrinsic camera 
parameters (but only the camera poses) have to be 
estimated. 



 

  

2.1 Review of The Factorization Method 

We first review the method proposed by Tomasi and 
Kanade [14] developed for camera pose estimation under 
orthographic projection.  Given P  feature points being 
tracked over F  frames in an image sequence, {(ufp,vfp) | f = 
1, …, F, p = 1, …, P}.  The centering coordinates of the 
feature points in each image frame is defined as {(ufp-af, 
vfp-bf) | f = 1, …, F, p = 1, …, P}, where  
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Consider the 2F×P matrix W
~

, the measurement matrix, 
defined as follows: 
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where U
~

 and and V
~

 are the F×P matrices whose 
entries of the fth row and pth column are ufp-af and vfp-bf , 
f = 1, …, F, p = 1, …, P, respectively. 

Assume that the world coordinate system is selected 
according to that its origin is the centroid of the P feature 
points in the 3D space and that its X and Y axes are 
parallel to the row direction and the column direction of 
the first frame of the image sequence, respectively.  
Denote that the 3D coordinates of the P feature points to 
be S1, S2, …, Sp, and let in and jn (n = 1, …, F) be the 
vector parallel to the row and the column directions of the 
n-th frame with respect to the world coordinate system, 

respectively.  Then, W
~

 can be decomposed as W
~

=RS 
where R is a 2F×3 matrix and S is a 3×P matrix as shown 
below: 
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32     and    S = [S1, S2, …, Sp]. 

In particular, R has to satisfy the following two 
constraints. 

(1) Constraints of the first frame: 

i1 = [1 0 0]T and j1 = [0 1 0]T,        (2.1) 

(2) The metric constraints: 

1== ff ji   and  0=f
T
f ji  for Ff ...1= .           

(2.2) 

In fact, the constraint (2.1) can be ignored in the 
beginning.  It is  because that if we have found a solution 

(R, S) satisfying both W
~

=RS and the constraint (2.2) but 
i1 ≠ [1 0 0] T or j1 ≠ [0 1 0] T, then i1, j1 and i1×j1 (where 
“×” is the cross product) still forms the three axes of a 3D 
Euclidean coordinate system which can be transformed 
via a unique rotation, namely Ro, of that of the world 
coordinate system defined above.  This rotation, Ro, can 
then rotate i1 to [1 0 0] T and j1 to [0 1 0] T. 

Hence, we can concentrate on the problem of finding the 

solution (R, S) satisfying both W
~

=RS and the constraint 

(2.2).  Notice that the rank of W
~

 is at most three 
because the ranks of both R and S are three.  However, in 

practice, the rank of W
~

 is usually more than three due 
to image noise.  By applying the singular value 

decomposition to W
~

 and only keeping the largest three 
singular values, we can obtain a good approximation of 

W
~

 by decomposing W
~

 into a 2F×3 matrix R̂  and a 

3×P matrix Ŝ , i.e., W
~

≅ R̂ Ŝ .  Notice that R̂  and 

Ŝ  are of the same sizes of R and S, respectively.  

However, R̂  and Ŝ  may not satisfy the constraint 
(2.2).  In [14], it is clarified that R (or S) is a linear 

transformation of R̂  (or Ŝ ) as shown in the following: 

QRR ˆ=  and  SQS ˆ1−=      (2.3) 

Here, Q is a 3×3 matrix transforming the matrix R̂  (or 

Ŝ ) to the true one R (or S).  Tomasi and Kanade [14] 

suggest to changing the problem of factorization of W
~

 
into R and S to the problem of finding Q in (2.3).  By 
applying the constraint equation of (2.2) and (2.3), they 
formulate 3F equations in terms of the nine unknowns 
contained in Q and thus induce an over-constrained 
equation system when F>3 as shown in the following. 
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where fî  (f = 1, …, F) are the first F  rows of R̂ , and 

fĵ  (f = 1, …, F ) are the last F rows of R̂ .  Notice that 

this equation system yields a highly  nonlinear data-fitting 
problem because it consists of the quadratic terms of the 
entries of Q. 

2.2.  Linear Solution to the Factorization Method 

A major problem occurred in the method introduced 
above is that it requires to solve a highly nonlinear 
equation system which is difficult to be solved in a stable 
way.  In this section, we develop a method which can get 
the solution of the data-fitting problem with the same 
constraints shown in (2.2) and (2.3) by simply solving a 
linear equation system. 

Define a 3×3 symmetric matrix Φ  to be 

TQQ=Φ       (2.5) 

Because Φ  is symmetric, only six variables are required 
to be estimated.  Rewrite (2.4) with the entries of Φ  
yields the following equation system: 
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Notice that (2.6) is a linear over-constrained system with 
3F equations.  Hence, the least-squared error solution of 
Φ  can be effectively obtained by calculating the 
pseudo-inverse of the coefficient matrix with respect to 
this linear system. 

Once Φ  is obtained, we have to decompose it into the 

form TQQ .  In principle, there are infinite many 

solutions of Q satisfying that Φ = TQQ  because the 

number of free variables of Q is nine but that of Φ  is 
only six.  It can also be clarified with the fact that if we 
replace Q by Q’=QRo in (2.3) with an arbitrary rotation 

matrix Ro, it still satisfies that RS = R̂ Ŝ  because Ro
TRo=I.  

Hence, we can first find an arbitrary Q satisfying 

Φ = TQQ , and it is equivalent to ignoring the constraint 

(2.1) in the beginning because different solutions of Q 
only induce different selections of the three valid axes of 
the world coordinate system as introduced in Section 2.1.  
To achieve this purpose, we use the eigenvalue 
decomposition of Φ : 

))(( 2/12/1 TTT PDPDPDPQQ ===Φ   (2.7) 

where D  is diagonal matrix consists of the eigenvalues 
of Φ , and P the matrix consists of the eigenvectors of 
Φ . 

Another problem of the method described in Section 2.1 
is that the solution obtained may not exactly satisfy the 
metric constraints shown in (2.3) if we treat the constrains 
to be solved as a data-fitting problem and solve it in an 
over-constrained manner.  To get the solution exactly 
satisfying the metric constraints in (2.3), we should 
formulate a constrained optimization problem instead of a 
data-fitting problem.  In our work, the solution obtained 
via the linear method described above is used as an initial 
estimate of the following constrained optimization 
problem with the error function as shown in (2.8). 

2

,

~ RSWMIN
SR

−      (2.8) 

subject to the constraints in (2.1) and (2.2). 

In our work, the MATCOM library is used for solving this 
constrained nonlinear optimization problem.  To obtain a 
good initial estimation, R and S computed through the 
above linear procedure are transformed by R←RR0 and 
S← R0

TS, where R0 is the least-squared-error rotation 
matrix which transforms i1, j1 and i1×j1 to [1 0 0]  T, [0 1 0] 

T and [0 0 1] T, respectively 1. 

2.3.  Handling Partial Occlusion 

In practice, feature points may appear and disappear in an 
image sequence due to occlusions.  When occlusions 
occur, the factorization method introduced above cannot 

be applied directly because the measurement matrix W
~

 
contains empty entries.  The empty entries are 
recoverable if either the same feature is seen often enough 
in other frames or the frame in question includes enough 
other features.  A characteristic of the empty entries 

occurred in the measurement matrix W
~

 is that they are 
pair-wise.  That is, if an empty entry occurred in the 
U-field, then it should also occurred in the corresponding 
position of the V-field, as shown in Figure 1(a) and 1(b).  

                                                 

1  The Arun et. al method [2] is used for computing the 
least-squared-error rotation matrix R0. 



 

  

Therefore, without lost of generality, our discussion on 
recovering the empty entries is based on the U-field in the 
following. 

In fact, through a detailed analysis we can find that the 
method introduced in Sections 2.1 and 2.2 requires at 
least three views of four points or four views of three 
points to determine the structure and motion under 

orthographic projection.  Hence, if U’⊆ U
~

is a 4×4 
sub-matrix containing one empty entry, then it can be 
recovered by the following procedure [14]: (1) computing 
the 3D coordinate of the occluded feature with the other 
three visible frames, (2) computing the camera pose of the 
frame containing the occluded feature with the other three 
visible points, and (3) projecting the 3D coordinate onto 
the image plane of the frame containing the occluded 
feature.  In fact, the above procedure can also be 

extended to recover the empty entry if U’⊆U
~

 is a K×K 
(K≥4) sub-matrix containing one empty entry [14]. 

Definition 1: [Valid Sub-matrix]   A sub-matrix is valid 
for recovering an empty entry uij if its dimension is larger 
than or equal to 4×4 and it only contains one single empty 
entry, i.e., uij. 

The empty entries in a 2F×P measurement matrix W
~

 
can be recovered in turn.  However, the selection of the 
sub-matrix can affect the final solution.  For example, 

when we want to fill 44u  in the U-field as shown in the 

left side of Figure 1(b), both the sub-matrices shown in 
Figure 1(c) are valid.  Hence, to select a better valid 
sub-matrix is an important issue.  Consider an empty 
entry in U to be recovered, we formulate the procedure of 
finding a valid sub-matrix as a row/column deletion 
process as described below. 

Property 1: [Definite Column Deletion]  Assume that 
the empty entry to be recovered is uij.  Consider all of the 
other empty entries in the i-th row of U, namely ui,e(1), u 

i,e(2), …, u i,e(n).  Then, the columns e(1), e(2), …, e(n) can 
not be used to recover the empty entry uij. 

pf:  The entry uij should be the only empty one contained 
in a valid sub-matrix which can be used to recover uij.  If 
the sub-matrix contains any rows, e(k), k=1, 2, …n, then it 
also contains another empty entry u i,e(k), which causes a 
contradiction. 

Hence, we can delete the columns e(1), e(2), …, e(n) in 
the process of finding a valid sub-matrix.  Similarly, the 
following property also holds. 

Property 2:  [Definite Row Deletion]  Assume that the 
empty entry to be recovered is uij.  Consider all of the 
other empty entries in the  j-th column of U, namely ue(1),j, 
ue(2),j , …, ue(n),j .  Then, the rows e(1), e(2), …, e(n) can 
not be used to recover the empty entry uij, and thus can 

also be deleted in the sub-matrix selection process. 

For example, if we want to recover the empty entry, u33, 
of the matrix U shown in Figure 2(a), then the seventh 
row and the fifth column can be deleted at first according 
to Property 1 and Property 2 because they are not possible 
to be contained in any valid sub-matrices, as shown in 
Figure 2(b).  In particular, we also hope that the 
sub-matrix selected is maximal as defined bellow: 

Definition 2:  [Maximal Sub-matrix]  A sub-matrix is 
maximal if it is valid and it is not the proper sub-matrix of 
any other valid sub-matrices. 

Basically, a maximal sub-matrix can exploit as more as 
feature points or image frames for estimation of the 
values of the empty entries, and thus can estimate them 
more accurately. 

If all of the empty entries contained in U have been 
removed by considering Property 1 and Property 2, then 
the remaining sub-matrix is a maximal one and can be 
used to recover uij.  On the other hand, consider an 
empty entry, ui1,j1, which remains after the definite row 
and column deletion processes described in Property 1 
and Property 2.  Then, either the i1-throw or the j1-th 
column can be deleted.  For example, consider one of the 
remaining empty entries, u57, in Figure 2(c).  Either the 
fifth row or the seventh column can be deleted.  If the 
fifth row is turn out to be deleted, then there are also two 
choices of either deleting the ninth row or deleting the 
sixth column for another remaining empty entry, u96, and 
so on.  The above process is iterated until that there is no 
empty entry remained.  Finally, one of the possible 
maximal sub-matrix can be obtained as shown in Figure 
2(f). 

In the above process, the deletion of the row and the 
column with respect to a remaining empty entry can be 
implemented randomly.  In this paper, to find a better 
sub-matrix for recovering the empty entries, we proposed 
a method called randomized median via the principle of 
robust estimation.  In each time of selection of rows or 
columns to be deleted, we apply a non-deterministic 
process for the determination of the deletion of columns 
or rows.  Once a K×K (K≥4) sub-matrix containing only 
one empty entry is selected, we recover the empty entry 
and then apply the least square technique introduced in 
Section 2.2 to solve its over-constrained solution.  The 
above two steps of selecting a sub-matrix and estimating 
the value of the empty entry are iterated for several times 
and the result is recorded in each round.  Finally, the 
median of the values recorded for each empty entry is 
taken to be the estimated value of it. 

Although the selection of a sub-matrix in each iteration is 
a non-deterministic process in our approach, we do not 
select them pure randomly like the standard LMedS 
method does.  On the other hand, we incorporate some 



 

  

priori knowledge for the selection of a possibly better 
sub-matrix.  First, we only consider the sub-matrix with 
enough feature points and images frames by forbidding 
the deletions allowing the remaining sub-matrix to be 
smaller than 4×4.  Second, we prefer to select a 
sub-matrix as square as possible because a thin sub-matrix 
may either contain too few features or too near frames 
which may cause the computation to be un-stable.  
Hence, when the remaining rows are more than the 
remaining columns during the process of selection of 
rows or columns to be deleted, we give a higher 
probability to delete rows, and vice versa. 

2.4.  Estimation of Camera Poses with Human Face 
Images 

Typically, five images of a human head are taken for face 
model reconstruction in our work.  Occlusions may 
occur in the images taken from different view angles.  To 
estimate the camera poses of the images, a set of feature 
correspondences have to be given.  In the present version 
of our implementation, the correspondences of feature 
points are provided by human in a semi-automatic way.  
In principle, the mo re accurate are the feature 
correspondences, the more accurate are the pose 
parameters estimated.  Hence, in the camera-pose stage, 
we hope the users to select some salient and explicit 
feature points in the human face, such as eyes, nose, lips, 
and ears.  Typically, nine features in a face image are 
selected in our work as shown in Figure 3(b).  Then, the 
correspondences of the visible feature points in other 
images are also selected as shown in Figure 3(a) and 3(c). 

Figure 4 shows the results of recovering the occluded 
feature points by using the randomized median procedure 
as introduced in Section 2.3.  In Figure 4, the square dots 
are the feature points selected by the user and the 
diamond dots are the recovered feature points which are 
occluded in the input images.  One can see that the 
missing (or occluded) points can be well complemented 
using our method.  When all occluding points are 
recovered, the 3D coordinates of all feature points can be 
computed.  To verify the results, we show the 
corresponding epi-polar geometry.  Given two images 
whose poses are given under the assumption that the 
camera model is orthographic, a plane is called the 
epi-polar plane if it is perpendicular to both images.  The 
epi-polar line pairs can then be obtained by finding the 
intersection lines between each epi-polar plane and both 
the image planes.  We call the intersection line between 
an epi-polar plane and the left image plane the left 
epi-polar line, and that of the same epi-polar plane and 
the right image plane the corresponding right epi-polar 
line, respectively.  An important characteristic is that the 
correspondences of the image points contained in the left 
epi-polar line should be lie on its corresponding right 
epi-polar line.  The more accurate correspondences of 
the pairs of epi-polar lines, the more accurate is the 

camera pose estimated.  Figure 5 shows an example of 
the pairs of epi-polar lines computed with the camera 
poses estimated using our approach.  One can see that 
the corresponding epi-polar lines are well matched.  In 
particular, the epi-polar line is also served as a good hint 
to the users in our work for selecting more 
correspondences of features as described in Section 3. 

3.  Face Model Reconstruction 

In our work, the face model of a particular person is 
obtained by deforming a generic face model as shown in 
Figure 6.  Assume that a set of 3D points on the face of a 
particular person is reconstructed.  The generic model 
can then be deformed in such a way that it fits these 3D 
points as well as possible.  In the previous section, the 
camera poses have been estimated under the assumption 
that the camera model is orthographic and nine salient and 
explicit feature points have also been computed.  
However, it is usually not sufficient enough to 
reconstruction a face model using only nine feature points 
through the deformation of a generic model.  Although 
we can allow the users to select more points in the 
camera-pose estimation stage, it may not give too much 
help because the estimation of the camera poses requires 
to using salient and explicit feature points for accurate 
estimation.  However, such feature points are very likely 
to be within the neighborhood regions of the nine points 
shown in Figure 3(b), and hence carries out not too much 
more information for camera pose estimation.  In fact, 
the 3D positions of the salient and explicit regions in a 
human have been estimated in a considerably accurate 
manner in the camera-pose estimation stage, the 
remaining critical regions to be reconstructed are mainly 
the intensity-smooth part in a human face.  In the phase 
1 of our work, more control points (many of them are in 
the critical regions) are chosen and reconstructed using 
multi-view stereo.  In the phase 2 or our work, the 
generic model is then deformed to fit the 3D positions of 
those control points. 

l Phase 1: Multi-view Stereo for Reconstruction of 
Coarse Model 

Because the camera poses have been estimated, other 3D 
points can be obtained via simple triangulation (or 
referred to as multi-view stereo) as shown in Figure 7 if 
the correspondences of the points among images are given.  
In principle, at least two images are required in this phase, 
and typically 3-5 images are used in our work.  To 
reconstruct more 3D points on the face model, the users 
are required to give the correspondences of points for 
other 35 points as shown in Figure 9(a), and hence totally 
44 points on a human face will be reconstructed in our 
work.  As stated before, most of the other 35 points lie in 
the intensity-smooth region.  In principle, to select their 
corresponding positions in images is a more difficult 
problem to human perception.  To help the user’s 
selection via his (or her) perception, the epi-polar line 



 

  

pairs introduced in Section 2.4 are used to give good hints 
as shown in Figure 9.  The 44 reconstructed points can 
be connected to form a coarse model, as shown in Figure 
10. 

l Phase 2: Deformation Process 

The deformation process used in this paper is the method 
of control triangulation proposed by Fua [5].  Figure 9 
shows the deformation results by deforming the generic 
model shown in Figure 6 to fit with the control points (i.e., 
the vertices of the coarse model) shown in Figure 10. 

4 Experimental Results 

Figures 12-17 show some human face model 
reconstructed using the approach introduced in this paper.  
The upper rows shows the five images of a particular 
person, and his face model reconstructed, respectively.  
The lower rows show some texture-mapped human face 
models observed from different viewing directions.  Our 
main purpose is to reconstruct the face region of the 
human.  The hair and the neck regions are reconstructed 
roughly and shown simply for better visual effects.  It 
can be observed that our approach can reconstruct the 
human face model accurately to a considerable extent. 

5 Summary 

In this paper, we developed a systematic method for 
reconstruction of the human face model from multiple 
images in a semi -automatic way.  First, the camera poses 
with respect to the images are computed under the 
assumption that the camera model is orthographic.  Then, 
more 3D control points are reconstructed using 
multi-view stereo.  Finally, a mesh model of the human 
face is obtained by deforming an initial generic model to 
fitting the control points.  The contribution of this paper 
includes (1) we propose a linear method to give a good 
initial estimation for nonlinear optimization, so as to 
allow the computation process of camera pose estimation 
to be more stable.  (2) We propose a new hole-filling 
process for handling the partial occlusion problem so as to 
recover the missing feature points in a more robust way.  
In the current implementation of our approach, feature 
points and correspondences are selected manually.  The 
computation process can be more automatic by tracking 
the features in the images.  Some future work includes 
the combination of the multi-view stereo and the 
deformation phases to be a single energy minimization 
process and to use the contour information in images for 
refinement of the 3D model. 
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   (c) 
Figure 1:  (a) An example of the measurement matrix containing empty entries.  (b) Its U-field and V-field.  The empty 
entries are the same in the U-field as that in the V-field.  (c) Possible sub-matrices which can be used to recover the empty 
entries. 
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(e)                         (f) 

Figure 2:  An example of the row/column deletion process.  (a) A measurement matrix with some empty entries and assume 
that the empty entry u33 is the target to be recovered.  (b) The empty entries which are definitely deleted according to Property 
1 and Property 2.  (c) The dashed lines show the two possible deletions considering the remaining empty entry u57.  (d) If the 
fifth row is turn out to be deleted, then there are also two choices of deletions for another remaining empty entry u96.  (e) If the 
sixth column is turn out to be deleted.  (f) The remaining maximal sub-matrix which can be used to recover u33. 

 

   
(a)             (b)              (c) 

Figure 3.  To estimate the camera poses, nine feature points 
are selected in the middle view as show in (b).  The 
corresponding points of the nine features are then selected 
by the user in other views as shown in (a) and (c).  Due to 
occlusion, some features in the middle may not have 
corresponding points in other views. 

   
(a)             (b)              (c) 

Figure 4.  Input points and the recovered occluding points.  
Square dots are the input points, and the diamond dots are 
the recovered occluding points.

  
(a)                       (b) 

Figure 5 (left).  Pairs of epi-polar lines in two image pairs.  
The corresponding point of a point in the left (or right) 
image have to be lie on the corresponding epi-polar line in 
the right (or left) image.



 

 

 
Figure 6.  The generic face model used in our work. 

 
 
 
 
 
 
 

Figure 7.  Stereo reconstruction with multi -views. 
 

 
Figure 8.  Pick other 35 points in the front view.  

 

 
(a)        (b)          (c)         (d) 

Figure 9.  Computer-aided selection for picking the 
correspondences of the other 35 control points. (a) Pick the 
jaw in the front view.  (b) The corresponding epi-polar line 
is served as a good hint for selection. (c) Pick the cheekbone 
in the front view.  (d) Its correspondence epipolar line is 
served as a good hint for selection. 

      
(a)           (b) 

Figure 10.  Reconstruction of the 44 control points and 
connecting them to form a coarse model. (a) Wire-frame 
result of the generated coarse model. (b) Shading result of 
the generated coarse model. 
 

 
Figure 11.  The left-upper shows the reconstructed face 
model of Mr. Wu rendered with a standard shading 
technique.  The other images are some texture-mapped 
results of the reconstructed model observed from different 
viewing directions. 

 

  
Figure 12.  The upper row shows the five images of Mr. Tsai 
and his reconstructed face model.  Some texture-mapped 
results of the reconstructed model observed from different 
viewing directions are shown in the lower row.  
 

 

 
Figure 13.  The upper row shows the five images of Mr. Kao 
and his reconstructed face model.  Some texture-mapped 
results of the reconstructed model observed from different 
viewing directions are shown in the lower row.  
 

 

 
Figure 14.  The upper row shows the five images of Mr. 
Chen and the reconstructed face model of him.  Some 
texture-mapped results of the reconstructed model observed 
from different viewing directions are shown in the lower 
row.  
 

 

 
Figure 15.  The upper row shows the five images of Mr. 
Chen and the reconstructed face model of him.  Some 
texture-mapped results of the reconstructed model observed 
from different viewing directions are shown in the lower row.

 


