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Abstract

In this paper, we developed a systematic approach for the
reconstruction of a 3D mesh model of a human face from
multiple images in a semi-automatic way. Our approach
can be divided into three steps. (1) estimation of the
camera poses from multiple images under the assumption
that the camera projection model is orthographic, (2)
computation of the 3D coordinates of a set of control
points with multi-view stereo, and (3) reconstruction of a
mesh model of human face by deforming a generic model
to be fit with the control points. Experiments results
show that our method is effective for reconstruction of
human face models.

Keywords: Face-model Reconstruction, Orthographic
Projection, Camera Pose Estimation, Stereo Vision, Mesh
Deformation.

1 Introduction

Reconstruction of human face models is an important
problem in computer graphics and virtual reality due to
many of its promising applications. In the past,
approaches for face model reconstruction can be divided
into two classes. The first class is the bottom-up
approach. In this class of approaches, the connectivity is
recovered along with geometry. Among them, many
researchers concentrate on stereo methods. Lengagne et
a. proposed a method combining stereo vision and
differential constraints [10][11]. Sara builds a system
that four cameras are available for stereo reconstruction
[13]. Chen et a. added smoothness constraints in
estimating disparity surface [3]. In addition, shading
technique and is available too [12]. The second one is
the top-down approach that the connectivity information
is treated as prior knowledge. In [5][6], video stream is
used to reconstruct head and natural expressions. Ho, et
al. developed an approach for reconstruction of the face
model from a single image[8]. The animation results of
Guenter et al. [7] are impressive for animation.
Delingette and Montagnot proposed a method for
deforming face model by a cloud of 3D points [4].
Modeling has also been done from picture data by
detecting features, modifying a given generic model and
then mapping texture on it [1][9].

In this paper, we developed a semi-automatic approach
for face model reconstruction from multiple images of a
human head. To reconstruct the 3D structure from
multiple images, afundamental problem isto estimate the
camera pose for each image. In this paper, based on the
method of Tomasi and Kanade [14], we develop a
modified approach for camera pose estimation under the
assumption that the camera model is orthographic. Our
approach is more computationally stable because that (i)
we propose a linear method to give a good initial
estimation for nonlinear optimization, and (ii) we propose
a new missing-feature recovering process for handling the
partial occlusion problem. Once the camera pose of
each image has been estimated, our approach reconstructs
the human face model in a two-phase procedure. In
phase 1, a set of 3D coordinates of the selected control
points are obtained via multi-view stereo. In phase 2, a
face model is reconstructed by deforming a generic one so
asto fit the set of control points obtained in phase 1.

2  Camera Pose Estimation under
Orthographic Projection

Estimation of the camera parameters from multiple
images and reconstruction of the 3D structures of the
objects contained in the scene (referred to as structure
from motion) isacentral issue in 3D computer vision. If
the camera has not been calibrated in advance, its
parameters have to be estimated directly from the image
correspondences among a sequence. In this paper, the
camera model used for 3D reconstruction is assumed to
be orthographic. Orthographic projection is a good
approximation of the camera model when the depth
variation of the object contained in the scene image is
small compared to the average distance from the object to
the camera In our work, some (usualy five)
photographs of a human head are taken with a zoom-in
camera in the positions which distances to the human
head are approximately the same. Hence, it is
reasonable to adopt such a camera model for 3D
reconstruction in our application. The camera
calibration problem can also be simplified by using an
orthographic camera model because no intrinsic camera
parameters (but only the camera poses) have to be
estimated.



2.1 Review of The Factorization Method

We first review the method proposed by Tomasi and
Kanade [14] developed for camera pose estimation under
orthographic projection. Given P feature points being
tracked over F frames in an image sequence, { (us.vp) | f=
1, .. F,p =1, ..P}. The centering coordinates of the
feature points in each image frame is defined as { (uy-ay,
Vb)) 1f=1,...F,p=1,.,.P}, where
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Consider the 27 P matrix W , the measurement matrix,
defined asfollows:
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where U and and V' are the F~ P matrices whose
entries of the /th row and pth column areu,-a,and vy,-b,,
f=1,.,.F,p=1,.,P,respectively.

Assume that the world coordinate system is selected
according to that its origin is the centroid of the P feature
points in the 3D space and that its X and Y axes are
parallel to the row direction and the column direction of
the first frame of the image sequence, respectively.

Denote that the 3D coordinates of the P feature points to
be S, S .. S,,andlet i, and j, (n = I, ., F) bethe
vector parallel to the row and the column directions of the
n-th frame with respect to the world coordinate system

respectively. Then, W can be decomposed as W =RS

where R isa2F 3 matrix and S isa 3 P matrix as shown
below:
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In particular, R has to satisfy the following two
constraints.

(1) Constraints of thefirst frame:

i;=[100"and;j,; =[010]", (2.)

(2) The metric constraints:

li|=]i/|=1 and i}j, =0tor f=1.F.
(22
In fact, the constraint (2.1) can be ignored in the

beginning. It is because that if we have found a solution

(R, S) satisfying both W =RS and the constraint (2.2) but
iy [100/Torj;t [010]7, theni;,j, and i,” j, (where
“”" isthe cross product) still forms the three axes of a3D
Euclidean mordinate system which can be transformed
via a unique rotation, namely R,, of that of the world
coordinate system defined above. This rotation, R,, can
then rotatei; to[100] " andj; to[010] ".

Hence, we can concentrate on the problem of finding the

solution (R, S) satisfying both W =RS and the constraint

(2.2). Notice that the rank of W is at most three
because the ranks of bothR and S are three. However, in

practice, the rank of W is usually more than three due
to image noise. By applying the singular value

decomposition to W and only keeping the largest three
singular values, we can « obtain a good approximation of

W by decomposmg W into a 2 3 matrix R and a
3 P matrix S, W@R S Notice that R and
S are of the same sizes of R and S, respectively.

However, ]AQ and S may not satisfy the constraint
(2.2). In [14], it is clarified that R (or S) is a linear

transformation of R (or S) asshownin thefollowing:

R=RO ad S=07'S 23)

Here, O is a3 3 matrix transforming the matrix IAQ (or
S) to the true one R (or S). Tomasi and Kanade [14]

suggest to changing the problem of factorization of W
into R and S to the problem of finding O in (2.3). By
applying the constraint equation of (2.2) and (2.3), they
formulate 3F equations in terms of the nine unknowns
contained in Q and thus induce an over-constrained
equation system when F>3 as shown in the following.

100", =1
J;00"j, =1
i;00"j, =0

for al f =1..F, (24)
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where I (f =1, ., F) arethefirst F rowsof R, and

J; (f=1, ., F)aethelast Frowsof R. Notice that

this equation system yields ahighly nonlinear data-fitting
problem because it consists of the quadratic terms of the
entriesof Q.

2.2. Linear Solution to the Factorization Method

A major problem occurred in the method introduced
above is that it requires to solve a highly nonlinear
equation system which is difficult to be solved in a stable
way. In this section, we develop a method which can get
the solution of the data-fitting problem with the same
constraints shown in (2.2) and (2.3) by simply solving a
linear equation system.

Definea3” 3symmetricmatrix F  to be

F=00" (25)

Because F issymmetric, only six variables are required
to be estimated. Rewrite (2.4) with the entries of F
yields the following equation system:
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where
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Notice that (2.6) is a linear over-constrained system with
3F equations. Hence, the least-squared error solution of
F can be effectively obtained by calculating the

pseudo-inverse of the coefficient matrix with respect to
thislinear system.

Once F is obtained, we have to decompose it into the
fom QQ" . In principle, there are infinite many

solutions of Q satisfying that F =0Q" because the

number of free variables of Q is nine but that of F is
only six. It can also be clarified with the fact that if we
replace O by O’=0R, in (2.3) with an arbitrary rotation

matrix R,, it still satisfiesthat RS=R S because R,'R,=I.
Hence, we can first find an arbitrary Q satisfying
F =00Q", and it is equivalent to ignoring the constraint

(2.1) in the beginning because different solutions of O
only induce different selections of the three valid axes of
the world coordinate system as introduced in Section 2.1.
To achieve this purpose, we use the eigenvalue
decomposition of F :

F =0Q" = PDP" =(PD'?)(DY?P") (7

where D is diagonal matrix consists of the eigenvalues
of F, and P the matrix consists of the eigenvectors of

F.

Another problem of the method described in Section 2.1
is that the solution obtained may not exactly satisfy the
metric constraints shown in (2.3) if we treat the constrains
to be solved as a data-fitting problem and solve it in an
over-constrained manner. To get the solution exactly
satisfying the metric constraints in (2.3), we should
formulate a constrained optimization problem instead of a
data-fitting problem. In our work, the solution obtained
viathe linear method described above is used as an initial
estimate of the following constrained optimization
problem with the error function as shown in (2.8).

L

subject to the constraintsin (2.1) and (2.2).

In our work, the MATCOM library is used for solving this
constrained nonlinear optimization problem. To obtain a
good initial estimation, R and S computed through the
above linear procedure are transformed by R— RR, and
S— R,'S, where R, is the | east-squared-error rotation
matrix which transforms;, j; and i, jy to [100] T[010]
Tand[001] T, respectively *.

2.3. Handling Partial Occlusion

In practice, feature points may appear and disappear in an
image sequence due to occlusions. When occlusions
occur, the factorization method introduced above cannot

be applied directly because the measurement matrix W
contains empty entries. The empty entries are
recoverableif either the same feature is seen often enough
in other frames or the frame in question includes enough
other features. A characteristic of the empty entries

occurred in the measurement matrix W is that they are
pair-wise. That is, if an empty entry occurred in the
U-field, then it should also occurred in the corresponding
position of the V-field, as shown in Figure 1(a) and 1(b).

1 The Arun et. al method [2] is used for computing the
| east-squared-error rotation matrix Ry.



Therefore, without lost of generality, our discussion on
recovering the empty entriesis based on the U-field in the
following.

In fact, through a detailed analysis we can find that the
method introduced in Sections 2.1 and 2.2 requires at
least three views of four points or four views of three
points to determine the structure and motion under

orthographic projection. Hence, if U’l Uis a 4 4
sub-matrix containing one empty entry, then it can be
recovered by the following procedure [14]: (1) computing
the 3D coordinate of the occluded feature with the other
three visible frames, (2) computing the camera pose of the
frame containing the occluded feature with the other three
visible points, and (3) projecting the 3D coordinate onto
the image plane of the frame containing the occluded
feature. In fact, the above procedure can aso be

extended to recover the empty entry if U’ U isaK K
(K34) sub-matrix containing one empty entry [14].

Definition 1: [Valid Sub-matrix] A sub-matrix is valid
for recovering an empty entry u; if its dimension is larger
than or equal to4” 4 and it only contains one single empty
entry, i.e., u;;.

The empty entries in a ~ P measurement matrix W
can be recovered in turn. However, the selection of the
sub-matrix can affect the final solution. For example,

when we want to fill u,, in the U-field as shown in the

left side of Figure 1(b), both the sub-matrices shown in
Figure 1(c) are valid. Hence, to select a better valid
sub-matrix is an important issue. Consider an empty
entry in U to be recovered, we formul ate the procedure of
finding a valid sub-matrix as a row/column deletion
process as described below.

Property 1: [Definite Column Deletion] Assume that
the empty entry to be recoveredisu;. Consider all of the
other empty entries in the i-th row of U, namely u;.), u
ie(2)s - Uiem. Then, the columnse(l), e(2), ... e(n) can
not be used to recover the empty entry u;;.

pf: The entry u;; should be the only empty one contained
inavalid sub-matrix which can be used to recover u;;. |f
the sub-matrix containsany rows, e(k), k=1, 2, ..u, then it
aso contains another empty entry u;.q), which causes a
contradiction.

Hence, we can delete the columns e(1), e(2), ... e(n) in
the process of finding a valid sub-matrix. Similarly, the
following property also holds.

Property 2: [Definite Row Deletion] Assumethat the
empty entry to be recovered is u;. Consider all of the
other empty entries in the j-th column of U, namely u.),
Ue)js - Uem)j- Then, the rows e(l), e(2), .., e(n) can
not be used to recover the empty entry u;, and thus can

also be deleted in the sub-matrix selection process.

For example, if we want to recover the empty entry, u;;,
of the matrix U shown in Figure 2(a), then the seventh
row and the fifth column can be deleted at first according
to Property 1 and Property 2 because they are not possible
to be contained in any valid sub-matrices, as shown in
Figure 2(b). In particular, we also hope that the
sub-matrix selected ismaximal as defined bellow:

Definition 2: [Maximal Sub-matrix] A sub-matrix is
maximal if itisvalid and it is not the proper sub-matrix of
any other valid sub-matrices.

Basically, a maximal sub-matrix can exploit as more as
feature points or image frames for estimation of the
values of the empty entries, and thus can estimate them
more accurately.

If al of the empty entries contained in U have been
removed by considering Property 1 and Property 2, then
the remaining sub-matrix is a maximal one and can be
used to recover u;. On the other hand, consider an
empty entry, u;;;;, which remains after the definite row
and column deletion processes described in Property 1
and Property 2. Then, either the i/-throw or the jI-th
column can be deleted. For example, consider one of the
remaining empty entries, us;, in Figure 2(c). Either the
fifth row or the seventh column can be deleted. If the
fifth row is turn out to be deleted, then there are also two
choices of either deleting the ninth row or deleting the
sixth column for another remaining empty entry, w4, and
so on. The above processis iterated until that thereis no
empty entry remained. Finally, one of the possible
maximal sub-matrix can be obtained as shown in Figure
2(f).

In the above process, the deletion of the row and the
column with respect to a remaining empty entry can be
implemented randomly. In this paper, to find a better
sub-matrix for recovering the empty entries, we proposed
a method called randomized median via the principle of
robust estimation. In each time of selection of rows or
columns to be deleted, we apply a non-deterministic
process for the determination of the deletion of columns
or rows. OnceaK” K (K3 4) sub-matrix containing only
one empty entry is selected, we recover the empty entry
and then apply the least square technique introduced in
Section 2.2 to solve its over-constrained solution. The
above two steps of selecting a sub-matrix and estimating
the value of the empty entry are iterated for several times
and the result is recorded in each round. Finally, the
median of the values recorded for each empty entry is
taken to be the estimated value of it.

Although the selection of a sub-metrix in each iteration is
a non-deterministic process in our approach, we do not
select them pure randomly like the standard LMedS
method does. On the other hand, we incorporate some



priori knowledge for the selection of a possibly better
sub-matrix. First, we only consider the sub-matrix with
enough feature points and images frames by forbidding
the deletions alowing the remaining sub-matrix to be
smaller than 4 4. Second, we prefer to select a
sub-matrix as square as possi ble because a thin sub-matrix
may either contain too few features or too near frames
which may cause the computation to be un-stable.
Hence, when the remaining rows are more than the
remaining columns during the process of selection of
rows or columns to be deleted, we give a higher
probability to delete rows, and vice versa.

2.4. Estimation of Camera Poses with Human Face
Images

Typically, five images of a human head are taken for face
model reconstruction in our work. Occlusions may
occur in theimages taken from different view angles. To
estimate the camera poses of the images, a set of feature
correspondences have to be given. In the present version
of our implementation, the correspondences of feature
points are provided by human in a semi-automatic way.
In principle, the more accurate are the feature
correspondences, the more accurate are the pose
parameters estimated. Hence, in the camera-pose stage,
we hope the users to select some salient and explicit
feature points in the human face, such as eyes, nose, lips,
and ears. Typicaly, nine features in a face image are
selected in our work as shown in Figure 3(b). Then, the
correspondences of the visible feature points in other
images are al so selected as shown in Figure 3(a) and 3(c).

Figure 4 shows the results of recovering the occluded
feature points by using the randomized median procedure
asintroduced in Section 2.3. In Figure 4, the square dots
are the feature points selected by the user and the
diamond dots are the recovered feature points which are
occluded in the hput images. One can see that the
missing (or occluded) points can be well complemented
using our method. When al occluding points are
recovered, the 3D coordinates of all feature points can be
computed. To verify the results, we show the
corresponding epi-polar geometry. Given two images
whose poses are given under the assumption that the
camera model is orthographic, a plane is called the
epi-polar plane if it is perpendicular to both images. The
epi-polar line pairs can then be obtained by finding the
intersection lines between each epi-polar plane and both
the image planes. We call the intersection line between
an epi-polar plane and the left image plane the /eft
epi-polar line, and that of the same epi-polar plane and
the right image plane the corresponding right epi-polar
line, respectively. An important characteristic is that the
correspondences of the image points contained in the left
epi-polar line should be lie on its corresponding right
epi-polar line. The more accurate correspondences of
the pairs of epi-polar lines, the more accurate is the

camera pose estimated. Figure 5 shows an example of
the pairs of epi-polar lines computed with the camera
poses estimated using our approach. One can see that
the corresponding epi-polar lines are well matched. In
particular, the epi-polar line is also served as a good hint
to the wusers in our work for selecting more
correspondences of features as described in Section 3.

3. Face Model Reconstruction

In our work, the face model of a particular person s
obtained by deforming a generic face model as shown in
Figure 6. Assume that a set of 3D points on the face of a
particular person is reconstructed. The generic model
can then be deformed in such a way that it fits these 3D
points as well as possible. In the previous section, the
camera poses have been estimated under the assumption
that the camera model is orthographic and nine salient and
explicit feature points have aso been computed.
However, it is wusually not sufficient enough to
reconstruction aface model using only nine feature points
through the deformation of a generic model. Although
we can alow the users to select more points in the
camera-pose estimation stage, it may not give too much
help because the estimation of the camera poses requires
to using salient and explicit feature points for accurate
estimation. However, such feature points are very likely
to be within the neighborhood regions of the nine points
shown in Figure 3(b), and hence carries out not too much
more information for camera pose estimation. In fact,
the 3D positions of the salient and explicit regions in a
human have been estimated in a considerably accurate
manner in the camera-pose estimation stage, the
remaining critical regions to be reconstructed are mainly
the intensity-smooth part in a human face. In the phase
1 of our work, more control points (many of them are in
the critical regions) are chosen and reconstructed using
multi-view stereo. In the phase 2 or our work, the
generic model is then deformed to fit the 3D positions of
those control points.

( Phase 1: Multi-view Stereo for Reconstruction of
Coarse Model

Because the camera poses have been estimated, other 3D
points can be obtained via simple triangulation (or
referred to as multi-view stereo) as shown in Figure 7 if
the correspondences of the points among images are given.
In principle, at least two images are required in this phase,
and typically 3-5 images are used in our work. To
reconstruct more 3D points on the face model, the users
are required to give the correspondences of points for
other 35 points as shown in Figure 9(a), and hence totally
44 points on a human face will be reconstructed in our
work. As stated before, most of the other 35 pointsliein
the intensity-smooth region. In principle, to select their
corresponding positions in images is a more difficult
problem to human perception. To help the user’'s
selection via his (or her) perception, the epi-polar line



pairsintroduced in Section 2.4 are used to give good hints
as shown in Figure 9. The 44 reconstructed points can
be connected to form a coarse model, as shown in Figure
10.

(] Phase 2: Deformation Process

The deformation process used in this paper is the method
of control triangulation proposed by Fua [5]. Figure 9
shows the deformation results by deforming the generic
model shown in Figure 6 to fit with the control points (i.e.,
the vertices of the coarse model) shown in Figure 10.

4  Experimental Results

Figures 12-17 show some human face model
reconstructed using the approach introduced in this paper.
The upper rows shows the five images of a particular
person, and his face model reconstructed, respectively.
The lower rows show some texture-mapped human face
models observed from different viewing directions. Our
main purpose is to reconstruct the face region of the
human. The hair and the neck regions are reconstructed
roughly and shown simply for better visual effects. It
can be observed that our approach can reconstruct the
human face model accurately to a considerable extent.

S Summary

In this paper, we developed a systematic method for
reconstruction of the human face model from multiple
imagesin a semi -automatic way. First, the camera poses
with respect to the images are computed under the
assumption that the camera model is orthographic. Then,
more 3D control points are reconstructed using
multi-view stereo. Finally, a mesh model of the human
face is obtained by deforming an initial generic model to
fitting the control points. The contribution of this paper
includes (1) we propose a linear method to give a good
initial estimation for nonlinear optimization, so as to
allow the computation process of camera pose estimation
to be more stable. (2) We propose a new hole-filling
process for handling the partial occlusion problem so asto
recover the missing feature points in a more robust way.
In the current implementation of our approach, feature
points and correspondences are selected manually. The
computation process can be more automatic by tracking
the features in the images. Some future work includes
the combination of the multiview stereo and the
deformation phases to be a single energy minimization
process and to use the contour information in images for
refinement of the 3D mode.
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Figure 1: (a) An example of the measurement matrix containing empty entries. (b) Its Ufield and V-field. The empty
entries are the same in the U-field as that in the V-field. (c) Possible sub-matrices which can be used to recover the empty
entries.
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Figure 2: An example of the row/column deletion process. (a) A measurement matrix with some empty entries and assume
that the empty entry u;; is the target to be recovered. (b) The empty entries which are definitely deleted according to Property
1 and Property 2. (c) The dashed lines show the two possible deletions considering the remaining empty entry us;. (d) If the
fifth row is turn out to be deleted, then there are also two choices of deletions for another remaining empty entry uys. (e) If the
sixth column is turn out to be deleted. (f) The remaining maximal sub-matrix which can be used to recover u;;.
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Figure 3. To estimate the camera poses, nine feature points Figure 4. Input points and the recovered occluding points.
are selected in the middle view as show in (b). The Square dots are the input points, and the diamond dots are
corresponding points of the nine features are then selected the recovered occluding points.
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by the user in other views as shown in (a) and (c). Due to
occlusion, some features in the middle may not have
corresponding points in other views.

Figure 5 (left). Pairs of epi-polar lines in two image pairs.
The corresponding point of a point in the left (or right)

image have to be lie on the corresponding epi-polar line in
the right (or left) image.
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Figure 6. The generic face model used in our work.

Figure 7. Stereo reconstruction with multi-views.

Figure 8. Pick other 35 points in the front view.
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(a) (b) (c) (d)
Figure 9. Computer-aided selection for picking the
correspondences of the other 35 control points. (a) Pick the
jaw in the front view. (b) The corresponding epi-polar line
is served as a good hint for selection. (¢) Pick the cheekbone
in the front view. (d) Its correspondence epipolar line is
served as a good hint for selection.

(@ (b)
Figure 10. Reconstruction of the 44 control points and
connecting them to form a coarse model. (a) Wire-frame

result of the generated coarse model. (b) Shading result of
the generated coarse model.
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Figure 11. The left-upper shows the reconstructed face
model of Mr. Wu rendered with a standard shading
technique. The other images are some texture-mapped
results of the reconstructed model observed from different
viewing directions.

Figure 12. The upper row shows the five images of Mr. Tsai
and his reconstructed face model. Some texture-mapped
results of the reconstructed model observed from different
viewing directions are shown in the lower row.

Figure 13. The upper row shows the five images of Mr. Kao
and his reconstructed face model. Some texture-mapped
results of the reconstructed model observed from different
viewing directions are shown in the lower row.

Figure 14. The upper row shows the five images of Mr.
Chen and the reconstructed face model of him. Some

texture-mapped results of the reconstructed model observed
from different viewing directions are shown in the lower
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Figure 15. The upper row shows the five images of Mr.
Chen and the reconstructed face model of him. Some
texture-mapped results of the reconstructed model observed
from different viewing directions are shown in the lower row.




