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Abstract

The conventional fractal encoding algorithm per-
forms an exhaustive search to �nd a close match be-
tween a range block and a large pool of domain blocks.
For a large image, the domain pool increases obvi-
ously, so the encoding time will also increase. In this
paper, we propose a hybrid scheme by combining the
fractal image compression with the vector quantiza-
tion. We use the longest distance �rst algorithm to
classify the domain blocks. In this way, we can reduce
the range in searching the domain pool. Experiment
results show that our method can e�ectively speed up
the encoding time about ten times. In addition, the
quality of our reconstructed images is still as good as
the conventional fractal algorithm.

1 Introduction

Recently, image compression becomes more and
more popular with quick development of the multi-
media. An image always contains a great amount
of information, but some information loss is insensi-
tive to the human eyes. Thus, we can remove such
information from an image to get high compression
ratio. Many image compression methods have been
proposed, such as vector quantization (VQ) [5,11,15]
and fractal block coding [1, 4, 8, 9, 15] and so on.

Vector Quantization (VQ) [5,11,15] is a well-known
method for image compression. In VQ, we �rst par-
tition the image into a set of blocks, then treat each

�This research work was partially supported by the National

Science Council of the Republic of China under contract NSC

88-2213-E-110-012 .

block as a vector. For every vector, we �nd the closest
codeword from the codebook, then use the index of
the codeword to represent each vector. In the decod-
ing phase, we �nd the encoded index of each vector
and uses the codeword with that index to represent
each vector.

The fractal image compression [1,4,6,8{10,14] uti-
lizes the existence of local self-similarity in an image
to encode the image. With this way, the fractal im-
age compression can obtain high compression ratio
and good quality of the reconstructed image.

Jacquin has pointed out the similarity between frac-
tal image compression and VQ [8]. Both methods use
a codebook to index each block, which is extracted
from the original image. In the fractal image compres-
sion, the original image is partitioned into overlapping
blocks as the codebook. Unlike the VQ, the fractal
image compression needs not transmit the codebook
to the decoder. The encoder �nds a contractive op-
erator whose �xed point is an approximation of the
original image. With this contractive operator, the
decoder can use any arbitrary initial image to get an
approximate image by the iterative method. There-
fore, the fractal image compression has very high com-
pression ratio. However, it takes long time to encode
a fractal image. The conventional fractal encoding
algorithm performs an exhaustive search to �nd the
best match from the codebook. In this paper, we use
the longest distance �rst (LDF) algorithm to classify
those overlapping blocks. With our method, we can
reduce the number of blocks to be searched, thus re-
duce the encoding time.

In this paper, we focus on a fractal image compres-
sion with classi�cation by vector quantization. In Sec-
tion 2, we will review some related algorithms that we
use in this paper. The detail of our fractal encoding



algorithm is described in Section 3. The performance
of our algorithm and the experiment comparison with
other fractal-based algorithms are given in Section 4.
Finally, we give a conclusion in Section 5.

2 Previous Works

First, we describe a simple fractal block encoding
scheme [15]. The original image is partitioned intoNR

nonoverlapping blocks called range blocks, denoted
as Ri; 1 � i � NR, with size rs � rs. The original
image is also partitioned into ND overlapping blocks
called domain blocks, denoted as Dj ; 1 � j � ND,
with size ds� ds. Domain block size is always larger
than range block size, usually ds = 2rs, so we need
to contract each domain block to the size of a range
block. Moreover, each range block Ri �nds the min-
imum distortion Distfractal(tr(Dj); Ri), for all Dj ,
and output the encoded information Ii(flag;msg).
A range block is said to be smooth if the variance of
all pixels in the block is small. If a range block is
smooth, we don't compute the distortion and use the
mean of that block to represent it. With this way, we
can both reduce the encoding time and increase the
compression ratio.
For a given vector Qi = (b1; b2; : : : ; bN ), if P =

(a1; a2; : : : ; aN ) is used to represent Qi, then the dis-
tortion between P and Qi is de�ned as follows [15].

Distfractal(P;Qi) =

NX

k=1

(si � ak + oi � bk)
2; (1)

where si and oi are de�ned in Equation 2 and Equa-
tion 3 respectively.
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NX

k=1

bk � si

NX
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ak)=N (3)

Ii(flag;msg) is used to represent the encoded block
i, where if flag = 0 then msg = fmeang, otherwise,
if flag = 1 then msg = fthe coordinate; r; si; oig.
The conventional fractal algorithm performs an ex-

haustive search to �nd a close match between a range
block and a large pool of domain blocks. There are
some classi�cation schemes [4, 6, 8{10, 14] developed
to reducing the number of comparisons. Here, we will
introduce some of the schemes.

Jacquin [8,9] presented a scheme for classifying the
domain blocks and range blocks. It is based to the
classi�ed vector quantization (CVQ) [13], and clas-
si�es the blocks into three main classes i.e. shade
blocks, midrange blocks, and edge blocks. Fisher [4]
also used a similar scheme with more classes.
Hamzaoui [6,14] proposed a hybrid scheme by com-

bining fractal image compression with mean-removed
shape-gain vector quantization (MRSG-VQ) [5, 12].
C. K. Lee and W. K. Lee also propose a simple

method [10] based on the local varience to reduce the
searching time on �nding a close match between a
range block and a large pool of domain blocks.
Now, we describe the algorithm that we shall use

to classify the domain blocks. The longest distance
�rst (LDF) algorithm [7] is a fast heuristic algorithm
to generate better codebooks. It uses the longest dis-
tance �rst strategy to choose which cluster should be
split instead of the maximum descent criterion in the
maximum descent (MD) algorithm [2,3] and it invokes
the longest distance partition technique to partition
one cluster into two new clusters instead of the 2-level
LBG partition technique [3] or the hyperplane parti-
tion technique [2, 3].
The distance of two vectors P = (p1; p2; � � � ; pN )

and Q = (q1; q2; � � � ; qN ) is de�ned as follows.

DistV Q(P;Q) =

NX

j=1

(pj � qj)
2 (4)

The longest distance partition algorithm is as fol-
lows:

Algorithm Longest Distance Partition (LDP)

Input: The splitting cluster Ci = fx1; x2; : : : ; xnig.

Output: Two new clusters Ca and Cb and their rep-
resentative codewords.

Step 1: Calculate the centroid vi of the splitting
cluster Ci.

Step 2: Find xa such that DistV Q(xa; vi) =
max

1�j�ni
DistV Q(xj ; vi).

Step 3: Find xb such that DistV Q(xb; xa) =
max

1�j�ni
DistV Q(xj ; xa).

Step 4: Split cluster Ci into Ca and Cb. That is, if
DistV Q(xj ; xa) < DistV Q(xj ; xb) then xj 2 Ca;
otherwise xj 2 Cb, 1 � j � ni.

Step 5: Calculate the centroids of Ca and Cb as the
two new codewords.



In order to reduce the partition time, the LDP al-
gorithm uses a fast method [3] to determine which
cluster x should belong to. The fast method [3] is as
follows:
Let xj = (�1; �2; : : : ; �N ), xa = (a1; a2; : : : ; aN) and
xb = (b1; b2; : : : ; bN ).
Then xj is put in Ca if

NX

j=1

(�j � aj)
2 <

NX

j=1

(�j � bj)
2: (5)

So, x is placed in Ca if

NX

j=1

(aj � bj)�j >
1

2

NX

j=1

(a2j � b2j ): (6)

The values of (aj � bj) and
1

2

NX

j=1

(a2j � b2j ) in Equa-

tion 6 are not changed during the splitting process
and can be pre-calculated. The amount of compu-
tation can be reduced to N multiplications, N � 1
additions and 1 comparison. So Equation 6 is used
instead of Equation 5.
Now, we will describe the longest distance �rst al-

gorithm. The longest distance �rst algorithm chooses
which cluster should be split. It �nds the cluster with
the maximum longest distance and applies the LDP
algorithm to split this cluster.
The longest distance �rst algorithm is as follows:

Algorithm Longest Distance First (LDF)

Input: The codebook size and the training set.

Output: The codebook.

Step 1: Split the entire training set into two new
clusters by the LDP algorithm.

Step 2: Let the two newly formed clusters be Ca and
Cb. Find the longest distances in Ca and Cb re-
spectively.

Step 3: Select the cluster with the maximum longest
distance in all clusters. Split the selected cluster
into two new clusters by using the LDP algo-
rithm.

Step 4: If the number of current clusters is equal to
the codebook size we desire, then output the cen-
troids of the clusters as the codebook and stop;
otherwise go to Step 2.

The advantages of the LDF algorithm are its speed
and quality. It requires much less time than other
codebook generation algorithms. Moreover, the qual-
ity of the codebooks generated by LDF is very good,
so we choose the LDF algorithm as a base on our
fractal algorithm.

3 The Fractal Encoding with VQ Clas-

si�cation

The conventional fractal algorithm spends too
much time on �nding the best match between a range
block and a large pool of domain blocks. In order to
reduce the encoding time, we decrease the search pool
by clustering all domain blocks. Our clustering algo-
rithm is based on vector quantization (VQ).
For training a local codebook in VQ, all training

vectors are partitioned from an original image. In the
end of classi�cation, similar vectors will be put into
the same cluster. Thus we utilize this concept to clas-
sify the domain blocks. Besides, an eÆcient codebook
generation algorithm for VQ is very important. To
generate the codebook, we choose an eÆcient method,
the longest distance �rst (LDF) algorithm which we
have introduced in the previous section.
We can classify the domain blocks eÆciently by us-

ing the LDF algorithm. First, we extract ND overlap-
ping domain blocks from the original image and con-
tract each domain block to the size of a range block.
The elements of the training set are the domain blocks
after applied the eight transformations. Thus, the size
of the training set is 8ND. After applying the LDF
algorithm, we get NC codewords and classify each
transformed domain block into a correlative cluster.
Each range block �nds a nearest codeword (cluster)
in the codebook and then in the cluster, �nds the
transformed domain block with minimum distortion
to the range block. Finally, the encoded information
is output.
Our fractal encoding algorithm is as follows.

Basic Phase

Input: An original image.

Output: The previous processing results.

Step 1: Partition the original image
into NR nonoverlapping range blocks, denoted
as R=fR1; R2; : : : ; RNRg.

Step 2: Extract
ND overlapping domain blocks from the original
image, denoted as D=fD1; D2; : : : ; DNDg.

Step 3: Contract each domain block to the size of a
range block.

Step 4: For each domain block Dj , calculate it's
variance �Dj . If �Dj < T� , where T� is a pre-
de�ned threshold, then remove Dj from D.

Step 5: Use the LDF algorithm to split all tr(Dj),
1 � r � 8, until the number of clusters



achieves NC , where NC is a prede�ned code-
book size. The set of all clusters is denoted as
C=fC1; C2; : : : ; CNCg and the codeword of each
cluster Ck is denoted as CWk , 1 � k � NC .

Algorithm A

Input: An original image.

Output: The encoding information.

Steps 1-5: Basic Phase.

Step 6: For each range block Ri, calculate its mean
Ri and variance �Ri . If �Ri < T� , then output
Ii(0; Ri); otherwise do Steps 7-8.

Step 7: Find k such thatDistfractal(CWk ; Ri) is the
minimum, where 1 � k � NC .

Step 8:
Find tr(Dj) such that Distfractal(tr(Dj); Ri)
is the minimum, 8tr(Dj) 2 Ck . Then output
Ii(1; the coordinate ofDj ; r; si; oi).

In Algorithm A, if a codebook of large size is built,
it needs more time in Step 5 and Step 7. However,
the search time can be reduced in Step 8. In addi-
tion, the quality of the reconstructed image increases
very little with a large codebook, so we generate a
codebook with a median size. The time required for
algorithm A is little, but we �nd that the quality of
the reconstructed image is not good enough. Thus,
we modify algorithm A to algorithm B by increasing
the search window on the codebook. That is, when
the close match tr(Dj) is found, more than one cluster
is searched.

Algorithm B

Input: An original image.

Output: The encoding information.

Steps 1-5: Basic Phase.

Step 6: De�ne a search window size, W .

Step 7: For each range block Ri, calculate its mean
Ri and variance �Ri . If �Ri < T� , then output
Ii(0; Ri); otherwise do Steps 8-9.

Step 8: Find a set S = fs1; � � � ; sW g such that
Distfractal(CWk ; Ri) � Distfractal(CWsm , Ri),
8k 62 S and 8sm 2 S.

Step 9: Find
tr(Dj) such that Distfractal(tr(Dj); Ri) is the
minimum, 8tr(Dj) 2 Csm , m = 1; � � � ;W . Then
output Ii(1; the coordinate ofDj ; r; si; oi).

In order to obtain better quality, we give a search
window size W for searching more clusters in algo-
rithm B. Experiments also show that large window
size will obtain the reconstructed images with better
quality, but the encoding time increases too. Thus,
we again modify the algorithm by adding a threshold
T . We use T to determine if a transformed domain
block tr(Dj) is good enough to represent the range
block. If it is, we do not search other clusters further-
more.

Algorithm Longest Distance First Fractal

Encoding

Input: An original image.

Output: The encoding information.

Steps 1-5: Basic Phase.

Step 6: De�ne a search window size, W , and a
threshold, T .

Step 7: For each range block Ri, calculate its mean
Ri and variance �Ri . If �Ri < T� , then output
Ii(0; Ri); otherwise do Steps 8-9.

Step 8: Find a set S = fs1; � � � ; sW g such that
Distfractal(CWk ; Ri) � Distfractal(CWsm , Ri),
8k 62 S and 8sm 2 S.

Step 9:
Find tr(Dj) such that Distfractal(tr(Dj); Ri) <
T or Distfractal(tr(Dj); Ri) is the minimum,
8tr(Dj) 2 Csm , m = 1; � � � ;W . Then output
Ii(1, the coordinate of Dj , r, si, oi).

The longest distance �rst (LDF) fractal encoding
algorithm e�ectively reduces the encoding time with
the threshold T . Small threshold T will obtain the
reconstructed images with better quality, but the re-
duced time is not as much as that with large thresh-
old. We use the LDF fractal encoding algorithm to
compare with other fractal encoding algorithms in
this paper. Our experiment results are listed in the
next section.

4 Experiment Results and Perfor-

mance Analysis

In this section, we show our experiment results and
analyze the performance of our algorithms. Our al-
gorithm is implemented by Borland C++ Builder on
PC with Intel CeleronTM processor 300A MHz and 64
MB RAM. Our testing images include "Lena", "F16",



"Pepper" and "Baboon". All of these images are of
256 gray levels with resolution 256� 256.
To measure the quality of the reconstructed image,

we use the peak signal-to-noise ratio (PSNR), which
is de�ned as:

PSNR = 10 log10[
2552

1
L�L

PL

i=1

PL

j=1(xij � x̂ij)2
];

where L�L = size of image, xij = pixel value of the
original image at coordinate (i; j), and x̂ij = pixel
value of the reconstructed image at coordinate (i; j)
[3, 7].
All decoding process in this paper uses an image

with the initial value of each pixel is 128. And si and
oi in Equation 2 and Equation 3 are quantized to 3
bits and 7 bits respectively.
Now, we would like to show some of our experi-

ment results. Table 1 shows the PSNR and the en-
coding time of our algorithm with various parameters.
We �nd that large search window size will get bet-
ter quality. However, a small search window size will
reduce the encoding time. According to the expri-
ment results, we can get near PSNR if the threshold
T = 9 � N . Thus, the best parameters in our algo-
rithm are that codebook size = 500, window size =
15 and T = 9�N .
Table 2 shows the comparison of the PSNRs in it-

erations 1 through 9 for the conventional fractal al-
gorithm, the local variance fractal algorithm and our
algorithm. The PSNR of our algorithm converges af-
ter the sixth iteration but the local variance algorithm
converges after the 8th or 9th iteration. Finally, the
performance analysis is summarized in Table 3. The
relative speedup of our algorithm to the conventional
exhaustive search algorithm is about ten times. Not
only our algorithm is faster than conventional fractal
algorithm, but also the quality of our reconstructed
images is as good as that of the conventional fractal
algorithm. Our algorithm is also faster than the local
variance algorithm. We also test for the 512 � 512
Lena image and the experiment results are shown in
Table 4. In Table 4, we �nd that the performance of
our algorithm with the 512� 512 Lena image is also
very good.

5 Conclusion

In this paper, we propose a fast encoding algo-
rithm for fractal image compression based on vec-
tor quantization. In the conventional fractal encoding
algorithm, each range block performs an exhaustive
search to �nd a best match from the domain pool,
so a large domain pool will signi�cantly increase the
search time. Thus, we propose a scheme to classify

Table 1: The PSNR and time of our algorithm with
various parameters. NC : codebook size, W : search
window size, T : threshold, N : range block size �
range block size. Test image is Lena 256 � 256. (a)
Domain block size: 16� 16; range block size: 8 � 8;
bpp: 0.379. (b) Domain block size: 8�8; range block
size: 4� 4; bpp: 1.232.

Time (sec)
Parameters
NC = 500

PSNR LDF
clustering

Fractal
encoding

Total

W = 1 27.4351 197.735 52.212 249.947

W = 5 27.9438 197.870 179.116 376.986

W = 10 28.0895 197.824 337.957 535.781

W = 15 28.1305 197.850 473.223 671.073

W = 15 28.1149 198.784 302.135 500.919
T = 9N

W = 15 28.0427 198.815 253.136 451.951
T = 16N

(a)

Time (sec)
Parameters
NC = 500

PSNR LDF
clustering

Fractal
encoding

Total

W = 1 32.8442 93.449 115.315 208.764

W = 5 33.5797 93.735 376.951 470.686

W = 10 33.7773 93.760 723.731 817.491

W = 15 33.8678 93.751 1004.328 1098.079

W = 15; 33.6956 86.066 407.394 493.460
T = 9N

(b)

the domain blocks by using the longest distance �rst
(LDF) algorithm. In average, our method can reduce
the search space to search window size

codebook size
= W

NC
at least,

the percentage is 15
500 = 3% in this paper. Theoret-

ically, we can also reduce the same percent of the
encoding time. That is, we should reduce the encod-
ing time about 33 times when the percentage is 3%,
but actually it is only about ten times. The reason
is, the overhead in training the codebook and �nding
the closest codeword set. Thus, how to decrease the
overhead is one of our future works.

Experiment results show that our method is faster
than the conventional fractal encoding method and
the local variance method, and we still have good
quality of the reconstructed images under the same
compression ratio.
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